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Abstract 

In this work, we use the non-linear regression, artificial neural network (ANN), and genetic programming 

(GP) approaches in order to predict an important tangible issue, i.e. the scour dimension downstream of 

inverted siphon structures. Dimensional analysis and non-linear regression-based equations are proposed for 

the estimation of the maximum scour depth, location of the scour hole, and location and height of the dune 

downstream of the structures. In addition, The GP-based formulation results are compared with the 

experimental results and other accurate equations. The analysis results show that the equations derived from 

the forward stepwise non-linear regression method have the correlation coefficients R2= 0.962, 0.971, and 

0.991,  respectively. This correlates the relative parameter of the maximum scour depth (s/z) in comparison 

with the GP and ANN models. Furthermore, the slope of the fitted line extracted from computations and 

observations for dimensionless parameters generally presents a new achievement for sediment engineering 

and scientific community, indicating the superiority of the ANN model. 

 

Keywords: Scour, Inverted Siphon, Neural Network, Genetic Programming.  

1. Introduction 

Scour is a worldwide natural phenomenon caused 

by the flowing stream on the sediment beds. The 

local scour downstream of a hydraulic structure 

poses an immense problem in designing the 

foundation and stability of the hydraulic structure 

of Sarkar and Dey [1]. If the scour depth becomes 

significant, the stability of the foundation of the 

structure may be endangered, with a consequent 

risk of damage and failure. Therefore, the 

prediction and control of scour is necessary. 

During the formative phase of the scour profile, 

the local sediment transport is rather active, while 

by approaching the equilibrium condition, the 

phenomenon tends to a ‘‘purely hydraulic” Ghetti 

and Zanovello [2] mechanism, in which the hole 

profile is the result of a mass balance between the 

removed and deposited particles inside the pool. 

The difference in height between the upstream 

and downstream bed levels of the river-

intersecting structures will form a vertical 

waterfall in the tail-water that plays an important  

 

 

 

role in grade-control structures. An example of 

these structures is the Balaroud inverted siphon 

structure in Dez irrigation and drainage network 

in the south of Andimeshk county, Khozestan 

province, Iran (Figure 1-a). The Balaroud inverted 

siphon is one of the largest national water 

structures that is situated in the irrigation and 

drainage network of Dez. Having a length of 990 

m and a capacity of 156 m3/s, this structure 

transfers water of the Dez river through the 

beneath of the Balarod river. The Balaroud 

inverted siphon has an intensive general and local 

scour, as a consequence of the anomalous usage 

of the materials in the Balaroud River. Figure 1-b 

shows the conditions of the structure. A sketch of 

the scour downstream of Balaroud inverted siphon 

is shown in figure 2, having a weir width of b and 

a fall height of z.  
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Figure 1. a) Location of studied area. b) Formation of 

grade-control structure in Balaroud river bed by 

protrusion of Balaroud inverted siphon structures located 

in Dez west irrigation system in SW of Iran. 

 

 
Figure 2. A sketch of scour of an alluvial bed downstream 

of an inverted siphon structure. 

 

It is worth mentioning that the erosive action of 

the flowing water causes a significant downstream 

local scour, and may cause problematic issues for 

these structures. Thus the structural design of the 

inverted siphon structures must include sufficient 

protective provisions against local scours. 

An appropriate structural design of these 

structures requires full comprehension, and, 

somehow, prediction of the nature of the 

downstream scour, namely the location and extent 

of the scour. 

Many experimental studies on scour downstream 

of hydraulic structures are available in the 

literature. Among these, we can refer to the 

studies carried out by Rouse [3], Doddiah et al. 

[4], Mason and Arumugam [5], D’Agostino [6], 

Robinson et al. [7], Bormann and Julien [8], and 

Bennett et al. [9]. 

Rouse [3] and Doddiah et al. [4] have shown that 

the scour depth s increases with time T, and its 

changes accord to the following relationship: 

 2
21 log bzQTkkhs    (1) 

 

where, 1k and 2k are constants; and h is the tail-

water depth above the non-scoured bed level 

(Figure 2). 

Bennett et Al. [9] have observed that a jet is 

separated from the over-fall, and diffuses 

downstream of the structure. 

This jet is split into two wall-jets, forming two 

counter-rotating eddies (rollers), downstream and 

upstream of the diffuse jet, and eroding and 

forming the scour hole. The upstream roller is 

captive between the over-fall and the impinging 

jet. The circulation within the downstream roller 

causes a region of significant upwelling, and 

sediment deposition occurs as the flow directs 

toward the water surface. The D’Agostino [6] 

studies have neglected the influence of the bed 

grain-size, and he suggested equation (2) due to 

estimating XD; it is a distance between the 

downstream of the structure and the accumulated 

depositions crest. 

34.055.3 3 2  zgqzXD  
(2) 

 

 

where, bQq   is the discharged per unit weir 

width. 

A large-scale model research work carried out by 

Bormann and Julien [8] has enabled the 

calibration of an equilibrium equation based on 

particle stability and its validation in a variety of 

conditions such as wall and vertical jets, free 

over-fall jets, submerged jets, and flow-over 

large-scale grade-control structures. According to 

the results obtained by Bormann and Julien [8], 

the relationship for estimating s is in the following 

form: 
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where, g is the acceleration due to gravity; z the 

difference in height between the crest of the 

grade-control structure and the bottom of the 

downstream undisturbed bed level; Uo is the mean 

flow velocity at the weir crest (equal to the jet 

entering velocity); and    is the maximum side-
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angle of scour hole. The angle    (Figure 2) is 

approximately equal to the jet angle, and has been 

experimentally inferred by Bormann and Julien 

[8]: 
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in which,  is the downstream face angle of the 

grade-control structure (rad); and yo is the water 

depth at the crest. 

Mason and Arumugam [5] have tested some 

formulas for the scours under free-falling jets 

using model and prototype data. The authors 

obtained the best agreement between the selected 

equations and measurements for the model data 

using a representative diameter ds equal to the 

mean particle size dm. They have proposed a 

comprehensive model and prototype equation, 

which can be rewritten according to the 

suggestions made by Yen [10] in the following 

form: 
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where, H is the difference in height between 

upstream and tail-water level. 

Azmathulla et al. [11] have predicted the relative 

scour depth downstream of ski-jump bucket 

spillway by genetic programming (GP) and 

artificial neural network (ANN). The GP-based 

estimations were found to be equally and more 

accurate than the ANN-based ones, especially 

when the underlying cause-effect relationship 

became more uncertain to model. 

Lee et al. [12] have predicted the scour depth 

around bridge piers by the back-propagation 

neural network (BPNN) and non-linear 

relationships.  They have shown that the scour 

depth around bridge piers can be efficiently 

predicted using BPNN. 

The main objectives of this study were to 

investigate the scour process, estimating the 

maximum depth and location of the scour hole, 

and evaluating the maximum height and location 

of the sedimentary mound at the downstream of 

the grade-control structure. In this study, the 

experimental data obtained by the previous 

researchers was used, and the equations were 

reviewed and re-written using the D’Agostino and 

Ferro [13] studies in order to improve the 

accuracy of the existing relationships. In the next 

step, the hydroinformatic science and the soft 

computing technique were used to achieve more 

accuracy for the relationships of the hole’s 

characteristic and the sedimentary mound in 

alluvial ducts containing non-cohesive sediments. 

Zhang et al. [14] have provided a collection of 

high-quality research articles that address the 

broad challenges in bioinformatics and 

biomedicine of SCs and reflect the emerging 

trends in the state-of- the-art SC algorithms. 

Asghari Esfandani and Nematzadeh [15] carried 

out research using the Genetic algorithm and 

Neural Network to make a hybrid method to 

predict air pollution in Tehran. The result show 

that the proposed method has a good agreement 

with field observations. 

 

2. Research method  

After evaluating the studies carried out by 

Veronese [16], Mossa [17], D’Agostino [18], 

Falciai and Giacomin [19], Lenzi et al. [20], and 

D’Agostino and Ferro [13], the study carried out 

by D’Agostino [18] was chosen for our study 

because it had a favorable situation for the 

experimental data analysis and processing. The 

data range used in the form of the revised 

effective relationships of the scour hole and 

sedimentary mound under grade-control structures 

with sharp-crested weir are shown in table 1. 

 

Table 1. Changes in range of parameters used in this 

study 

Parameter Symbol Unit Range 

Channel width B m 0.5 

Weir width B m 0.15-0.3 

Fall height Z m 0.41- 0.71 

Total head above the weir crest 
0h  

m 0.043-0.2006 

Tail water depth H m 0.083-0.435 

Water discharge Q L/s 8.35-83.35 

Diameter of which 50-percent is 

finer 

D50 mm 4.1, 11.5 

Diameter of which 90-percent is 
finer 

D90 mm 7, 17.6 

Maximum scour depth s m 0.045-0.285 

Location of the maximum scour 
depth to weir 

XS m 0.215-0. 705 

Maximum height of the mound 

above the undisturbed bed level 

hd m 0.0250.255 

Location of the maximum 

height of  stockpiling sediments 

XD m 0.24-1.705 

 

According to the theory of dimensional analysis 

and also the characteristics shown in figure 2, all 

the affecting parameters in this research work are 

as what follow: 
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 Kinematic characteristics: Q is the discharge, 

and g is the acceleration due to gravity. 

 Dynamic characteristics: s- is the 

submerged weight of sediment particles;  is 

the mass density of fluid; and  is the water 

viscosity. 
 Geometric characteristics: z is the fall height; 

b is the weir width; B is the channel width; h 

is the tail water depth; H is the difference in 

height from the water level upstream of the 

weir to the tail-water level; D50 is the 

diameter for which 50% of particles are finer; 

and D90 is the diameter for which 90% of 

particles are finer. 

Therefore, the following functional relationship 

can be expressed: 
  0,,,,,,,,,,,, 9050  DDgQHhBbzf s 

 

(6) 

in which   is representative scour hole 

parameters containing as: s is the maximum scour 

depth; XS is the horizontal distance between the 

weir crest and the section of maximum scour 

depth; hd is the maximum height of the mound 

above the undisturbed bed level and XD is the 

location of the maximum height of  stockpiling 

sediments. 

The dimensionless parameters were obtained 

according to (7) using the Buckingham  theorem, 

and the independent variables z and , as the 

repeated variables, were selected. 
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The dimensionless parameters b/B, h/H, and 

D50/D90 are the results of the combination of the 

dimensionless parameters 2, 3, 4, 5, 6, and 7. 
The dimensionless parameter    sgDbzQ 50

 

is obtained through combination with the 

parameters  2, 6 , 8 , and 9. 
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Parameter 
Qz 

 is the Reynolds number that is 

neglected from its effect in the equations because  

of flow turbulence. As a result, (8) is summarized 

in the form of (9). 

Parameter    SgDbzQ 50  is emanated 

from the densimetric Froude number, and it is 

shown by 
50DFr . Thus we can write: 
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(9) 

In addition, the effect of the independent 

parameters b/z, h/H, FrD50, D90/D50, and b/B on the 

dependent parameters φ/z is introduced in the 

form of (10): 
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(10) 

 

In this equation, the coefficients a, b, c, d, e, and  f 

are constant numbers, and their effects are 

determined using the statistical analysis of the 

experimental observations made by the SPSS 

software using the non-linear regression technique 

by the forward stepwise regression method. 

 

3. Results and discussion 

3.1. Non-linear regression method 

The SPSS software was used for determining the 

effective equations in this research work. The 

observed values for the independent 

dimensionless relative parameters b/z, h/H, FrD50, 

D90/D50, and b/B were evaluated versus the 

dependent parameters maximum scour relative 

depth s/z, maximum relative distance of maximum 

scour depth XS/z, relative height of sedimentary 

mound hd/z, and maximum relative distance 

accumulation of sediments to weir toe XD/z in 

order to determine the mapping space between the 

independent and dependent parameters mentioned 

in (10). The mapping space between the 

independent and dependent parameters can be 

shown as (11)-(14): 
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The fitting method of (11)-(14) extracted from the 

experimental results are shown in figures 3-6. The 

error analysis functions were used in order to 

evaluate the results obtained by the proposed 

equations.  

A summary of the results is shown in table 2. 
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Figure 3. Comparison between observed and predicted 

equation (11) to estimate s/z. 
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Figure 4. Comparison between observed and predicted 

equation (12) to estimate XS/z. 
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Figure 5. Comparison between observed and predicted 

equation (13) to estimate hd/z. 
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Figure 6. Comparison between observed and predicted 

equation (14) to estimate XD/z. 

Table 2. Error functions from results suggested by 

equations (11)-(14) against experimental observations. 

Parameter RMSE MPE SEE EF m R2 

 s/z 0.0264 1.6378 0.026 0.9643 0.993 0.962 

XS/z  0.0553 0.065 0.055 0.9674 0.9963 0.967 

 hd/z 0.019 2.839 0.018 0.9804 0.995 0.98 

 XD/z 0.0743 0.028 0.074 0.9911 0.9987 0.991 

 

The angular coefficient of the fitted line extracted 

from the results of (11)-(14) indicates that the 

non-linear regression estimates of the 

dimensionless parameter values s/z, XS/z, hd/z, and 

XD/z are, respectively, 0.7%, 0.37%, 0.5%, and 

0.13% lower than the observed values. The 

estimating bands of the above-mentioned four 

parameters used to determine the scour hole 

dimension are shown in figures 3-6. The skewness 

results obtained from the statistical prediction 

dimensionless parameters s/z, XS/z, hd/z, and XD/z 

had desirable distributions.  

 

3.2. Genetic programming 

Genetic programming (GP) is used as one of the 

evolutionary algorithm techniques in order to 

flourish the presented relationship accuracy in the 

second part of this work. GP is an automatic 

programming technique used for evolving 

computer programs to solve problems. GP is 

frequently applied to the model structure 

identification problems in engineering 

applications. In such applications, GP is used to 

infer the underlying structure of either a natural or 

an experimental process in order to model the 

process numerically. GP is a member of the 

evolutionary algorithm (EA) family. EAs are 

based upon the Darwin's natural selection theory 

of evolution, where a population is progressively 

improved by selectively discarding the not-so-fit 

populations and breeding from the better 

populations. EAs work by defining a goal in the 

form of a quality criterion, and then using this 

goal to evaluate the solution candidates in a 

stepwise refinement of a dataset structures and 

return an optimal solution after a number of 

generations. GP can optimize both the structure of 

the model and its parameters. Since GP evolves an 

equation relating the output and input variables, it 

has the advantage of providing the inherent 

functional relationship explicitly over techniques 

like ANN [21]. 

After extracting the model by the GP method, the 

results obtained were analyzed using the error 

function, and compared with the experimental 
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observations. All programmings were done in 

MATLAB (version 8.2.0.29).  

The best input should be a considered pattern in 

order to determine the best response. Therefore, in 

the first step, various parameters that are effective 

in modeling such as the population members, 

number of generations, size of tree structures, and 

method of generation of initial population should 

be determined carefully with regards to the 

investigated data user. 

The size of each tree structure has a significant 

role in the accuracy of the final model. 

determining the larger numbers than optimal value 

leads in reduction of the accuracy of the model the 

models are not presented mainly because the 

models made by GP in order to estimate the scour 

hole dimensions in the downstream grade-control 

structures were very long-scale.  

The root mean square error (RMSE) is used to 

represent the fitness function. The RMSEi of an 

individual program i is evaluated using the 

following equation: 


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                                 (15)  

where, P(ij) is the value predicted by the individual 

program i for the fitness case j (out of n fitness 

cases), and Tj is the target value for the fitness 

case j. 

For a perfect fit, P(ij) = Tj and RMSEi = 0. Thus the 

RMSE index ranges from 0 to infinity, with 0 

corresponding to the ideal. As it stands, RMSEi 

cannot be used directly as fitness since for the 

fitness proportionate selection, the fitness value 

must increase with efficiency. Thus to evaluate 

the fitness fi of an individual program i, the 

following equation is used: 

i
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which obviously ranges from 0 to 1000, with 

1000 corresponding to the ideal. In order to 

evolve a model with GP, the function set and 

the characteristic of the employed GP must be 

introduced. In this case, after setting 

composed functions of the operators ithave 

been used to achieve the best model evolved 

by GP.The final characteristics of the 

employed GP for all the scour parameters 

(ds/z), (XS/z), (hd/z), and (XD/z) are shown in 

table 3. 

GP against the experimental results for the 

parameters s/z, XS/z, hd/z, and XD/z are shown 

in figures 7-10. The error analysis functions 

were used in order to evaluate the GP results, 

tabulating them in table 4. 

Table 3. Characteristics of employed GP for (ds/z), 

(XS/z), (hd/z), and (XD/z). 
Value 
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Definition Parameter 

+, − , *,  , 
^2 

+, − , *,  , 
^2, cos, exp 

Function set P1 

b/B, D90/D50, 

h/H, b/Z, Fr 
d 

b/B, D90/D50, 

h/H, b/Z, Fr 
d 

Terminal set P2 

5 5 Number of 

inputs 

P3 

RMSE RMSE Fitness function P4 

error 

function 

error 

function 

Error type P5 

0.85% 0.85% Crossover rate P6 

0.1% 0.1% Mutation rate P7 

0.05% 0.05% Gene 
reproduction 

rate 

P8 

350 250 Population size P9 

150 120 Number of 

generation 

P10 

regular regular Tournament 
type 

P11 

6 6 Tournament size P12 

4 4 Max tree depth P13 

Inf Inf Max node per 

tree 

P14 

[-10, +10] [-10, +10] Constants range P15 

 

The angular coefficient of the fitted line extracted 

from the results of the model made indicated that 

GP estimated the values for the dimensionless 

parameters s/z, XS/z, hd/z, and XD/z to be, 

respectively, 0.78%, 0.9%, 1.2%, and 0.65% 

lower than the observed values. Figures 7-10 

show the estimating bands for the above-

mentioned four parameters to determine the scour 

hole dimensions by GP. The skewness results 

obtained from the predicted dimensionless 

parameters s/z, XS/z, hd/z, and XD/z using the GP 

data mining system was satisfactory. 
 

Table 4.. Error function of GP model against 

experimental observations.   

Para

meter 

RMSE MPE SEE EF m R2 

 s/z 0.024 ‒2.06 0.024 0.969 0.992 0.97 

XS/z  0.051 ‒0.79 0.051 0.972 0.991 0.97 

 hd/z 0.020 ‒4.35 0.020 0.976 0.987 0.97 

 XD/z 0.105 ‒0.36 0.105 0.982 0.993 0.98 
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Figure 7. Comparison between observed and predicted 

GP to estimate s/z. 
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Figure 8. Comparison between observed and predicted 

GP to estimate XS/z. 
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Figure 9. Comparison between observed and predicted 

GP to estimate hd/z. 
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Figure. 10. Comparison between observed and predicted 

GP to estimate XD/z. 
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Figure 11. Root mean square error versus generation of 

s/z. 
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Figure 12. Root mean square error versus generation of 

XS/z. 
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Figure 13. Root mean square error versus generation of 

hd/z. 
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Figure 14. Root mean square error versus generation of 

XD/z. 
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Figure 15. GP estimations of s/z versus measured ones 
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Figure 16. GP estimations of XS/z versus measured ones 
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Figure 17. GP estimations of hd/z versus measured ones 
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Figure 18. GP estimations of XD/z versus measured ones 
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Figure 19. Root mean square error versus generation in 

GP. 

 

3.3. Artificial neural network 

The artificial neural network (ANN) is one of the 

most common network models, which generally 

presents a system of inter-connected neurons that 

can compute values from inputs. A neuron 

consists of multiple inputs and a single output. 

There is an input layer that acts as a distribution 

structure for the data being presented to the 

networks. This layer is not used for any type of 

processing. After this layer, one or more 

processing layers follow, called the hidden layers. 

The final processing layer is called the output 

layer in a network. This process is repeated until 

the error rate is minimized or reaches an 

acceptable level or until a specified number of 

iterations have been accomplished. In the ANN 

models, the sigmoid function is used. Here, in this 

work, we used the multi-layer perceptron (MLP) 

neural network model. An MLP is a feed-forward 

ANN model that maps sets of input data onto a set 

of appropriate outputs. An MLP consists of 

multiple layers of nodes in a directed graph, with 

each layer fully connected to the next one. The 

MLP-ANN models were used to estimate the 

dimensionless parameter values 

 
50

,,,, 5090 DFrzbHhDDBb . For this purpose, 

80% of the experimental data was used for 

network training, and the remaining 20% was 

used for testing the results obtained. This 

procedure was repeated for 1,000 times to achieve 

the best performance. The parameters s/z, XS/z, 

hd/z, and XD/z were introduced as the input 

parameters to the model. The details of the MLP-

ANN architecture is shown in table5. 

Figures 20-23 show the performance of the MLP-

ANN model to estimate the scour hole dimensions 

after training. Then 20% of the data that was not 

used in the training stage would be used to 

evaluate the performance of the model. The error 

function results of the neural network used for 

estimating the scour hole dimensions are 

summarized in table 6. 

 

 Table 5. Details of MLP-ANN architecture 

parameter Input 

layer  

Hidden 

layer 

Hidden 

layer 

Output 

layer 

 s/z 5 6 4 1 

XS/z  5 4 2 1 

 hd/z 5 4 3 1 

 XD/z 5 3 1 1 

http://en.wikipedia.org/wiki/Artificial_neuron
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 Table 6. Statistical error functions of ANN for estimating scour hole dimensions for best network architecture 

Parameter Training Testing 

 

 MPE RMSE EF R2 MPE RMSE EF R2 

 s/z 0.2514 0.0082 0.9811 0.9853 0.0345 0.0133 0.9908 0.9911 

XS/z  1.6163 0.0326 0.9492 0.9737 ‒1.9160 0.0494 0.9793 0.9837 

 hd/z 2.8802 0.0081 0.9756 0.9899 ‒2.1214 0.0186 0.9864 0.9885 

 XD/z 0.4463 0.0258 0.9937 0.9933 1.8970 0.0737 0.9935 0.9933 
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Figure 20. Comparison between observed and predicted 

s/z of ANN in training and testing stages. 
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Figure 21. Comparison between observed and predicted 

XS/z of ANN in training and testing stages. 
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Figure 22. Comparison between observed and predicted 

hd/z of ANN in training and testing stages 
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Figure 23. Comparison between observed and predicted 

XD/z of ANN in training and testing stages. 
 

Comparing tables 2, 4, and 6 showed that the 

neural network model performed better in term of 
2R , compared to the non-linear regression and GP 

methods. Also the estimated bands of the above-

mentioned four parameters used to determine the 

scour hole dimension are shown in figures 20-23. 

The results of the statistical analysis conducted at 

various stages of training and testing is shown in 

figures 20-23. The skewness results obtained 

using the statistical prediction dimensionless 

parameters, i.e. s/z, XS/z, hd/z, and XD/z, had 

desirable distributions.The angular coefficient of 

the fitted line extracted from the results of the 

model made indicated that ANN estimated the 

values for the dimensionless parameters, i.e. s/z, 

XS/z, hd/z, and XD/z, to be 0.3%, 0.4%, 0.3%, and 

0.08%, respectively, lower than the observed 

values in the training phase, the dimensionless 

parameter s/z, 0.2% more, and the dimensionless 

parameters XS/z, hd/z, XD/z, 2.6%, 3%, and 

0.04%, respectively, lower than the values 

observed in the testing phase. The skewness 

results obtained from the statistical prediction of 

the dimensionless parameters s/z, XS/z, hd/z, and 

XD/z had desirable distributions. 

 

3.4. Sensitivity analysis methods  

Sensitivity analysis approaches can be classified 

in different ways. In this paper, they have been 
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classified as mathematical, statistical or graphical. 

Other classifications focus on the capability, 

rather than the methodology, of a specific 

technique [22]. The classification approaches aim 

to understand the applicability of a specific 

method to a particular model and analysis 

objective. 

 

3.4.1. Graphical methods for sensitivity 

analysis 

Graphical methods give a representation of the 

sensitivity in the form of graphs, charts or 

surfaces. Generally, graphical methods are used to 

give a visual indication of how an output is 

affected by the variation in inputs [23]. Graphical 

methods can be used as a screening method before 

further analysis of a model or to represent 

complex dependencies between inputs and outputs 

[24, 25]. Graphical methods can be used to 

complement the results of mathematical and 

statistical methods for a better representation [26]. 

The sensitivity analysis was performed 

considering negligible h/H parameter impact, and 

thus we removed it from the equation, and (11)-

(14) can be formed as follows: 

  561.0
608.0008.0

50

90

294.0

50
541.0 DFr

z

b

D

D

B

b

z

s




































 
(17) 

  395.0
500.0734.0

50

90

002.0

50
833.1 DFr

z

b

D

D

B

b

z

XS




































 
(18) 

 

  753.0
276.0601.1

50

90

141.1

50
344.1 D

d Fr
z

b

D

D

B

b

z

h




































 
(19) 

 

  522.0
373.0567.0

50

90

489.0

50
629.4 DFr

z

b

D

D

B

b

z

XD




































 
(20) 

 

The fitting method for equations (17)-(20), 

extracted from the experimental results, are shown 

in figures 3-6. The error analysis functions were 

used in order to evaluate the results of the 

proposed equations. A summary of the results 

obtained are shown in table 7. The angular 

coefficient of the fitted line extracting the results 

of (17)-(20) indicates that the non-linear 

regression estimates the dimensionless parameter 

value s/z, XS/z, hd/z, and XD/z to be, respectively, 

0.85%, 0.74%, 0.9%, and 0.21% lower than the 

observed values. The estimating bands of the 

above-mentioned four parameters used to 

determine the scour hole dimension are shown in 

figures 15-18. The fitting method for equations 

(17)-(20), extracted from the experimental results, 

are shown in figures 24-27. The error analysis 

functions were used in order to evaluate the 

results of the proposed equations. A summary of 

the results obtained are shown in table 7.  
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Figure 24. Comparison between observed and predicted 

equation (17) to estimate s/z. 
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Figure 25. Comparison between observed and predicted 

equation (18) to estimate XS/z. 
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Figure 26. Comparison between observed and predicted 

equation (19) to estimate hd/z. 
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Figure 27. Comparison between observed and predicted 

equation (20) to estimate XD/z. 
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Table 5. Error functions from results suggested by 

equations (17)-(20) against experimental observations. 

Parame

ter 

RMS

E 

MPE SEE EF m R2 

 s/z 0.028 1.843 0.028 0.957 0.991 0.955 

XS/z  0.075 0.480 0.074 0.939 0.992 0.936 

 hd/z 0.020 1.965 0.020 0.978 0.991 0.977 

 XD/z 0.087 0.066 0.087 0.987 0.997 0.987 

 

4. Conclusion 

By comparing the results tabulated in tables 2, 4, 

and6, it can be seen that the angular coefficient of 

the fitted line extracted from the results of the 

predicted parameters s/z, XS/z, hd/z, and XD/z 

resulting from ANN is 45 degrees closer to the 

slope of the line of the non-linear regression and 

GP comparing to the predicted values. This 

indicates that the ANN model was more 

successful in estimating these parameters. The 

root mean square error had fewer values in 

predicting the parameter s/z, XS/z, hd/z, and XD/z 

by ANN than non-linear regression and GP, and 

this indicates the advantage of this approach in  

estimation of these parameters. GP may serve as a 

robust approach, and it may open a new area for 

an accurate and effective explicit formulation of 

many water engineering problems. Generally, 

with regard to this point that since using the 

presented non-linear regression for estimating 

scour parameters does not require a computer, it 

can, therefore, be claimed that using the non-

linear regression compared to GP and ANN in 

estimating the scour hole dimensions in the 

downstream grade-control structure is better and 

more tangible.  
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 محاسبات نرمآماری و  هایآبشستگی پایین دست سازه سیفون معکوس با استفاده از روش تخمین

 

 *بابک لشکرآراو  معصومه فتاحی

 .ایران دزفول، گروه مهندسی عمران آب، دانشگاه صنعتی جندی شاپور دزفول، 

 10/01/7102 ؛ پذیرش72/10/7102 ارسال

 چکیده:

ابعاد آبشستگی پایین  مساله مهمی نظیر بینیسازی ژنتیک به منظور پیشسیون غیرخطی، شبکه عصبی وبرنامههای رگرروشما از  ،در این تحقیق

برای این منظور با استفاده از تحلیل ابعادی و رگرسیون غیرخطی روابطی بدون بعد جهت تخمین حداکثر  ایم.دست سازه سیفون معکوس استفاده کرده

علاوه بر  ها ارائه شده است.دست این نوع سازهی و همچنین حداکثر ارتفاع و موقعیت مکانی تپه رسوبی در پایینمکان حفره آبشستگآبشستگی،  عمق

تحلیل نتایج . نسبت به تدقیق روابط اقدام گردید (ANN)شبکه عصبی مصنوعی (GP)سازی ژنتیک و مدلکاوی برنامهبا استفاده ازسیستم داده این

سازی ژنتیک ومدل شبکه عصبی در تخمین سه با مدل ارائه شده توسط برنامهنشان داد که رگرسیون غیر خطی به روش گام به گام پیشرو در مقای

فی شیب خط برازش شده از از طر برخوردار است.220/1و  220/1،  227/1بترتیب از ضریب همبستگی zsپارامتر نسبی حداکثر عمق آبشستگی 

ام شده بینی انجحاکی از برتری پیش s/z ،XS/z ،/zdh ،XD/z پارامترهای بدون بعدتخمین هر سه مدل جهت در محاسباتی  مشاهداتی ونتایج بین 

  باشد.توسط شبکه عصبی مصنوعی می

  .سازی ژنتیکبرنامه ،آبشستگی، سیفون معکوس، شبکه عصبی :کلمات کلیدی

 


