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Abstract 

Drought is a climate phenomenon that might occur in any climate condition and all regions on the earth. An 

effective drought management depends on the application of appropriate drought indices. Drought indices 

are variables that are used to detect and characterize drought conditions. In this work, it is tried to predict 

drought occurrence based on the standard precipitation index (SPI) using k-nearest neighbor modeling. The 

model is tested using the precipitation data of Kerman, Iran. The results obtained show that the model gives 

reasonable predictions of the drought situation in the region. Finally, the efficiency and precision of the 

model is quantified by some statistical coefficients. Appropriate values for the correlation coefficient (r = 

0.874), mean absolute error (MAE = 0.106), root mean square error (RMSE = 0.119) and coefficient of 

residual mass (CRM = 0.0011) indicate that the presented model is suitable and efficient. 
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1. Introduction 

Drought is a natural and repeatable phenomenon 

caused by a decline in the rainfall level during a 

specified time period. This phenomenon is a 

climatic event because its characteristics depend 

on its intensity and continuation as well as the 

extent of the affected area. Its occurrence can be 

short-term and harmless or harmful and long-

term. It starts slowly, and its effects appear 

gradually and in a relatively long period of time in 

different sectors such as water resources, 

agriculture, environment and economy. Therefore, 

determining the exact starting and ending points 

of this phenomenon is rather difficult. That is why 

drought has been often described as a creeping 

phenomenon [1]. 

Drought monitoring and forecasting play a crucial 

role in the management of water resource systems, 

and can considerably reduce the losses caused by 

this phenomenon. Generally, drought indices are 

used to monitor and predict this phenomenon. The 

overall objective of these indices is to express this 

phenomenon quantitatively and to incorporate the 

combined effects of various factors on the 

occurrence of droughts in the form of more 

quantitative and convenient relationships [2]. 

A number of different indices have been 

developed to monitor and quantify a drought, each 

with its own characteristics. They include the 

Palmer drought severity index (PDSI; Palmer [3]), 

rainfall anomaly index (RAI; Van Rooy [4]), 

deciles (Gibbs and Maher [5]), crop moisture 

index (CMI; Palmer [3]), Bhalme and Mooly 

drought index (BMDI; Bhalme and Mooley [6]), 

surface water supply index (SWSI; Shafer and 

Dezman [7]), national rainfall index  (NRI; 

Gommes and Petrassi [8]), standardized 

precipitation index  (SPI; McKee et al. [9]), 

reclamation drought index (RDI; Weghorst [10]).  

Examples of the drought damage to agricultural 

systems and other sectors around the world are 

well-documented, and various efforts have been 

made to investigate and characterize the 

mechanism of this phenomenon. Cancelliere et al. 

[11] have provided two methodologies for the 

seasonal forecasting of SPI, under the hypothesis 

of uncorrelated and normally distributed monthly 

precipitation aggregated at various time scales. 

Han et al. [12] have proposed a method for 
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drought forecasting based on the remote sensing 

data using the ARIMA models. The method was 

used for drought forecasting in the Guanzhong 

Plain. Farokhnia et al. [13] have utilized the 

adaptive neurofuzzy inference system (ANFIS) 

model to forecast possible drought conditions in 

Tehran plain. Du et al. [14] have defined the 

synthesized drought index (SDI) as a principal 

component of vegetation condition index (VCI), 

temperature condition index (TCI) and 

precipitation condition index (PCI) for drought 

monitoring in Shandong province, China. 

Farahmand and AghaKouchak [15] have 

introduced the Standardized Drought Analysis 

Toolbox (SDAT), which can be applied to 

different climatic variables including 

precipitation, soil moisture, and relative humidity 

without having to assume representative 

parametric distributions. Hao et al. [16] have 

proposed the optimized meteorological drought 

index (OMDI) and the optimized vegetation 

drought index (OVDI) using the multi-source 

satellite data to monitor drought in three bio-

climate regions of SW China. 

Non-parametric methods can be used as 

appropriate approaches to estimate the status of 

droughts. In the cases where the relationship 

between input and output is not already fully-

determined, utilizing non-parametric algorithm 

can be instrumental. Therefore, in this study, 

using the nearest neighbor model, a method was 

applied to monitor and predict droughts based on 

the standard precipitation index. 

 

2. Standard precipitation index (SPI) 

The understanding that a deficit of precipitation 

can have different impacts on the ground water, 

reservoir storage, soil moisture, and streamflow 

led McKee et al. [9] to develop the Standardized 

Precipitation Index (SPI) to enhance the detection 

of onset and monitoring of drought for multiple 

time scales. These time scales reflect the impact 

of drought on the availability of the different 

water resources. Soil moisture conditions respond 

to precipitation anomalies on a relatively short 

scale, while ground water, streamflow, and 

reservoir storage reflect the longer term 

precipitation anomalies. The standardized 

precipitation index (SPI) was calculated, based on 

the long-term precipitation record for a desired 

period (at least 30 years). The long-term record 

was fitted to a probability distribution, most 

probably gamma distribution. Then the 

cumulative probability was transformed to a Z-

standard normal distribution with mean zero and 

variance of one using the following equations 

[9,17]: 
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where, H(x) is the cumulative probability function, 

and the constants C1 to C3 and d1 to d3 can be 

calculated as follows: 
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Using the time series obtained by precipitation 

data, sorting data in increasing order, the 

empirical probability distribution can be 

calculated (Eq. 3). 
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where, m is the row number of sorted precipitation 

data and n is the total number of precipitation 

data. Using the standard normal cumulative 

distribution curve, the standard precipitation index 

(SPI) can be calculated related to the precipitation 

data for every corresponding time scale.      

Table 1 shows the classification system defining 

drought intensities resulting from SPI. According 

to this table, drought occurs any time SPI is 

continuously negative and reaches intensity where 

SPI is -1.0 or less. The drought event ends when 

SPI becomes positive. Each drought event, 

therefore, has a duration defined by its beginning 

and end, and the intensity for each month that the 

event continues. 

SPI has several advantages over other indices 

including its simplicity and temporal flexibility, 

which allow its application for water resources on 

all timescales. Moreover, as SPI is adaptable for 

the analysis of drought at variable time scales, it 

can be used for monitoring agricultural and 

hydrological aspects [18]. Despite all these 

advantages, this index has some limitations as 

well.  SPI uses only the precipitation data, and it is 

loosely connected to ground conditions [19].  

 

3. K-Nearest neighbor modeling 

The k-nearest neighbor modeling (k-NN) is a 

nonparametric machine learning algorithm that 

has found wide usage in pattern recognition and 
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data mining. It tries to classify an unknown 

sample based on the known classification of its 

neighbors. In this method, the model is fed with a 

training set, and it uses this training set to classify 

objects. Each one of the samples in the training set 

is labeled. The input objects are classified based 

on the K parameter, meaning that they are 

assigned to the class that is most pervasive among 

its closest K neighbors [20,21]. 

Table 1. Drought classification of SPI [9]. 
Class SPI Values Drought Status 

1 

2 

3 

4 

5 

6 

7 

+2 and more 

1.5 to 1.99 

1 to 1.49 

0.99 to -0.99 

-1.49 to -1 

-1.99 to -1.5 

-2 and less 

extremely wet 

very wet 

moderately wet 

near normal 

moderately dry 

very dry 

extremely dry 

 

Despite its simplicity, the k-NN algorithm has 

been widely studied from various perspectives, 

pursuing the improvement of its classification 

accuracy. The K-NN modeling has been used for 

traffic flow forecasting [22], streamflow 

simulation [23, 24], prediction of intake vortex 

risk [25], and prediction of cavitation damage on 

dam spillways [26].  The advantages of the K-NN 

model are (1) it is highly effective, especially 

where use is made of large datasets; (2) algorithm 

efficiency allows various combinations of the 

factors to be tested, and insignificant 

combinations are detected and eliminated, 

minimizing the risk of overfitting; and (3) the K-

NN algorithm is robust even where noisy data is 

used [20, 25]. 

The first step in the K-NN model is to find the 

distance between the training and test data. The 

choice of the distance measure is an important 

consideration. Commonly, the Euclidean distance 

measure is used (Eq. 4). 
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The next step involves sorting the distances for all 

the objects in the training set and determining the 

nearest neighbor based on the minimum distance 

(maximum similarity). The most important step in 

this model is to identify the K parameter, which is 

the number of the closest neighbors in the space 

of interest. If K is too large, classes with a great 

number of classified samples can overwhelm 

small ones and the results will be biased or the 

neighborhood may include too many points from 

other classes. On the other hand, if K is too small, 

the advantage of using many samples in the 

training set is not exploited, and the result can be 

sensitive to noise points [27,28]. 

The best value for K can be obtained by the n-fold 

cross-validation method. In this method, the data 

set is divided into K roughly equal-sized parts. For 

the Kth part, the model is fitted to the other K-1 

parts of the data, and calculating the prediction 

error of the fitted model when predicting the kth 

part of the data. This is done for all values of K 

(k= 1, 2, …, K), combining the K estimates of 

prediction error [27,29]. 
 

4. Model preprocessing and methodology 

In this work, the precipitation data of the city of 

Kerman during 1995 to 2005 was used.  This city 

is the capital city of the Kerman Province, which 

is located in the SE of Iran, situated on a sandy 

plain with 1749 meters above the sea level, and 

has an area of 181,714 km². 

Based on the precipitation data, determining the 

moving time series and standard normal 

distribution function for different time scales, the 

standard precipitation index was calculated. Figs. 

1- 3 show the precipitation cumulative probability 

distribution function and standard normal 

probability distribution function for 3-, 6-, and 12-

month time scales. Finally, the SPI values were 

calculated for different periods of 3-month, 6-

month, and 12-month during 1995 to 2005.   Figs. 

4 and 5 show the SPI values for the first 3- and 6-

month time scales.  

Before working with the K-NN model, to avoid 

bias toward one attribute or the other, the data is 

required to be normalized. Therefore all the input 

attributes are transformed to obtain temporary 

variables with a distribution having zero means 

and a standard deviation of 1 using the following 

equation: 
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where,  represents the value for the normalized 

attribute, and  and  represent the mean and 

standard deviations of the observed value of the 

attribute in the reference data set, respectively.

 
Figure 1. 3-month SPI values. 

 
Figure 2. 6-month SPI values. 

 
Figure 3. 12-month SPI values. 
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Figure 4. SPI values for first 3-month. 
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Figure 5. SPI values for first 6-month. 

 

Finally, the efficiency and precision of the model 

could be evaluated by some statistical 

coefficients. The Pearson correlation coefficient 

(r) is a measure indicating the strength and 

direction of a linear relationship between two 

variables (model output and observed values). The 

Pearson correlation coefficient can be obtained by 

(6). 
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where, yi is the value for the ith predicted 

attribute, xi is the value for the ith measured 

attribute, and n represents the number of 

attributes. 

The values for the correlation coefficients range 

from −1 (a perfect decreasing linear relationship) 

to +1 (a perfect increasing linear relationship). 

The absolute value for the coefficient indicates the 

strength of the relationship, with larger absolute 

values indicating stronger relationships [30]. 

In addition to the correlation coefficient, Mean 

Absolute Error (MAE), Root Mean Square Error 

(RMSE) and Coefficient of Residual Mass (CMR) 

were used to evaluate the model. 
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The RMSE value indicates how much the model 

under- or over-estimates the measurements, and 

the CRM value is a measure of the tendency of the 

model to overestimate or underestimate the 

measurements. Positive values for CRM indicate 

that the model underestimates the measurements, 

and negative values for CRM indicate a tendency 

to overestimate. For a perfect fit between the 

observed and predicted data, the values for MAE, 

RMSE, and CRM should equal 0.0 [31]. 

 

5. Results and discussion 

According to the calculated SPI values for 

different time scales, the k-nearest neighbor 

model was utilized to predict the most likely 

drought occurrence for the studied region during 

different years. In the beginning of computations, 

the optimum value for the K was obtained by the 

two-fold cross-validation method. Fig. 6 shows 

the precision of the method based on the Sum of 

Squares Error (SSE) coefficient. According to Fig. 

6, three K values (15, 16, and 19) produced the 

same lowest error. The SSE value equal to 19 was 

selected because larger K values often smooth the 

K-NN model, thereby minimizing the risk of over-

fitting. Then the most likely drought status for the 

region was predicted by the K-NN model. Fig. 7 

shows the region drought status based on the 

standard precipitation index during the desired 

time period. 
 

 

Figure 6. Two-fold cross-validation error rate for K-NN 

model. 
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Figure 7. Region drought status based on SPI. 

 

According to the results of the K-NN model, it can 

be found that the studied region has faced 

droughts over the years. Moreover, according to 

the presented moving time series, the standard 

precipitation index can be estimated for future 

years, and the most likely drought status can be 

determined. 

In order to quantify the prediction accuracy and 

precision of the model, the Pearson correlation 

coefficient (r), mean absolute error (MAE), root 

mean square error (RMSE), and coefficient of 

residual mass (CRM) were calculated (Table 2). A 

high value for the Pearson correlation coefficient 

indicates strong relationships between the 

variables, and the low MAE, RMSE and CRM 

values show a reasonable precision and a low 

error of the k-NN model. 

 Comparing the results obtained for the K-NN 

modeling with the other SPI-based studies 

including Cancelliere et al. [11] (r = 0.715, MAD 

= 0.551 and RMSE = 0.731) indicates that the 

presented model gives appropriate predictions of 

the drought situation. Moreover, different time 

scales were considered in the model so that the 

drought predictions can be more reliable and 

efficient. 

Table 2. Evaluation of K-NN model by some statistical 

coefficients. 

CRM RMSE MAE r 

0.0011 0.119 0.106 0.874 

 

6. Conclusion 
Given the importance of drought monitoring in 

managing this phenomenon as well as the design 

and management of natural resources, water 

resource system planning, and various sectors of 

agriculture, in this study, using the standard 

precipitation index and K-NN model, a method 

was developed to predict drought occurrence. The 

model was evaluated using the precipitation and 

meteorological data of the city of Kerman, Iran. 

The results obtained indicate that this region has 

faced moderate-to-severe droughts for many 

years, which is consistent with the local 

observations. Finally, the efficiency and accuracy 

of the proposed model was evaluated by some 

statistical coefficients. The reasonable values for 

the Pearson correlation coefficient (r = 0.874), 

mean absolute error (MAE = 0.106), root mean 

square error (RMSE = 0.119), and coefficient of 

residual mass (CRM = 0.0011) indicate that the 

developed model is suitable and efficient. 
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