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Abstract 

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The 

linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has 

a poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently 

flexible to cope with the multi-modal distributed data. In this work, we propose a new feature extraction 

method, which uses the boundary semi-labeled samples for solving small sample size problems. The 

proposed method, called the hybrid feature extraction based on boundary semi-labeled samples (HFE-BSL), 

uses a hybrid criterion that integrates both the local and global criteria for feature extraction. Thus, it is 

robust and flexible. The experimental results with one synthetic multi-spectral and three real hyperspectral 

images show the good efficiency of HFE-BSL compared to some popular and state-of-the-art feature 

extraction methods.  
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1. Introduction 

Hyperspectral imaging has many applications in 

different fields [1,2]. Analysis of hyperspectral 

images has a lot of challenges. For instance, due 

to the impact of the sensor’s instantaneous field-

of-view and the diversity of the land-cover 

classes, the presence of mixed pixels is possible. 

By converting the abundance map into a higher 

resolution image, the subpixel mapping technique 

can specify the spatial distribution of different 

categories at the subpixel scale. In [47], an 

adaptive subpixel mapping method based on a 

maximum a posteriori (MAP) model and a 

winner-take-all class determination strategy has 

been proposed to improve the accuracy of the 

subpixel mapping. Classification is one of the 

most important tasks in a hyperspectral image 

analysis. The objective of the hyperspectral image 

classification is to associate each pixel with a 

proper label [3, 4]. Increasing the spectral bands 

provided by the hyperspectral imaging technology 

has brought new potentials and challenges to data 

analysis. Classification can be done supervised or 

unsupervised. The unsupervised classification 

methods are used to solve the site labeling  

 

problems without the need for labeled samples. 

An unsupervised artificial immune classifier has 

been proposed in [48], which possesses biological 

properties such as clonal selection, immune 

network, and immune memory in addition to 

nonlinear classification properties. Hyperspectral 

images provide a valuable source of spectral 

information for class discrimination with lots of 

details [5]. On the other hand, in order to fully 

utilize the information contained in the increased 

features, a large number of training samples is 

required for the supervised classification of 

hyperspectral images. Unfortunately, obtaining 

the training samples is generally expensive and 

difficult. When the number of training samples is 

small compared to the number of features, the 

Hughes phenomenon occurs [6].  

Parametric classifiers such as the maximum 

likelihood (ML) classifier model the probability 

density functions for individual classes. So, they 

are often ineffective for the classification of high 

dimensional data. In order to mitigate the curse of 

dimensionality and degrade the small sample size 

problem, there are various ways such as the use of 

semi-supervised classifiers [8], and non-  
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parametric classifiers such as kernel-based 

classifiers [9], for example, support vector 

machines (SVMs). Another solution to cope with 

the large number of spectral bands in 

hyperspectral images is feature reduction. Feature 

reduction has three main advantages: 

improvement in classification accuracy, 

decreasing the computational cost and better 

understanding of data [11].  

In general, feature reduction methods can be 

categorized into two groups: feature selection and 

feature extraction [12-14]. A full review of feature 

reduction methods has been provided in [15]. In 

general, a feature extraction algorithm provides a 

feature subset richer than that obtained using a 

feature selection technique with a higher cost [16]. 

Some feature selection methods have been 

represented in [17-19]. In [49], the authors have 

been proposed a stochastic search strategy 

inspired by the clonal selection theory in an 

artificial immune system, where dimensionality 

reduction is formulated as an optimization 

problem that searches an optimum with less 

number of features in a feature space. 

Our main focus in this paper is on the feature 

extraction. The feature extraction methods are 

divided into two general groups: the supervised 

ones and the unsupervised ones. There are a 

variety of methods mentioned for feature 

extraction in the literature [20-26]. The most 

popular supervised feature extraction method is 

linear discriminant analysis (LDA) [27]. 

Generalized discriminant analysis (GDA) is the 

nonlinear extension of LDA [28]. LDA requires a 

much number of training samples for an accurate 

estimation of the scatter matrices. Thus, it has no 

good efficiency in small sample size situations. To 

cope with this problem, there are different 

approaches. The first approach is the use of 

unsupervised methods. The unsupervised feature 

extraction methods require no training samples 

[29-31]. However, unsupervised feature extraction 

methods do not consider the class separability, 

and so, may not be sufficiently appropriate for 

feature extraction in the classification 

applications. The second approach for feature 

extraction, in small sample size situation, is the 

use of non-parametric feature extraction methods 

[32-35]. Some feature extraction methods such as 

decision boundary feature extraction [36] and 

supervised feature extraction methods based on 

neural networks [37] need a large training set, and 

so, they are not efficient methods in small sample 

size situations. The third approach to cope with 

the small sample size problem is the semi-

supervised approach that uses the ability of both 

the labeled and unlabeled samples. Semi-

supervised discriminant analysis (SDA) has been 

introduced in [38]. In the SDA method, the 

labeled samples are used to maximize the 

discriminating power, while the unlabeled 

samples are used to maximize the locality 

preserving power. Some other feature extraction 

and classification methods to solve the small 

sample size problem have been proposed in [50]-

[53]. 

LDA is optimized by the global criterion where 

similarities are measured by distances between the 

samples and the sample mean vector. Global 

criterion-based methods such as LDA may 

perform poorly with multi-modal distributed data. 

In other words, they only work well with uni-

modal distributed samples. In our proposed 

feature extraction method, the local criterion is 

added to the global criterion for a discriminant 

analysis. In the local criterion, similarities are 

measured by distances between the neighboring 

pairs. In comparison with the global criterion, the 

local criterion can treat well with multi-modal 

distributed data and make it more flexible than the 

global one. However, the local criterion-based 

algorithm has a weaker robustness than the global 

one. The local criterion-based algorithm is more 

complex than the global one, and hence, more 

prone to overfitting. In general, the global 

criterion-based feature extraction method has a 

stronger robustness and a weaker flexibility, while 

the local one has a stronger flexibility and a 

weaker robustness. 

In this paper, we use a hybrid criterion that is a 

combination of the global and local criteria for 

providing the advantages of both of them. As 

mentioned earlier, LDA has some difficulties such 

as the following ones: 

- Because of the singularity problem, it does not 

have good performance in small sample size 

situations.  

- The good performance of LDA is dependent on 

the Gaussian assumption of data because LDA 

is optimized by the global criterion, which is 

robust and non-flexible.  
To cope with the difficulties of LDA, we propose 

a few solutions together. To solve the small 

sample size problem, we propose to use the high 

confidence semi-labeled samples. There are three 

types of samples in an image data. Some samples 

are labeled-samples, where their labels are 

obtained by doing field operations or thought of 

experts. Most samples are unlabeled, and so, it is 

not specified which class they belong to. The third 

group is semi-labeled samples. 
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These samples are without label before 

classification. However, their class label is 

determined after a primal classification. The label 

of a semi-labeled sample can be correct or 

incorrect. We add the semi-labeled samples to the 

original training samples. Then, a useful subset 

composed of boundary training samples is 

selected from among a new training set for feature 

extraction and final classification. The use of this 

extended training set with relatively high 

confidence increases the discrimination ability, 

and so, improves the classification accuracy. To 

deal with multi-modal data, we combine the local 

criterion with the global one to provide robustness 

and flexibility. Using the hybrid criterion, the 

discriminant analysis works well for more general 

distributed data. SVM is an appropriate classifier 

for hyperspectral images [39-42], used effectively 

in this paper. The novelties of the proposed 

feature extraction method in this paper are briefly 

represented as follow: 

 

1) Using SVM as a primal classifier to obtain high 

confidence semi-labeled samples. 

2) Obtaining the boundary training samples. 

3) Using a hybrid criterion in the discriminant 

analysis to obtain both advantages of the local 

and global criteria.  

 

The remainder of this paper is organized as what 

follows: The proposed feature extraction method 

is introduced in section 2. The experimental 

results are given in section 3. Finally, section 4 

concludes the paper.  

 

2. Proposed method 

In this section, we introduce the proposed method, 

hybrid feature extraction based on boundary semi-

labeled samples (HFE-BSL). A block diagram of 

the proposed method is illustrated in Figure 1. We 

use SVM in three different sections in this paper: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) SVM as a primal classifier for obtaining high 

confidence semi-labeled samples. 

2) Applying SVM to the new training set (original 

training plus semi-labeled samples) to obtain 

SVs and use them as boundary training 

samples. 

3) SVM as a final classifier for obtaining the final 

classification map (any other classifier can also 

be used to provide the final classification map). 

 

2.1 Support vector machine 

At first, we consider two class linearly separable 

states. Let     
             be the training 

set where   is the number of bands or dimensions 

of the dataset, and    denotes the number of 

overall training samples. These training samples 

belong to either of the classes    , and   . The 

corresponding class labels are denoted as    
*  +. The goal is to design a hyperplane  ( )  
       that classifies all training sample 

correctly and leaves the maximum margin from 

both classes. The following quadratic optimization 

problem has to be solved: 

In order to solve this optimization problem, the 

Lagrangian function is defined as:   
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1
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(2) 

where   is a vector consisting of the Lagrange 

multipliers,   . The Lagrange multipliers are zero 

or positive. Feature vectors (  )  that are 

associative with non-zero Lagrange multipliers 

(    ) are known as support vectors (SVs). SVs 

lie on either of the two separating hyperplanes: 

         . In other words, SVs are a subset 

of training samples that are located at the 

boundary between classes. Therefore, SVs can be 

considered as boundary training samples, and 
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Figure 1. Block diagram of proposed method (HFE-BSL). 
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thus, they are a useful subset of training samples 

for class discrimination. To allow some training 

errors for generalization, the slack variables and 

the associated regularization parameter can be 

used for non-separable classes. If data cannot be 

linearly separated, the kernel trick is used to 

project data into a higher dimensional feature 

space.  

 

2.2 Production of semi-labeled samples  

In the first step of HFE-BSL, we obtain the high 

confidence semi-labeled samples. Semi-labeled 

samples are samples whose labels are not known 

at first and are determined after an initial 

classification. The collection of reliable training 

samples is very expensive in terms of time and 

finance, and it is not common to exploit large 

ground truth information. To address this issue, 

the kernel methods such as SVMs have been 

widely used due to their insensitivity to the curse 

of dimensionality. They have a high ability to 

perform with limited training sets, and so they can 

significantly help in addressing ill-posed problems 

based on limited training samples. Therefore, in 

this work, we use SVM for the determination of 

high confidence semi-labeled samples. 

After an initial classification, using original 

training samples, we randomly choose     semi-

labeled samples in each class. To have the fair 

behavior with all classes, we select the same 

number of semi-labeled samples from all classes. 

Moreover, to obtain a more classification 

accuracy, it is appropriate to select much number 

of semi-labeled samples. To reach this purpose, 

the maximum number of semi-labeled samples 

that can be selected is obtained as follows: 
 

 

 

where    is the number of samples to which the 

class   label is assigned in the primary 

classification.  

 

2.3 Obtaining boundary training samples 

After production of semi-labeled samples with 

relatively high confidence in the first step, we add 

them to the original training samples. Let    be 

the number of original training samples and 

           denote the number of new training 

samples (original training samples plus semi-

labeled samples). To increase the classification 

accuracy, we only use a useful subset of new 

training samples that play an important role in 

class discrimination. This useful subset consists of 

the training samples that are located at the 

boundary between classes. We train SVM using a 

new training set, consisting of the original and 

semi-labeled samples, to obtain SVs from them. 

In linear SVM, SVs are the samples that are 

located at the separating hyperplanes:     
     . In non-linear SVM, SVs are located 

within margins where     ( 
      )    or 

in the opposite margins where   ( 
      )  

 . However, the use of SVs as boundary training 

samples increases the class discrimination. The 

obtained training subset, composed of SVs, is 

used for calculation of between-class and within-

class scatter matrices in the discriminant analysis.  

 

2.4 Discriminant analysis with hybrid criterion 

After obtaining the boundary training samples, we 

use them for calculation of global and local scatter 

matrices as follows: 
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where,   
 

,   
 

,   
 , and   

  are the global within-

class, global between-class, local within-class, and 

local between-class scatter matrices, respectively. 

   denotes the number of boundary training 

samples, or SVs, in the  th class,    is the mean 

of SVs in  th class,   is the mean of entire SVs 

and      is the  th SV in the  th class.    
 (    ) is 

the set of    nearest neighbours of      that have 

the same class label as     ,    
 (    ) is the set of 

   nearest neighbours of      that have different 

class labels, and    and    denote the element of 

   
 (    )  and    

 (    ),  respectively. We define 

the hybrid within-class scatter matrix (  
 )  and 

the hybrid between-class scatter matrix (  
 )  as 

follow:  
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where   ,   - is a non-negative parameter for 

providing a trade-off between the global and local 

terms.     is equivalent to the traditional LDA 
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(that includes just the global information). 

Moreover, by considering    , just the local 

information is included in the discriminant 

analysis. A favorable compromise between 

robustness and flexibility can be gained by 

choosing a proper value for the parameter  . An 

appropriate value for   can be found by searching 

over the nonnegative values in ,   - . The 

projection matrix of HFE-BSL is composed of the 

eigenvectors    
     

 .  

 

3. Experimental results 

We used one synthetic multi-spectral dataset and 

three real hyperspectral images in our 

experiments. The objective of the experiments 

with the synthetic data is assessment and 

characterization of the proposed method in a fully 

controlled environment, whereas the objective of 

the experiments with real datasets is to compare 

the performance of the proposed method with 

other methods in the literature. A synthetic image 

with 80 × 120 pixels was generated. The synthetic 

scene has eight classes that contain linear 

mixtures of a set of spectral signatures randomly 

selected from a digital spectral library compiled 

by U.S. Geological Survey (USGS), which is 

available online in 

―http://speclab.cr.usgs.gov/spectral-lib.html‖. The 

USGS library contains spectral plots for nearly 

500 materials in the 400-2500    spectral range, 

where the bands have been convolved to the 

number of bands available for Airborne Visible 

Infra-Red Imaging Spectrometers (AVIRIS) that 

comprises 224 spectral bands. 

The first real hyperspectral dataset is the Indian 

pines image that was acquired by AVIRIS. This 

agriculture image consists of 145 145 pixels and 

16 classes, 10 classes of it which were chosen for 

our experiments. This image comprises 224 

spectral bands in the wavelength range from 0.4 to 

2.5   , nominal spectral resolution of 10   , and 

spatial resolution of 20   by pixel. The water 

absorption bands were then deleted, resulting in 

200 bands. The second dataset is the University of 

Pavia that was acquired by Reflective Optics 

System Imaging Spectrometer (ROSIS). This 

urban image contains 9 classes and 610 340 

pixels, with a spatial resolution of 1.3   per pixel. 

The number of spectral bands in the original 

recorded image is 115 (with a spectral range from 

0.43 to 0.86   ). 12 noisy bands were removed, 

and the remaining 103 bands were used for the 

experiments. The Salinas scene is the third dataset 

used, which was acquired by AVIRIS. It was 

taken at low altitude with a pixel size of 3.7  . It 

consists of 16 classes and 512 217 pixels. It 

contains 224 spectral bands from 0.4 to 2.5   ,  

with a nominal spectral resolution of 10   . In 

this dataset, 20 water absorption bands were 

removed and 204 bands remained. In this section, 

we evaluated the efficiency of HFE-BSL in 

comparison with LDA, SDA, and GDA. We used 

some measures for the classification evaluation. 

Accuracy and reliability are defined as follow: 

 

i
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where,      and      are the accuracy and 

reliability of the  th class, respectively.    is the 

number of testing samples that are correctly 

classified,   is the total testing samples of class  , 
and   is the total samples labeled as class  . We 

used the average accuracy (AA), overall accuracy 

(OA), and average reliability (AR) for evaluation 

of the classification accuracy, which are 

calculated as follow: 
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where,   is the total number of testing samples. 

We used four classifiers to obtain the final 

classification maps: SVM, ML, 1-nearest-

neighbor (1NN), and distance-weighted 

discrimination (DWD) [7], [10]. We implemented 

SVM with the radial basis function (RBF) kernel. 

The use of RBF kernel is a common choice, 

because it has less numerical difficulties, and it is 

easy to be tuned. In addition, the RBF kernel is a 

universal kernel and includes the other valid 

kernels as particular cases. We used the Library 

for Support Vector Machines (LIBSVM) tool for 

the implementation of SVM [43]. The one-

against-one multi-class classification algorithm 

was used in the experiments. The SVM 

parameters were set as follow: the penalty 

parameter   was tested between ,  –    - with 

a step size increment of 20, and   parameter of the 

RBF kernel was tested between ,   – -  with a 

step size increment of 0.1. The best values were 

obtained using a 5-fold cross-validation approach.  
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The training samples were chosen randomly from 

the entire of the scene, and the remaining samples 

were used as the testing data. Due to the random 

selection of training samples, each experiment 

was repeated 10 times, and the average results 

were reported. The same training samples were 

used for all methods to obtain a fair comparison. 

We considered       in our experiments to 

have both the robustness and flexibility as the 

same. The classification accuracies versus the 

number of extracted features, obtained by the 

SVM classifier and 16 original training samples, 

for synthetic, Indian, Pavia and Salinas datasets 

are shown in Figure 2.  The accuracies and 

reliabilities for each class of Indian dataset 

obtained by the SVM classifier, 9 extracted 

features and 16 original training samples are 

represented in Table 1. Moreover, the average 

accuracy, average reliability, overall accuracy, 

and execution time for all the compared methods 

are reported in this table. This type of table, 

obtained by 16 original training samples, is given 

for Pavia with 8 extracted features (see Table 2) 

and for Salinas with 10 extracted features (see 

Table 3). The comparison of execution times, 

which are reported in Tables 1-3, show that the 

proposed method has more computation time than 

the other feature extraction methods. This is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expected, because the proposed method uses the 

SVM classifier at least two times: the first time, to 

obtain the initial classification map for providing 

the semi-labeled samples, and the second time, to 

obtain SVs as boundary samples. The ground truth 

map (GTM) and the classification maps of 

synthetic (with 7 extracted features), Indian (with 

9 extracted features), Pavia (with 8 extracted 

features), and Salinas (with 10 extracted features) 

are shown in Figures 3-6, respectively.  

The classification results obtained using different 

classifiers (SVM, ML, 1NN, DWD) with feature 

extracted by HFE-BSL, LDA, SDA, GDA and 

also using the original features (without feature 

extraction) are reported in Table 4. This table 

provides the highest average classification 

accuracies achieved by four classifiers and 16 

original training samples. The numbers in the 

parentheses represent the number of features 

achieving the highest average accuracies in the 

experiments. For example the entry in the first 

column and the second row of Table 4, 

92.34  1.08 (6), means that the highest 

classification accuracy, which is obtained by the 

HFE-BSL feature extraction method and ML 

classifier, is provided by 6 extracted features and 

is equal to 92.34 with a standard deviation of 1.08.    
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Figure 2. Classification accuracy versus number of extracted features using SVM classifier and 16 training samples. 
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In addition to SDA, which is a popular semi-

supervised feature extraction method, we 

compared our semi-supervised proposed method 

with two state-of-the-art semi-supervised feature 

extraction methods: semi-supervised local 

discriminant analysis (SELD) [45] and semi-

supervised probabilistic principal component 

analysis (S
2
PPCA) [46]. The aim of SELD is to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

find a projection for preserving the local 

neighborhood information and maximizing the 

class discrimination of the data. In the SELD 

method, an unsupervised method (from the class 

of local linear feature extraction methods such as 

neighborhood preserving embedding (NPE)) and a 

supervised method (LDA) are combined without 

any tuning parameters. 

 

Class HFE-BSL SDA LDA GDA 

No Name of class # samples Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Corn-no till 1434 0.83 0.77 0.56 0.45 0.19 0.30 0.62 0.49 

2 Corn-min till 834 0.85 0.60 0.41 0.48 0.33 0.16 0.39 0.44 

3 Grass/pasture 497 0.99 0.93 0.89 0.49 0.29 0.39 0.73 0.45 

4 Grass/trees 747 0.99 0.98 0.68 0.77 0.36 0.18 0.74 0.80 

5 Hay-windrowed 489 1.00 1.00 0.92 0.97 0.49 0.74 0.98 1.00 

6 Soybeans-no till 968 0.82 0.69 0.62 0.58 0.34 0.17 0.63 0.43 

7 Soybeans-min till 2468 0.61 0.89 0.60 0.69 0.08 0.40 0.49 0.75 

8 Soybeans-clean till 614 0.92 0.76 0.42 0.48 0.23 0.11 0.45 0.46 

9 Woods 1294 0.92 1.00 0.80 0.92 0.25 0.60 0.70 0.86 

10 Bldg-Grass-Tree-Drives 380 1.00 0.80 0.41 0.44 0.31 0.18 0.58 0.44 

Average Accuracy and Average Reliability 0.89 0.84 0.63 0.63 0.29 0.32 0.63 0.61 

Overall Accuracy 0.92 0.83 0.61 0.82 

Execution Time (s) 42.71 37.60 0.86 12.01 

Table 1. Accuracies and reliabilities obtained for each class of Indian dataset using 9 extracted features and 16 training samples. 

 

Table 2. Accuracies and reliabilities obtained for each class of Pavia dataset using 8 extracted features and 16 training samples. 

Class HFE-BSL SDA LDA GDA 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Asphalt 6631 0.83 0.89 0.70 0.88 0.25 0.63 0.69 0.90 

2 Meadows 18649 0.71 0.90 0.69 0.84 0.52 0.87 0.61 0.87 

3 Gravel 2099 0.71 0.57 0.61 0.46 0.44 0.26 0.72 0.50 

4 Trees 3064 0.95 0.82 0.70 0.59 0.80 0.62 0.85 0.65 

5 Painted metal sheets 1345 1.00 1.00 0.99 0.92 0.96 1.00 0.99 0.98 

6 Bare Soil 5029 0.74 0.43 0.61 0.41 0.72 0.25 0.67 0.36 

7 Bitumen 1330 0.85 0.60 0.93 0.49 0.29 0.17 0.89 0.46 

8 Self-Blocking Bricks 3682 0.61 0.73 0.64 0.70 0.24 0.40 0.62 0.69 

9 Shadows 947 1.00 1.00 1.00 1.00 0.71 0.61 1.00 0.97 

Average Accuracy and Average Reliability 0.82 0.77 0.76 0.70 0.55 0.53 0.78 0.71 

Overall Accuracy 0.89 0.80 0.73 0.82 

Execution Time (s) 57.94 46.35 1.53 16.83 

Table 3. Accuracies and reliabilities obtained for each class of Salinas using 10 extracted features and 16 training samples. 

Class HFE-BSL SDA LDA GDA 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Brocoli_green_weeds_1 2009 1.00 1.00 0.94 1.00 0.96 0.98 0.90 0.99 

2 Brocoli_green_weeds_2 3726 1.00 1.00 0.99 0.96 0.95 0.98 0.98 0.93 

3 Fallow 1976 1.00 1.00 0.86 0.85 0.63 0.62 0.96 0.87 

4 Fallow_rough_plow 1394 1.00 0.99 0.99 0.98 0.81 0.89 1.00 0.85 

5 Fallow_smooth 2678 0.99 1.00 0.93 0.90 0.68 0.76 0.96 0.97 

6 Stubble 3959 1.00 1.00 0.96 1.00 0.91 1.00 0.97 1.00 

7 Celery 3579 1.00 1.00 0.99 0.97 0.95 1.00 0.99 0.94 

8 Grapes_untrained 11271 0.53 0.62 0.54 0.73 0.50 0.68 0.52 0.70 

9 Soil_vineyard_develop 6203 0.98 0.99 0.96 0.98 0.65 0.94 0.99 0.99 

10 Corn_senesced_green_weeds 3278 0.98 0.96 0.79 0.81 0.82 0.38 0.79 0.89 

11 Lettuce_romaine_4weeks 1068 1.00 1.00 0.86 0.80 0.80 0.94 0.84 0.96 

12 Lettuce_romaine_5 weeks 1927 1.00 0.99 0.99 0.82 0.56 0.54 0.99 0.91 

13 Lettuce_romaine_6 weeks 916 1.00 1.00 1.00 0.67 0.72 0.48 1.00 0.74 

14 Lettuce_romaine_7 weeks 1070 1.00 1.00 0.84 0.92 0.68 0.72 0.84 0.58 

15 Vineyard_untrained 7268 0.49 0.40 0.68 0.51 0.58 0.46 0.66 0.51 

16 Vineyard_vertical_trellis 1807 1.00 1.00 0.90 0.98 0.91 1.00 0.82 0.95 

Average Accuracy and Average Reliability 0.94 0.93 0.89 0.87 0.76 0.77 0.89 0.86 

Overall Accuracy 0.95 0.91 0.84 0.91 

Execution Time (s) 73.66 51.11 3.05 21.71 
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GTM HFE-BSL SDA LDA GDA

GTM HFE-BSL SDA LDA GDA

Figure 3. GTM and classification maps for synthetic dataset (16 training samples and 7 extracted features are used). 

 GTM HFE-BSL SDA LDA GDA

GTM HFE-BSL SDA LDA GDA

Figure 4. GTM and classification maps for Indian dataset (16 training samples and 9 extracted features are used). 

 

GTM HFE-BSL SDA LDA GDAGTM HFE-BSL SDA LDA GDA

Figure 5. GTM and classification maps for Pavia dataset (16 training samples and 8 extracted features are used). 
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The supervised and unsupervised methods are not 

linearly combined. In other words, instead of 

using both the labeled and unlabeled samples 

together, at first, the samples were divided into 

two sets: labeled and unlabeled. Then, the labeled 

samples were employed through the supervised 

method only, and the unlabeled ones were 

employed through the unsupervised, locality 

preserving method only. Thus, the local 

neighborhood information is preserved inferred  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from unlabeled samples, while the class 

discrimination of the data is maximized inferred 

from the labeled samples. The supervised 

probabilistic principal component analysis 

(SPPCA) is the extension of the probabilistic PCA 

(PPCA) which incorporates the label information 

into the projection. In addition to the inter-

covariance between the inputs and outputs, 

SPPCA takes into account the intra-covariance of 

both. S
2
PPCA incorporates both the labeled and 

Table 4. Mean and standard deviation of highest average classification accuracies (numbers in parentheses represent number of 

features achieving highest average accuracies in experiments).  

Dataset Classifier HFE-BSL SDA LDA GDA 
Original 

features 

Synthetic 

SVM 
94.21 0.43 

(7) 
83.34 0.76 

(6) 
58.12 2.01 

(7) 
82.13 2.52 

(5) 
84.32 0.76 

(224) 

ML 
92.34 1.08 

(6) 
79.12 1.52 

(4) 
58.03 3.01 

(4) 
80.09 2.67 

(5) 
--- 

1NN 
93.12 0.98 

(6) 
80.91 0.92 

(7) 
59.02 1.05 

(6) 
81.72 2.60 

(6) 
84.05 1.07 

(224) 

DWD 
94.11 0.86 

(7) 
83.78 0.59 

(7) 
59.15 2.23 

(7) 
82.01 1.93 

(7) 
85.21 0.85 

(224) 

Indian 

SVM 
89.40 1.14 

(9) 

63.12 1.02 

(6) 

28.92 2.45 

(7) 

63.15 2.90 

(9) 

65.23 0.63 

(200) 

ML 
85.37 1.87 

(6) 
61.83 2.14 

(5) 
21.36 3.51 

(4) 
65.11 2.82 

(6) 
--- 

1NN 
87.26 1.51 

(7) 
64.44 1.18 

(5) 
25.33 2.38 

(8) 
63.72 2.45 

(6) 
61.08 3.10 

(200) 

DWD 
89.53 1.32 

(8) 
62.97 1.21 

(5) 
33.15 2.57 

(9) 
63.13 2.15 

(9) 
64.75 0.75 

(200) 

Pavia 

SVM 
82.39 0.78 

(8) 
76.29 0.81 

(8) 
55.65 1.98 

(6) 
78.38 2.06 

(8) 
76.13 0.76 

(103) 

ML 
79.21 2.01 

(4) 

78.20 1.93 

(4) 

55.41 2.61 

(5) 

73.64 1.64 

(6) 
--- 

1NN 
81.04 1.52 

(6) 
72.79 1.93 

(7) 
57.43 2.14 

(8) 
71.17 3.11 

(4) 
71.49 1.72 

(103) 

DWD 
81.22 1.49 

(5) 
74.54 1.03 

(8) 
59.25 1.86 

(7) 
78.68 2.01 

(7) 
77.11 1.13 

(103) 

Salinas 

 

SVM 
93.76 1.13 

(10) 
89.12 0.77 

(7) 
76.83 1.98 

(8) 
89.02 2.43 

(5) 
87.26 0.84 

(204) 

ML 
88.47 1.46 

(6) 
89.61 2.35 

(9) 
76.13 2.02 

(5) 
87.02 1.69 

(4) 
--- 

1NN 
91.45 1.24 

(5) 
89.28 1.88 

(5) 
77.03 1.76 

(6) 
89.88 1.94 

(12) 
86.36 2.03 

(204) 

DWD 
92.45 1.31 

(4) 

90.03 1.52 

(9) 

77.74 1.06 

(10) 

90.45 1.62 

(4) 

88.43 0.91 

(204) 

GTM HFE-BSL SDA LDA GDA

Figure 6. GTM and classification maps for Salinas dataset (16 training samples and 10 extracted features are used). 
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unlabeled information into the projections. Both 

SPPCA and S
2
PPCA use an expectation 

maximization algorithm to generate the mapping. 

The experimental results for these methods 

compared to the others are reported in Table 4. 

Moreover, we used the McNemars test to assess 

the statistical significance of differences in the 

classification results. The McNemars test is based 

upon the standardized normal test statistic [44]: 

 

12 21
12

12 21

f f
Z

f f





  

(15) 

 

The number of samples correctly by classifier 1 

and incorrectly by classifier 2 is denoted by    . 
The difference in the accuracy between the 

classifiers 1 and 2 is said to be statistically 

significant if             . The sign of     

indicates whether classifier 1 is more accurate 

than classifier 2 (       ) or vice versa (     
  ) . The results of the McNemars tests for 

different cases with 16 original training samples 

are shown in Table 5. 

For example, in table (Indian/SVM classifier/9 

extracted features),          , means that HFE-

BSL is superior to GDA and also because 

                  , this difference is 

significant from the statistical view point.  

Because of the singularity of within-class scatter 

matrix in small sample size situation, LDA had 

the worst efficiency. The use of kernel trick and 

the use of semi-supervised approach improved the 

classification accuracy of GDA and SDA, 

respectively. One sees from the results obtained 

that HFE-BSL can provide the highest 

classification accuracy compared to the other 

feature extraction methods. Note that the rank of 

between-class scatter matrix (  ) is limited in the 

LDA, GDA, and SDA methods. Thus, these 

methods can be extract maximum     features. 

In the proposed method, HFE-BSL, local 

between-class scatter matrix (  
 )  has a non-

parametric form, and thus, its rank is not limited 

to the number of classes. Therefore, the rank of 

the hybrid between-class scatter matrix (  
 )  is 

also not limited. Thus, the HFE-BSL method can 

extract more than     features. In what 

following, we represent the classification 

accuracies by SVM, 1NN, and ML trained by 

original training samples as a baseline. When we 

use only the original training samples (without 

any semi-labeled samples) in the proposed 

method, we name it hybrid feature extraction 

(HFE). We assessed the effect of training sample 

size on the classification accuracy. The 

classification results were obtained using    
          , where    is the number of original 

available training samples. The classification 

accuracies achieved by different numbers of 

original training samples, different feature 

extraction methods, and different classifiers are 

reported in Tables 6, 7, 8, and 9 for the synthetic, 

Indian, Pavia, and Salinas datasets respectively. 

The most important results can be reviewed as 

follow: 

- The HFE-BSL method provided better 

classification results compared to the LDA, 

GDA, SDA, SELD, and S
2
PPCA methods in 

terms of classification accuracy (average 

accuracy, average reliability, and overall 

accuracy). 

- The higher classification accuracy of HFE-BSL 

compared to other methods was significant from 

the statistical view point. 

- More accurate classification maps (with less 

noise) were obtained using HFE-BSL. 

- The efficiency of the HFE-BSL method was 

assessed using 4 different classifiers: SVM (a 

kernel-based learning machine with low 

sensitivity to the training sample size), ML (a 

parametric classifier with high sensitivity to the 

training sample size), NN (a simple 

nonparametric classifier), and DWD (which 

avoids data piling, and can give improved 

generalizability).  

- The better performance of HFE-BSL compared 

to other methods is shown in different numbers 

of extracted feature and also in different 

numbers of training samples. 

 

The main advantages of the proposed method can 

be represented as follow: HFE-BSL uses the 

ability of SVM, which is a state-of-the-art 

classifier for high dimensional data with low 

sensitivity to the training set size, to obtain the 

semi-labeled samples with high confidence. HFE-

BSL uses a rich and useful subset of semi-labeled 

samples, i.e., boundary samples, to increase the 

class discrimination. Moreover, the HFE-BSL 

method can simultaneously provide robustness 

and flexibility to deal with multi-modal data using 

both the global and local information for 

estimation of scatter matrices. The disadvantage 

of HFE-BSL is its more computation time than the 

competitor methods such as LDA, GDA, and 

SDA. This increased elapsed time is due to using 

SVM at least two times (the first time to obtain 

the initial classification map for providing the 

semi-labeled samples, and the second one to 

obtain SVs as boundary samples). 
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4. Conclusion  

We proposed a new feature extraction method in 

this paper. This method, called HFE-BSL, uses 

the ability of high confidence semi-labeled 

samples to cope with the small sample size 

problems. HFE-BSL uses a useful subset of 

training samples composed of boundary training 

samples for increasing the classification accuracy. 

The proposed feature extraction method combines 

both the global and local criteria for calculation of 

scatter matrices in discriminant analysis. 

Thus, HFE-BSL is robust and flexible. The 

experiments carried out using four hyperspectral 

images indicated the good efficiency of the  

 

 

 

 

 

 

 

 

 

 

 

proposed approach in comparison with some 

popular and state-of-the-art feature extraction 

methods in small sample size situations. 

The proposed method just uses the rich spectral 

information and does not consider the valuable 

spatial information. In the future works, we will 

try to use the spatial information contained in a 

neighborhood window to increase the reliability 

and accuracy of the semi-labeled samples. It is 

expected that the use of both the spectral and 

spatial information improves the classification 

performance. 

 

 

Table 5. Statistical significance of differences in classification ( ). Each case in table represents    , where   is row and   is 

column (all tables obtained by 16 training samples). 

Indian/SVM classifier/9 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 33.50 73.27 37.23 

SDA -33.50 0 52.51 4.72 

LDA -73.27 -52.51 0 -50.13 

GDA -37.23 -4.72 50.13 0 

Indian/1NN classifier/7 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 9.23 50.52 9.14 

SDA -9.23 0 45.06 1.62 

LDA -50.52 -45.06 0 -43.37 

GDA -9.14 -1.62 43.37 0 

Pavia/SVM classifier/8 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 2.12 50.51 6.96 

SDA -2.12 0 52.06 8.53 

LDA -50.51 -52.06 0 -46.80 

GDA -6.96 -8.53 46.80 0 

Pavia/1NN classifier/6 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 14.68 59.05 15.78 

SDA -14.68 0 51.92 2.82 

LDA -59.05 -51.92 0 -48.08 

GDA -15.78 -2.82 48.08 0 

Salinas/SVM classifier/10 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 6.22 46.25 0.27 

SDA -6.22 0 42.14 -5.47 

LDA -46.25 -42.14 0 -45.60 

GDA -0.27 5.47 45.60 0 

Salinas/1NN classifier/5 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 14.93 55.41 19.03 

SDA -14.93 0 46.12 4.06 

LDA -55.41 -46.12 0 -43.53 

GDA -19.03 -4.06 43.53 0 

Indian/ML classifier/6 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 19.25 55.24 12.41 

SDA -19.25 0 43.17 -5.80 

LDA -55.24 -43.17 0 -46.97 

GDA -12.41 5.80 46.97 0 

Indian/DWD classifier/8extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 44.65 71.30 43.17 

SDA -44.65 0 41.79 -1.06 

LDA -71.30 -41.79 0 -41.70 

GDA -43.17 1.06 41.70 0 

Pavia/ML classifier/4 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 6.71 57.59 20.10 

SDA -6.71 0 54.35 14.09 

LDA -57.59 -54.35 0 -45.72 

GDA -20.10 -14.09 45.72 0 

Pavia/DWD classifier/5 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 56.28 106.58 60.73 

SDA -56.28 0 60.71 8.36 

LDA -106.58 -60.71 0 -53.18 

GDA -60.73 -8.36 53.18 0 

Salinas/ML classifier/6 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 0.53 53.31 1.91 

SDA -0.53 0 37.45 -20.98 

LDA -53.31 -37.45 0 -56.59 

GDA -1.91 20.98 56.59 0 

Salinas/DWD classifier/4 extracted features 

 HFE-BSL SDA LDA GDA 

HFE-BSL 0 45.18 73.63 45.51 

SDA -45.18 0 44.32 0.42 

LDA -73.63 -44.32 0 -44.19 

GDA -45.51 -0.42 44.19 0 
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Feature 

extraction 
Classifier 

   (the number of original training samples) 

                       

HFE-BSL 

SVM 91.12 0.47(7) 93.31 0.49(7) 94.78 1.05(6) 95.12 0.97(7) 

ML 86.05 1.13(5) 89.54 1.09(5) 90.87 1.67(4) 91.92 1.83(6) 

1NN 89.35 0.98(6) 92.68 0.88(8) 93.38 0.90(9) 93.84 0.64(6) 

DWD 92.13 1.21(8) 93.22 1.32(7) 93.75 1.99(7) 94.98 1.36(7) 

HFE 

SVM 80.45 0.54(4) 86.46 0.72(6) 90.54 1.01(7) 93.53 1.13(7) 
ML 78.87 1.87(5) 83.65 2.08(5) 89.76 2.54(6) 90.64 1.05(6) 

1NN 80.36 0.99(7) 85.74 1.62(7) 90.34 1.43(7) 92.87 0.98(7) 

DWD 81.07 1.45(7) 86.33 0.86(6) 90.67 1.53(7) 92.54 2.32(7) 

SDA 

SVM 82.43 1.32(5) 86.18 0.53(5) 89.34 1.02(6) 91.20 1.83(4) 

ML 80.64 1.09(6) 84.56 0.1.76(7) 87.76 1.50(4) 90.67 1.09(4) 

1NN 82.76 2.07(7) 85.76 2.31(6) 88.98 1.09(5) 90.86 1.32(6) 

DWD 83.11 1.98(7) 85.85 1.96(6) 89.54 1.11(7) 91.09 0.98(7) 

LDA 

SVM 62.13 2.43(6) 74.21 2.11(7) 78.65 1.14(6) 85.52 2.15(7) 

ML 55.09 3.07(7) 68.64 3.011(6) 72.64 2.01(7) 81.98 2.64(7) 

1NN 57.87 2.87(6) 66.38 2.09(6) 73.87 3.73(6) 83.98 3.03(6) 

DWD 61.09 3.08(70 73.65 3.43(7) 77.98 2.52(6) 84.87 2.65(5) 

GDA 

SVM 80.32 1.98(7) 86.18 1.16(6) 89.14 2.06(5) 90.67 0.86(5) 

ML 79.04 0.98(5) 86.24 2.03(7) 88.24 3.04(6) 89.19 0.98(4) 
1NN 81.09 2.06(6) 87.76 1.07(6) 89.32 2.09(6) 89.02 1.09(6) 

DWD 81.63 1.84(6) 87.02 1.36(7) 89.01 2.76(5) 90.28 0.99(7) 

Original 

features 

SVM 82.14 1.94(224) 87.68 1.15(224) 88.02 0.65(224) 90.16 1.53(224) 
ML --- --- --- --- 

1NN 82.35 2.09(224) 87.98 2.35(224) 89.42 1.63(224) 88.75 1.67(224) 

DWD 82.76 2.15(224) 88.87 1.95(224) 89.33 1.23(224) 90.34 1.97(224) 

Table 7. Highest average classification accuracies and their corresponding standard deviations achieved using SVM, ML, 

1NN and DWD classifiers with features extracted by HFE-BSL, HFE, SDA, LDA, GDA, and using original features for Indian 

dataset. Number in parenthesis represents number of features achieving highest accuracies in experiments. 

Feature 

extraction 
Classifier 

   (the number of original training samples) 

                       

HFE-BSL 

SVM 86.43 0.42(10) 89.12 0.51(7) 89.11 1.13(8) 89.47 1.01(11) 

ML 79.74 1.34(5) 81.25 1.23(5) 85.20 1.72(6) 84.17 2.05(6) 

1NN 82.29 0.98(7) 84.57 1.49(6) 86.94 1.64(12) 87.35 2.17(5) 

DWD 87.03 0.65(6) 88.97 0.49(6) 89.23 2.01(9) 89.41 0.93(8) 

HFE 

SVM 48.34 0.76(4) 57.61 0.64(6) 63.34 1.04(6) 73.87 1.06(8) 

ML 44.67 1.97(3) 51.28 1.42(5) 60.81 1.21(6) 71.13 1.29(5) 

1NN 46.23 2.03(7) 52.09 0.75(6) 62.43 0.99(8) 72.74 0.63(5) 

DWD 49.23 0.76(8) 58.04 0.74(6) 62.97 1.41(9) 74.09 0.89(6) 

SDA 

SVM 58.37 1.08(5) 64.43 1.31(6) 69.75 0.78(6) 73.66 1.41(5) 

ML 51.73 3.02(6) 57.86 2.34(5) 61.81 2.02(4) 69.76 1.76(6) 

1NN 56.22 2.42(8) 63.03 1.98(7) 67.38 1.07(6) 72.79 1.48(7) 

DWD 58.24 0.69(6) 65.11 1.24(6) 70.01 2.01(9) 74.04 0.91(6) 

LDA 

SVM 23.34 1.02(4) 24.94 1.03(6) 26.69 1.76(7) 26.76 1.53(6) 
ML 22.15 3.44(3) 23.36 2.13(5) 19.05 4.01(5) 25.87 1.98(5) 

1NN 23.11 2.32(7) 23.96 1.67(7) 24.67 2.54(8) 26.13 2.64(5) 

DWD 25.14 .098(6) 24.89 0.94(6) 26.50 2.01(7) 26.37 1.03(7) 

GDA 

SVM 48.73 0.75(8) 55.29 2.25(9) 62.33 1.11(9) 65.27 2.32(9) 

ML 45.55 2.66(6) 53.93 1.76(4) 65.09 2.92(5) 62.36 3.51(6) 

1NN 47.38 2.45(5) 55.19 3.74(6) 63.14 2.54(6) 64.87 1.65(5) 

DWD 47.87 1.45(7) 55.65 1.72(6) 64.34 1.77(7) 64.97 1.39(7) 

Original 

features 

SVM 59.49 0.56(200) 61.69 1.52(200) 65.18 0.71(200) 70.13 0.92(200) 
ML --- --- --- --- 

1NN 51.33 2.36(200) 55.49 1.68(200) 60.68 2.93(200) 68.48 1.68(200) 

DWD 60.02 0.87(200) 60.94 1.42(200) 65.83 0.92(200) 70.32 0.98(200) 

Table 6. Highest average classification accuracies and their corresponding standard deviations achieved using SVM, ML, 1NN 

and DWD classifiers with features extracted by HFE-BSL, HFE, SDA, LDA, GDA, and using original features for synthetic 

dataset. Number in parenthesis represents number of features achieving highest accuracies in experiments. 
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 دار مرزی و معیار ترکیبیهای نیمه برچسباستخراج ویژگی تصاویر ابرطیفی با استفاده از نمونه

 

 *حسن قاسمیان و مریم ایمانی

 .ایران، دانشگاه تربیت مدرس، تهران، دانشکده مهندسی برق و کامپیوتر 

 70/40/7402 ؛ پذیرش72/40/7402 ارسال

 چکیده:

های آمنزشدی در تعدداد ممنمده (LDA)بندی تصاویر ابرطیفی است. روش تحلیل ممیز خطی استخراج ویژگی یک مرحله پیش پردازش مهم جهت طبقه

شند. در متیجه، آن برای اسدتفاده در با یک معیار کلی بهینه می LDAکارایی ضعیفی برای داده غیر گنسی دارد.  LDAکند. به علاوه، کم خنب کار ممی

دار مدرزی بدرای حدل های میمده برچسد که از ممنمدهاست مده منعطف میست. در این مقاله، یک روش استخراج ویژگی جدید پیشنهاد شده -داده چند

 دار مدرزیهای میمده برچسد ویژگدی ترکیبدی بدر مبندای ممنمدهکند. روش پیشنهادی که اسدتخراج آمنزشی کنچک استفاده می ممنمه مجمنعه مسئله

(HFE-BSL) کندد. در متیجده، روش مامیده شده است، از یک معیار ترکیبی حاوی هر دو معیارهای کلی و محلی بدرای اسدتخراج ویژگدی اسدتفاده می

را در  HFE-BSL، کارایی خدنب واقعی سه داده ابرطیفی گی ویک داده چند طیفی ساخت ها بر رویپیشنهادی پایدار و امعطاف پذیر است. متایج آزمایش

 دهد. مقایسه با چند روش مهم و پرکابرد استخراج ویژگی مشان می

 بندی.مرزی، معیار ترکیبی، طبقههای ویژگی، تصنیر ابرطیفی، ممنمهاستخراج  :کلمات کلیدی

 


