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Abstract

Underground tunneling for the development of underground railway lines as a rapid, clean, and efficient way
to transport passengers in megacities has received a great deal of attention. Since such tunnels are generally
excavated beneath important structures in urban zones, estimating the surface settlement caused by tunnel
excavation is an important task. During the recent decades, many attempts have been made to investigate the
influencing factors affecting the amount of surface settlement. In this study, random forest (RF) is introduced
and investigated for the prediction of maximum surface settlement (MSS) caused by earth pressure balance
(EPB) shield tunneling. The results obtained show that RF is a reliable technique for estimating MSS using
the geometrical, geological, and shield operational parameters. The applicability and accuracy of RF, as a
novel approach, is checked by comparing the results obtained with the artificial neural network (ANN), as a
popular artificial intelligence algorithm. The proposed RF model shows a better performance than ANN.

Keywords: Tunnel, Earth Pressure Balance (EPB), Maximum Surface Settlement (MSS), Random Forest

(RF).

1. Introduction

This Underground transportation such as subway
is a rapid, clean, and efficient way to transport
passengers in the developing countries.
Underground tunneling for the development of
such infrastructures is a complex process since it
may cause a serious damage to the existing
structures owing to a partial settlement. Therefore,
forecasting the ground behavior and surface
settlements during excavation is a vital task that
can be estimated using empirical [1-5], analytical
[6-11], and numerical methods [12-15]. Indeed,
the amount of maximum surface settlement (MSS)
is a complex function of many geotechnical and
geometrical parameters. Since the empirical and
analytical approaches have mostly been developed
on the basis of some simplifying assumptions,
such methods generally fail to consider all the
relevant factors that jointly affect the settlement,
and thus a more comprehensive attempt is
required for estimating the surface settlement
caused by tunnel excavation. The artificial
intelligence  (Al)-based methods have the

capability to be used in the problems with a huge
number of factors possibly involved for modeling
the complex relationships between the inputs and
outputs or find patterns in the available data. Al-
based methods are usually known as powerful
tools for classification and prediction [16]. These
methods such as the artificial neural network
(ANN) [15, 17, 18], wavelet network (Wavenet)
[19], support vector machine (SVM) [20], and
wavelet smooth relevance vector machine
(wsRVM) [21] have been used for analyzing the
settlements caused by tunnel excavations during
the past decade. The procedure used by the Al-
based methods essentially involves training a
model using a training data set that contains all
shield  operational records and  field
instrumentation readings. The training stage is
required to include the inherent highly non-linear
and multi-dimensional relationship between the
settlement and the influencing factors.

In this work, a new approach is proposed for the
prediction of MSS of tunnels using random forests
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(RFs). RF is an ensemble learning technique
developed by Breiman [22] based on a
combination of a large set of decision trees. In the
last decade, there has been a growing trend in the
use of decision tree algorithms for modeling and
approximation of complex non-linear systems.
The tree growing algorithm used in RF is a kind
of classification and regression tree. A decision
tree partitions the input space of a data set into
mutually exclusive regions, each of which is
assigned a label (classification tree) or a value to
characterize its data points (regression tree) [23,
24]. Decision trees are rather sensitive to small
perturbations in the learning set. This problem can
be mitigated by applying bagging
(Bootstrap aggregating) [25]. RF is a combination
of the random sub-space method proposed by Ho
[26] and bagging.

RFs in both the classifier and regression forms
have been successfully applied to a large number
of problems including classification of hyper-
spectral data [27], prediction of bird distributions
and mammal species characteristic to the eastern
slopes of the central Andes [28], prediction of
long disordered regions in protein sequences [29],
classification of agricultural practices based on
Landsat satellite imagery [30], classification of
electronic tongue data [31], prediction of building
ages from LiDAR data [32], and many others.
Recently, RF has been applied to predict the
liquefaction potential of soil using the CPT data,
and has demonstrated a considerable degree of
success [33]. However, to the best of the
knowledge of the authors, RF has not been used
for estimating MSS caused by EPB shield
tunneling.

2. Materials and method

2.1 Random forest

Random Forest (RF), as a relatively new pattern
recognition method, has been proposed by
Breiman [22]. It uses a kind of learning strategy
called ensemble learning that generates many
predictors and averages the outputs as shown
schematically in figure 1, where i is the number of
trees in RF, and (Smax)li (Smax)21 and (Smax)i
are the output trees. Each tree is trained by
selecting a random set of variables and a random
sample from the total dataset. RF is not very
sensitive to its parameters, and works just based
on the number of trees (ntree) and number of
variables in the random subset at each node
(mtry). Therefore, SF is very user-friendly and
easy to use approach for classification, regression,
and unsupervised learning [34].

Since, in this investigation, the response variable
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is the value for maximum settlement, S,,,,,, the

regression form of RF is of particular interest. The

main regression RF steps can be summarized as
follows (for more details, the readers are referred

to Breiman [22]):

(1) The ntree bootstrap samples X; (i =
bootstrap iteration) are randomly drawn with
replacement from the original dataset, each
containing approximately two-third of the
elements of the original dataset X (in our case,
approximately 33 elements out of 49 ones). The
elements not included in X; are called the out-of-
bag (OOB) data for that bootstrap sample.

(2) For each bootstrap sample X;, an unpruned
regression tree is grown. At each node, rather than
choosing the best split among all predictors, as
done in classic regression trees, the mtry
variables are randomly selected, and the best split
is chosen among them.

(3) The OOB data is predicted by averaging the
predictions of the ntree trees, as explained below.
The OOB elements are used to estimate an error
rate, called the OOB estimate of the error rate
(ERRypg), as follows:

i. At each bootstrap iteration, the OOB
elements are predicted by the tree grown
using the bootstrap samples X;.

ii.  For the ith element (y;) of the training data
set X, all the trees are considered, in which
the ith element is OOB. On average, each
element of X is OOB in one-third of the
ntree iterations. On the basis of the
random trees, an aggregated prediction
Joop 1S developed. The OOB estimate of
the error rate is computed as:

ERRyop :(1/ ntree)'f[yi - gOOB(Xi)]Z Q)

ERRyop helps prevent over-fitting, and can also
be used to choose optimal values for ntree and
mtry by selecting the ntree and mtry values
that minimize ERR,op. Therefore, we first chose
the optimal values for ntree and mtry that
minimize ERR g, and then proceeded to develop
the RF model. As ERR 5 is an unbiased estimate
of the generalization error; in general, it is not
necessary to test the predictive ability of the
model on an external data set [22].

2.2. Case study

In order to show the capabilities of utilizing RF
for predicting the MSS caused by an earth
pressure balance machine (EPB) shield tunneling,
the reported field measurements of Bangkok
subway project were utilized. Figure 2 shows a
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schematic view of the apparatus used for the EPB
shield tunneling. EPB, as a safe, rapid, and routine
excavation technique, which is popular for tunnel
construction, was used for the first phase of an
integrated transportation plan for Bangkok,
operated by Mass Rapid Transit Authority
(MRTA), which is a governmental agency under
the ministry of transportation in Thailand.
Bangkok lies in the Chao Praya delta plain. Its
topography is low and flat, varying approximately
in the range of 0.5-1 m above the mean sea level.

This research work was performed based on a
unique and comprehensive EPB tunneling
database of Bangkok subway project that
contained monitoring results of operational
records and field instrumentation readings [35].

X (Input)

For a more detailed information, the readers are
referred to Suwansawat [35].

3. Factors affecting surface settlements

The results of a literature review [15, 20, 21, 36-
38] showed that the main factors influencing
settlement in EPBM tunneling can be categorized
into (1) tunnel geometry, (2) geological
conditions, and (3) shield operation factors.
Statistical characteristics of the data used in this
work are summarized in table 1. This dataset
consisted of 49 data that had been previously used
by Suwasawat [15] and Pourtaghi [19]. Each
category of the data used is defined and described
in the following sub-sections.

Average

\

Smax (Output)

Figure 1. A general architecture of an RF for S,,,,, prediction.

Legend: (1) Cutter head; (2) excavation chamber; (3) bulkhead; (4) thrust cylinders; (5) screw conveyor; (6) segment erector; and (7) segmental lining.

Figure 2. Overview of EPB [47].
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Table 1. Statistical Characteristic of data used in this study.

Category Parameters Count Minimum Maximum Mean StdDev”
Tunnel geometry ~ Tunnel depth (m) 17.89 24.82 22.05 1.93
Distance from shaft (m) 33.60 3055.20 1320.27 969.50
Geological Geology at crown ? Soft clay 1
conditions Stiff clay 48
At invert Stiff clay 29
Sand 20
Invert to WT (m) -5.97 0.96 3.20 1.93
EPBM operation  Face pressure (kPa) 14.50 131.00 54.73 28.62
factors Penetrate rate (mm/min) 20.10 76.85 42.63 12.87
Pitching angle (°) -1.38 1.43 0.05 0.83
Tail void grouting pressure (kPa) 230.00 740.00 278.14 91.56
Percent of tail void grout filling (%) 70.00 224.00 125.96 27.29

2 Soil types at tunnel crown and invert are binary data.
®StdDev refers to the standard deviation.

3.1. Geometric characteristics

Depth and diameter of tunnels are the most
geometrical parameters affecting the amount of
settlements. However, since the entire length of
the Bangkok subway project had a constant
diameter of 6.30 m, the effect of tunnel diameter
was negligible in this case study. In this regard,
the tunnel depth is the most important geometric
factor. The distance from the launching station, as
defined in figure 3, is another influencing factor
included in this study.

3.2. Geological conditions

Since a detailed geological investigation of the
soil properties at the instrumentation sections was
practically impossible, it was difficult to obtain
the values for the soil properties. However, the
Young’s modulus and shear strength are the soil
properties that have been taken into consideration
as the geological factors by some investigators
[39, 40]. Soil type is a good indicator and a major
factor involved in determining the settlement.
Kim, Bae [41], Suwansawat and Einstein [15],
and Wang, Gou [21] have used soil type to
represent the soil properties. In the model
presented in this paper, the soil types at the tunnel
crown and at the tunnel invert were considered as
two geologic factors. Ground water level from the
tunnel invert was another geological parameter
included.

3.3. EPBM shield operation factors

In EPBM tunneling, shield is operated by
controlling the amount of excavated material
transported from the face by a screw conveyor.
Therefore, the tunnel face could be supported by
the material held in the excavation chamber at a
controlled pressure. In practice, face pressure in
the chamber plays a crucial role in maintaining
stability of the excavation and minimizing
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settlements. Therefore, it is one of the most
significant factors that have a direct effect on the
magnitude of surface settlements. Considering
many research works, applying low face pressures
would cause large settlements, and vice versa.
[12, 15, 36, 42-44].

The penetration rate measures how fast the shield
can move forward (mm/min), and it is typically
measured in every excavation cycle. It seems that
the penetration rate affects the surface settlements.
In practice, to achieve an earth pressure balance
mode, shield operators have to control the rate of
spoil extraction to correspond to the penetration
rate. If the extraction rate is too high, compared to
the penetration rate, it means that the shield
excavates too much volume of soil relative to the
volume replaced by the advancing shield. As a
result, the excavated volume of the soil becomes
unbalanced with the volume of soil that is
occupied by the shield advance so that ground
loss would be expected. On the other hand, if the
extraction rate is too low, compared to the
penetration rate, it means that the excavation
volume is less than the volume replaced by the
shield advance. As a result, the shield may
generate a too high face pressure [35].

The pitching angle reflects the shield position,
which has to be kept within the designed
alignment. However, it is practically impossible to
maintain an accurate orientation along the entire
length of the tunnel. The mismatch between the
actual position and the designed alignment may
influence the settlement because it can create
voids, as depicted in Fig. 4.

The quality of the tail void grouting also
contributes to the extent of the ground settlement.
As the shield is jacked forward, a tail void around
the outside of the lining is created, as shown in
Fig. 5. Tail void grouting is necessary to prevent
ground moving towards the void. In general, the
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grouting pressure should be high enough to
guarantee the flow of grout material, and to resist
the ground moving into the void. Another
criterion to check the grouting performance is the
percent of grout filling, which has to be
maintained at a level higher than the theoretical
void [15]. Tunneling operations with a high
grouting pressure and a high percent of grout
filling can reduce considerably the settlements
developed after the shield passing [35, 45]. In
summary, five factors, namely, face pressure,
penetration rate, pitching angle, tail void grout
pressure, and grout filling were considered as the
shield operational parameters in the model
presented in this paper.

Launching
station

Section A-A

Invert

Figure 3. Geological and geometry parameters [15].

Ground moving towards the void

1111

Designed aligment

\

Pitching angle

Figure 4. Ground movement caused by pitching angle
[15].

Shield skin

Concrete lining Tail void

Section A-A

Figure 5. Schematic diagram showing a tail void between
tunnel lining and liner [15].

4. Results and discussion

In this work, WEKA was utilized for developing
an optimal RF-based predictor in order to forecast
the maximum settlement. WEKA is an open
source  platform  for  machine learning
implemented in Java [46]. The best values for the
design parameters (ntree and mtry) were
determined through a trial and error process. As
the number of trees in RF increases, the test set
error rates converge to a limit, meaning that there
is no over-fitting in large RFs [22]. The process
starts using the suggested default values toward
the minimum error in the OOB dataset. The
default value for ntree is 500 and the default
value for mtry can be determined via [log,(N) +
1], where N is the total number of variables [33].
The default mtry value is [log,(N) + 1] (N is the
total number of variables). We can suggest
starting with default mtry and then decreasing
and increasing mtry until the minimum error for
the OOB dataset is obtained. As shown in figure 6
and table 2, the best results correspond to
ntree = 270 and mtry = 6.

Table 2. Performance of RF models.

mtry ntree ERRooB
2 270 7.6585
3 190 7.6909
4 380 7.8489
5 390 7.6739
6 270 7.5345
7 180 7.7567

The coefficient of correlation (CC), coefficient of
determination (R?, root mean square error
(RMSE), and mean average error (MAE) are the
statistical measures used to assess the
performance of the proposed methodology. These
statistical measures are defined as:

cC = Zin:1|:(si -5)(c _Gi)]

S (5 5) (o5 @
2_q Zin:l(si -¢)
R*=1 —Z::l(ci —C)z 3
RMSE = {—z‘nﬂ(i‘ —G )ZJ 4)
MAE = 2?:l|si _Ci| (4)
n

where, S, and C; denote the predicted and

measured values, respectively; n is the number of
measurements; C; is the mean of ¢;;and §; is the

mean of ;.
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Figure 6. ERRyop Vs. ntree for different mtry values. Arrow shows optimal number of grown tree that produced least out-
of-bag estimate of error rate.

As shown in Fig. 7, the measured MSS and RF-
based predicted values are very close to each
other.

The RF accuracy was checked by comparing the
results obtained with ANN, as a popular artificial
intelligence (Al) algorithm [15], and Wavenet
[19]. Wavenet is a hidden layer NN with a
variable number of hidden nodes, which is based
on the integration between the wavelet theory and
ANN. Fig. 8 shows a comparison between the
predicted ANN and Wavenet values. The
statistical ~characteristics of the forecasted
maximum settlements by the mentioned methods
are compared in table 3. The results obtained
indicate that the RF and Wavenet models perform
better than the ANN model. It is worth noting that
parameter tuning, data preprocessing, and feature
selection are not required in RF. However, ANN
requires some data pre-processing with de-
correlation and normalization to increase the
convergence speed of network [48].

70 -
£ RF (Total data) -~
g Total data s
£ 60| Rr2=09049 //
§ 50 Sgit = 0.9564 S, e
3 S
& pe
S _ 40
EE 29
5E L4
ET30 °
%
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0
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Measured maximum surface settlement (mm)

Figure 7. Measured vs. predicted MMS for RF model.

Table 3. Results of statistical evaluation.

Approach cc R? RMSE (mm) MAE (mm)
RF 0.9838 0.9049 3.4270 2.6872
ANN [15] 0.9158 0.8373 5.0515 3.4299
Wavenet [19] 0.9670 0.9190 3.4550 1.8208
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Figure 8. Comparison between measured values for MMS and predicted values using RF and ANN model for all datasets.

Moreover, RF has some other attracting
advantages. For example, it is robust against over-
fitting; it is very user-friendly, so that there are
only two parameters needed to be considered; and
RF is usually not very sensitive to their values; it
can offer the data internal structure measure,
which suggests that there is no need for an extra
feature selection procedure.

The internal OOB error rate of RF could be used
for classification accuracy assessment when there
are limited samples for independent accuracy
assessments; it is immune to irrelevant variables
and outliers; it is not sensitive to the differences
between data units and magnitudes, which
suggests that it is not necessary to conduct data
pre-processing such as normalizing or centering;
and it can cope with badly unbalanced data; and
[34].

Despite the RF advantages, it is mostly case-
dependent and precise in the range of training
data. However, it can be easily updated to yield
better results, as new data becomes available.

5. Conclusion

Estimating the surface settlement caused by
tunnel excavation is an important task. However,
determining the maximum surface settlement
(MSS) is challenging due to the number of
parameters involved. In this work, the RF model
is utilized to predict MSS in the EPB shield
tunneling. RF is a pattern recognition method
based on the “ensemble learning” strategy, which
generates many predictors and averages their
results to form a final prediction. RF, as a
statistical learning modeling framework, does not
require assumptions of normality of model
variables, and can deal with non-linear
relationships. Compared with ANN, which is the
most popular artificial intelligence-based method,
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RF is easy for implementation with a higher
accuracy. The results obtained from this study
show that the best method among the three data
mining methods for prediction of surface
settlement is the RF method with a RMSE value
of 3.4270. The RMSE values were found to be
5.0515 and 3.4550 for the ANN and Wavenet
models, respectively. These three methods
demonstrated promising results, and predicted the
surface settlements of tunnels successfully. RF
requires a less number of parameter for estimating
MMS. Possibility of obtaining the generalization
error estimate without splitting the dataset into
learning and validation subsets make the RF
designing process much faster than ANN.
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