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Abstract 

Nearest neighbor (NN) searching is a challenging problem in data management, and has been widely studied 

in data mining, pattern recognition, and computational geometry. The goal of NN searching is an efficient 

report of the data nearest to a given object as a query. In most studies, both the data and the query are 

assumed to be precise. However, due to the real applications of NN searching such as the tracking and 

locating services, GIS, and data mining, it is possible for both the data and the query to be imprecise. In such 

situations, a natural way to handle the issue is to report the data that has a non-zero probability (called the 

non-zero NN) as the NN of a given query. Formally, let P be a set of n uncertain points modeled by some 

regions. We first consider the following variation in an NN searching problem under uncertainty. If the data 

is certain and the query is an uncertain point modeled by an axis-aligned parallel segment, we propose an 

efficient algorithm in ( log )O n n  pre-processing and (log )O n k  query time, where k is the number of 

non-zero NNs. If both the query and the data are uncertain points modeled by distinct unit segments parallel 

to the x-axis, we propose an efficient algorithm that reports the non-zero NNs under Manhattan metric in
2 2( ( ))O n n  pre-processing and (log )O n k  query time, where (.)  is the extremely slow growing 

functional inverse of the Ackermann function. Finally, for the arbitrarily length segments parallel to the x-

axis, we propose an approximation algorithm that reports a non-zero NN with a maximum error L in 
2 2( ( ))O n n  pre-processing and (log )O n k  query time, where L is the query length. 

 

Keywords: Nearest Neighbor Searching, Uncertainty, Imprecision, Non-zero Probability. 

1. Introduction 

Nearest Neighbor (NN) searching, which is a 

classic problem in computational geometry, has 

many applications in robot path planning, facility 

location, data mining, target tracking, and 

geographic information systems. In this problem, 

the goal is the proper pre-processing of a set of n 

data points in order to report efficiently the data 

nearest to a given query point. Due to several 

reasons such as noise, security issues, limited 

computations, and limited precision of measuring 

devices, gathering and analyzing real data come 

with some inevitable errors. Thus the algorithms 

that work based on the assumption that the data 

(and also computations) are completely precise 

fail in face with such a real input [1, 2]. For 

example, in facial recognition systems, we need to 

identify a person using some features in a 

database containing original face images. Due to 

 the nature of such problems, extracting the 

features from the original faces (in different 

positions or video frames), and also the query 

features are uncertain, and, therefore, the query 

does not match exactly to one of the original ones, 

and consequently, it should be handled under 

uncertainty circumstances [3]. One geometric 

approach implemented to smooth such uncertainty 

issues is to consider a tolerance for data, e.g. 

considering a region —called the uncertainty 

region— like a segment, a rectangle or a disk 

instead of an uncertain point [4, 5]. Thus an 

uncertain region is a region containing all the 

instances of an imprecise point. Therefore, since 

the distance between two imprecise points is not 

defined precisely, different cases may happen. In 

fact, the distance between two imprecise points 

can be defined as the distance between any  
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selected instances from their uncertainty region, 

especially, the instances resulting in minimum and 

maximum distances. Such instances can be useful 

in applications for obtaining the worst and best 

cases of a solution under imperfect information or 

uncertain circumstances. 

 

1.1. Problem definition 
One way to consider NN searching under 

uncertainty is to report the data that has a non-

zero probability to be an NN of a given query [8]. 

It means that there is at least one placement of 

instances of uncertain regions such that the 

reported data is NN of the query. Let 

1{ ,..., }nP p p  be a set of n uncertain points in a 

plane whose uncertainty regions are modeled by n 

regions, e.g. segments. (In this case, we assume 

that the data has some error only in one direction.) 

The uncertainty region of      is the set of all 

possible points (instances) in which    is located. 

For a query point q, we aim to report all points in 

P that have a non-zero probability to be the NN of 

q —called non-zero NN, denoted by NzNN. That 

means that when an uncertain point p is reported, 

there is a choice of points (called a placement) 

exactly one instance from each uncertainty region 

such that the instance of p is the nearest instance 

to q among all instances. Note that it is possible 

that q is also an uncertain point. Thus in this case, 

there is a placement of p and an instance of q like 

q' such that the instance of p is the nearest 

instance to q' among all instances (see Figure 1). 

 

 

Figure 1.  3 4 5  , ,p p p are non-zero NN of uncertain query 

 . 

1.2. Previous work 

Under the assumption that the data is precise, a 

simple and efficient method can be used to find 

that NN is a decomposing workspace using the 

Voronoi diagram of the data points in the 

( log )O n n  time. Thus in the query phase for a 

given query point q, it is sufficient to report NN in 

the (log )O n  time by locating q in the Voronoi 

regions and reporting the corresponding data [6]. 

For uncertain points and certain query, the 

original Voronoi diagram has been extended to 

the non-zero probabilistic Voronoi diagram 

(PVD) [7, 8]. Each cell in PVD contains the points 

that have non-zero probability to be the NN of the 

corresponding data. Sember et al. [7] have shown 

the worst case complexity of PVD for uncertain 

points modeled by disks is 4( )O n  but they did not 

compute any lower bound for its complexity. 

Agarwal et al. [8] have shown that if the query is 

certain and the points are uncertain regions 

modeled by disks, PVD can be built in the 3( )n  

time. Hence, it is possible to report NzNN in the 

(log )O n k  time, where k is the number of 

possible non-zero probability points. Also by 

applying the expected distance between the 

uncertain points, the problem can be solved in the 

(log )O n  time using the ( )O n  space and the 

( log )O n n nm  preprocessing time, where m is 

the number of possible values in the data [9]. 

Cheng et al. [10] have introduced a method based 

on branch and prune on the R-tree. Further, Zhang 

et al. [11] have shown that in d-dimensional, there 

is no polynomial algorithm to compute PVD, and 

they combined PVD and R-tree to propose a 

heuristic method to report NzNN. However, the 

method did not guarantee a proper performance. 

Emrich et al. [12,13] have presented an effective 

criterion for detecting NzNN, and proposed a 

heuristic method to report NzNN but their method 

did not guarantee any performance in the worst 

case. 

Beside the region-based models used for 

modelling uncertainty, other models have been 

proposed as well. Davoodi et al. [14] have 

introduced a generalization of the region-based 

models —called the  -geometry model— for 

handling a dynamic form of imprecision that 

allows the precision changes in the input data of 

the geometric problems. They have also studied 

the problems of proximity, bounding box, and 

orthogonal range searching under this model [14, 

15]. Meyers et al. [16] have introduced a new 

model called the linear parametric geometric 

uncertainty model (LPGUM), and have proposed 

algorithms to find the closest and farthest pairs 

and range searching under LPGUM [17].  

In some real applications, it is useful to report NN 

with the highest probability. Yuen et al. [18] have 

studied the superseding NN search on uncertain 

spatial databases, i.e. finding the data with the 

highest probability to be NN of the query. They 

have shown that sometimes no object is able to 

supersede NN, and proposed an 
2( )O n  time 

algorithm to find the superseding set. Beskales 

[19] has considered finding the top k probable 
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NN, and has presented I/O efficient algorithms to 

retrieve them and extended algorithms to support 

the threshold queries. Cheema [20] has formalized 

the probabilistic reverse NN, and has proposed an 

efficient branch and prune algorithm, and 

retrieved uncertain data that has a probability 

more than a given threshold. In the reverse NN 

problem, the goal is to find all the data points 

whose NNs are a given query point. Xiang [21] 

has focused on another important query-based 

problem, namely, probabilistic group nearest 

neighbor (PGNN) query. The goal is specifically 

given a set Q of query points; a PGNN query 

retrieves data objects that minimize the aggregate 

distance (e.g. sum, min, and max) to Q. He has 

proposed effective pruning methods to reduce the 

PGNN search space, and has considered extensive 

experiments to demonstrate the efficiency of the 

method. 

In this work, we studied NN searching for 

uncertain query and uncertain data, and proposed 

efficient algorithms to find NzNNs. In section 

two, we propose an algorithm for certain data and 

uncertain query when they are modeled by distinct 

parallel unit segments. Our algorithm works under 

Manhattan metric in the (log )O n k  query time 

with the ( log )O n n  pre-processing time and 

space, where k is the output size. Wang et al. [13] 

have shown that if the data is certain and the 

query has m possible locations, the k-NNs can be 

reported in the 
2( log ( )log )O m m k m n   time 

using the ( log loglog )O n n n   space. For 1m  , 

our algorithm outperforms in both the pre-

processing space and the query time. In section 

three, we propose an (log )O n k  query time 

algorithm with 
2 2( ( ))O n n  pre-possessing time 

and space for uncertain data and uncertain query, 

where (.)  is the inverse of the Ackermann’s 

function. Our algorithm guarantees the 

performance in the worst case, and if the query is 

exact, it uses less space than the PVD method that 

uses a 
3( )n   space. In section four, for uncertain 

data and uncertain query, we propose an 

approximation algorithm with the maximum error 

of the query length. Finally, we draw conclusions, 

and suggest future works in this area. 

 

2. NN searching for certain data and uncertain 

query 

Let 1{ ,..., }np p p  be a set of n points in the 

plane. For a given uncertain query point q 

modeled by an axis-aligned parallel segment, the 

goal is to report NzNN under Manhattan metric. 

This means that if point p is reported, there exists 

an instance of the query like q' whose NN is p. A 

popular method —called the Minmax method 

[18]— reports such a nearest data by computing 

the minimum distance among all the farthest 

instances of any data. In other words,    is NzNN 

of a certain query point q if: 

     :   , , ,        1j min i max jp P d p q d p q    

 

where, min (.,.)d  and max (.,.)d  denote, respectively, 

the minimum and maximum possible distances 

between two objects. If q is an uncertain query 

point (e.g. modeled by a segment), the Minmax 

method may report incorrect nearest data because 

different instances of q can be selected. Figure 2 

shows an example of two data points a and b and 

an uncertain query point q. The bisector of a and b 

is shown by abB . It is easy to see that all points 

above     (including all instances of q, especially 

its end-points    and    ) are closer to a than to b. 

Thus b does not have any chance to be NN of q. 

However, if we use the Minmax method, b will be 

reported as an NzNN. Hence, we define the 

following definition for reporting NzNN. Point pi 

is NzNN of q if and only if 

     

an instance   of    such that     

                 :   , ,       2j i j

q q

p P d p q d p q



 



  
  

 
Figure 2. b is not NzNN of q, although it is reported in 

case that Minmax method is applied. 

Therefore, to handle the problem, we construct the 

Manhattan Voronoi diagram in the pre-processing 

phase. It consists of four different line slopes 

(horizontal, vertical, and the lines with slopes 
4

    

and 3
4

 ). A set of lines or segments are said to 

be c-oriented if all of them are parallel to at most 

c possible orientations. The edges of the 

Manhattan Voronoi diagram are 4-oriented. We 

use the following theorem to detect NzNN. 

Theorem 1 Point      is NzNN of a given 

query point q if and only if q intersects the 

Voronoi cell of      
Proof. Suppose that point    is NzNN of q. Thus 

there exists an instance of q like q' such that it is 

nearest to    among all points of P. This includes 

'q lies in the Voronoi cell of ip , and 
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consequently, q intersects the Voronoi cell of ip . 

Conversely, let q' be an instance of q located in 

the Voronoi cell of ip . By the definition of the 

Voronoi cell, we have: 

   , ' , ,  for  1, , .,  .i jd p q d p q j n i j      

Thus based on Eq. (2), point    is NzNN of q. 

                  ■ 

Therefore, we can conclude this section by the 

following theorem. 

Theorem 2 Let  1, , nP p p   be a set of n 

points in the plane, and the query is an uncertain 

point modeled by an axis-aligned parallel 

segment. Then NzNN of q can be reported in 

(log )O n k time using the ( log )O n n  pre-

processing time, where k is the size of the output. 

Proof. Based on theorem 1, for finding NzNNs, it 

is sufficient to find the Voronoi cell(s) containing 

q. Therefore, using the two end-points of q, we 

can perform two standard point locations over the 

Voronoi cells in the (log )O n  time, and report the 

two cells containing the endpoints —called 1vc   

and 2vc . (In the case where both end-points of q 

lie on the same cell, the problem is easily solved 

because the Voronoi cells are convex.) In 

addition, since q is a segment, it intersects the 

cells between 1vc  and 2vc , and should report all 

of them. To this end, we have 4-oriented segment 

intersection searching because edges of the 

Manhattan Voronoi diagram are 4-oriented, and 

we can report NzNN in the (log )O n k  time 

using the ( log )O n n  pre-processing time [22, 23].    

                                          

3. NN searching for uncertain data and 

uncertain query 
In this section, we consider the case where both 

the query and the data are uncertain, and we 

propose an efficient algorithm to find NzNNs. Let 

 1, , nP p p   be a set of n uncertain points 

modeled by unit segments parallel to the x-axis 

(called x-parallel) whose projections onto the x-

axis do not intersect each other. Using Eq. (2) for 

an uncertain query point q modeled by a unit x-

parallel segment, we first present a method to 

detect NzNNs. 

 

3.1. Detecting non-zero NNs 

Let  1 2,q q  be the end-points of a given uncertain 

query point q, and  ',i ie e  be the end-points of 

ip P  for 1,  2, ,i n   . The maximum distance 

between ip and a point 2p R  occurs on the end-

points, and can be computed using the following 

equation (see Figure 3).  

        ', max , , , .     3max i i id p p d e p d e p  

 
Figure 3. Maximum distance between point p and 

uncertain point 
ip . 

In order to detect NzNNs, we use the following 

method. Consider    as a certain query point, and 

apply the Minmax method [18]. Let 

 1 1, , nM d d   be a set of maximum distances 

between 1q  and ip P  for 1, ,i n   (e.g.

 1,max id q p ). Set 1 1  i n im min d  , and let 

1mindata  be some uncertain point in which

 1 1 1,maxd mindata q m .  

We assume a diamond (a disk under Manhattan 

metric) centered at 1q  with radius 1 m . We denote 

such a diamond by 1Mq . Similarly, we assume 

2Mq  using 2mindata  and 2q  (see Figure 4). 

From the geometric viewpoint, these diamonds 

correspond to the Minmax method when the query 

lies on 1q  or 2q  [8]. 

  

 
Figure 4. Diamonds 

1 Mq  and 
2 Mq . 

 

Observation 1 There is no uncertain point that 

lies completely in 1Mq   ( 2Mq ), except 1Mindata   

( 2Mindata ). 

Indeed, existing of an uncertain point that lies 

completely in 1Mq  ( 2Mq ) contradicts with the 

definition for 1Mq  ( 2Mq ). The following lemma 

states that any uncertain point intersecting 1Mq (

2Mq ) should be reported as NNzN. 

Lemma 1 For an uncertain query point q with 

end-points  1 2,q q , every uncertain point p P  

that intersects 1Mq  2Mq  is a NzNN of q. 
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Proof. Let se be the end-point of p that lies in 1Mq

. We show that there is an instance q   of q where 

   , ,min max id p q d p q  for all ,  1, ,ip P i n    

and ip p . To this end, we construct a 

placement such that p is a NzNN of q. For any 

segment (an uncertain point) that intersects 1Mq , 

we choose the end-point that lies outside 1Mq  for 

1mindata  , we choose the end-point that lies on 

the boundary of 1Mq  and finally, for p and q, we 

choose se   and 1q   as the instances (see Figure 5). 

By the definition for 1Mq  , we have the following 

equation: 

     1 1, ,     for  1, ,       4s max id e q d p q i n     

Thus based on Eq. (2), it can be concluded that p 

is a NzNN of q. 

              

 

 
Figure 5. Suitable placement of uncertain points 

mentioned in proof of lemma 1. 

In order to obtain all NNzNs, we should consider 

all instances of the query that lie between 1q   and

2q . By lemma 1, it is clear that the uncertain 

points intersecting 1Mq  or 2Mq  are NzNN of q. 

Furthermore, we need to take into account the 

points that do not have any intersection with     

(and 2Mq ). 

We say that ip P  prunes jp P  with respect 

to an uncertain query q, if 

   , ' , 'max i min jd p q d p q   for all instances    of 

q. We consider all uncertain points that lie outside 

1Mq  and 1Mq  that 1mindata  and 2mindata  

cannot prune them, and define the critical regions 

C to remove such uncertain points (see Figure 6). 

 

   

   

2

1

2

{  |  ,

,  &  ,

,  : of                            5

min

max min

max

C p R d p q

d mindata q d p q

d mindata q q q

 





 

  

  

 
Figure 5. Critical regions with respect to          and 

        . 

In order to compute the critical regions C, we 

consider four lines passing through the edges of 

the diamonds 1Mq   and 2Mq   (see Figure 7). We 

can construct C by extending the edges for     

and 2Mq  and finding the intersection points. For 

example, as shown in figure 7, the critical region 

that lies above q can be computed by the 

intersection of lines Lu  and Ru  of 1Mq  and 

2Mq .  

 

 
Figure 6. Definition of critical regions C by lines passing 

through edges of a diamond. 

Since, in this section, we assume that the 

segments are unit, 1Mq  and 2Mq  overlap, thus 

we have two similar critical regions above and 

below q. Considering the above one, let uv be the 

top-most point of the critical region, and dv  be 

the intersection point of 1Mq  and 2Mq . Assume 

two horizontal lines    and    passing through 
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uv  and dv , respectively. Figure 8 shows these 

notations. 

 
Figure 7. Definitions for 

uh  and 
dh . 

 

Lemma 2 The distance between uh  and dh  

(introduced above) is at most L, where L is the 

query length.  

Proof. Without a loss of generality, we assume 

that 1Mq  is smaller than 2Mq . Let   be the 

maximum distance of 1mindata
 

from 2q . We 

construct a diamond centered at    with radius  , 

and denote it by 1Maxq . The distance between 

1Mq  and 1Maxq  is L , which is the sum of the 

two segments a and b (a b L  ) (see Figure 9). 

The two gray triangles are similar because their 

angles are equal. It is clear that 2 1e e , and by 

similarity of the triangles, it can be concluded that 

c a . Therefore, b c L  , and the proof is 

complete.                                                                              

Corollary 2 If 1Mq  and 2Mq  are disjoint, the 

distance between uh  and the line passing through 

q is at most L, where L is the length of q. 

Considering figure 10, the proof of the corollary is 

similar to the proof of lemma 2. 

 

 
Figure 8. Definition of 

1Maxq , a, b, and c used in proof of 

lemma 2. 

Theorem 6 Let P be a set of disjoint unit 

segments as uncertain data. For a given uncertain 

query point q modeled by an x-parallel segment 

with length L, the segments intersecting the 

critical regions (see Eq. (5)) are NzNN of q. 

Proof. Suppose that the critical regions above and 

below q are denoted by 1c  and 2c , and 

,i jp p P  intersect 1c  and 2c , respectively. 

Since all the segments are unit, there is no 

uncertain point that lies completely on 1c  or 2c . 

Thus we need to show that jp  does not prune ip . 

Suppose that both ip  and jp  intersect 1c . We 

choose the end-point of ip that lies in 1c  as its 

instance. Let p be the intersection of the segment 

perpendicular to q from the instance. We have the 

following equations under Manhattan metric (see 

Figure 11). 

 ,max j j jd p p h v  , 

 ,min i id p p v . 

 

 
Figure 9. Distance between 

uh  and query. 

Assume, to the contrary, that jp  prunes ip . Since 

ip  lies above jp , j iv v  and i jv v v   for 

some 0v  . According to lemma 2, we know that 

v L  and 
jh L (note that members of p do not 

overlap). Thus we have: 

,jh L h   for some 0h  . 

If ip  is pruned by jp , we have the following 

equation: 

j j ih v v L h v     , 

 
Figure 10 Minimum and maximum distances of 

ip and 

jp from p. 
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which is a contradiction to v L . If ip  intersects

1c , and jp  intersects 2c , we can get symmetry of  

ip  with respect to q, and similarly, prove that jp  

cannot prune ip  (see Figure 12).   

 

3.2. Reporting non-zero NNs 

By the argument in Section 3.1 we must report all 

the uncertain points that intersect 1Mq , 2Mq or 

the critical regions as NzNN, so we need to 

compute diamonds 1Mq  and 2Mq  to find the 

critical regions.  

 

Figure 11. Symmetry of  
ip with respect to query point q. 

It is clear that 
1 1  i n im min d  is a lower envelope 

of  1 1, , nM d d  , where id  is the maximum 

distance between 1q  and ip P . The projection 

of id  onto the xy-plane is the farthest point 

Voronoi diagram of ip . Therefore, the xy-

projection of the graph of the function 1m  is a 

planar sub-division with   2 2O n n  vertices, and 

it can be computed in the 2( log )O n n pre-

processing time, where  .  is the extremely slow 

growing functional inverse of the Ackermann’s 

function [8,24]. Thus by pre-processing the 

projection of 1m  ( 2m ) onto the point location 

queries, we can perform two standard point 

locations for 1q  and 2q , and compute 1Mq  and 

2Mq  in the (log )O n  time [6]. By theorem 6 and 

lemma 1, we need to report all the segments that 

intersect 1Mq , 2Mq  or the critical regions. Since 

1 2,Mq Mq , and the critical regions construct a 4-

oriented set, we can report such segments in the 

 logO n k  time using the ( log )O n n  space, 

where k is the output size [22,23]. Therefore, we 

can conclude this section by the following 

theorem. 

Theorem 3. Let  1, , nP p p   be a set of n 

uncertain points modeled by unit x-parallel 

segments that do not intersect each other. Then for 

any uncertain query modeled by an x-parallel 

segment, we can report NzNNs in the 

 logO n k  time using the   2 2O n n space, 

where k is the output size. 

 

4. Approximation algorithm for NN searching 

for uncertain data and uncertain query 

Let  1, , nP p p   be a set of n uncertain points 

modeled by arbitrary x-parallel segments. Then 

the segments that intersect the defined critical 

region C in Eq. (5) may prune each other. In this 

case, we report all the segments intersecting

1 2,Mq Mq , and C. For such NN reporting, we 

claim that the maximum error is L, where L is the 

query length. This error means that if jp  prunes 

ip  and we move ip   towards q at most L (under 

Manhattan metric), there is no segment that 

prunes ip  any more. 

Lemma 3. An uncertain point ip P  intersecting 

the critical region C is a NzNN of query q with 

maximum error L, where L is the length of q. 

Proof. Assume that    is pruned by some points in 

C. The goal is to show that if we move  ip  

towards q at most L (under Manhattan metric), 

there is no segment that prunes   . If 1Mq  and 

2Mq  overlap, according to lemma 2, the 

maximum distance between ip  and 1Mq  (or 

2Mq ) is L, and by moving    towards q at most L, 

it intersects 1Mq  (or 2Mq ), and the goal is 

achieved. If 1Mq  and 2Mq  are disjoint, by 

corollary 2, the maximum distance between ip  

and q is L, and by moving ip  towards q at most L, 

ip intersects with q, and the proof is complete. 

The approximation factor L for the mentioned 

approach is tight. When sizes of 1Mq  and 2Mq  

are equal, the amount of error is exactly L. See 

figure 12 as such a tight example. 

 
Figure 12. Maximum length for approximation factor. 
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5. Conclusions and future work 
In this paper, we considered the nearest neighbor 

(NN) searching problem under uncertainty, and 

proposed algorithms for its variations under 

Manhattan metric. For the uncertain query and 

certain data points, we proposed an efficient 

algorithm that reported non-zero NNs in the 

( log )O n n  space and  logO n k  time, where k 

is the output size. For the uncertain query and 

uncertain points modeled by unit segments, we 

proposed an efficient algorithm that reported non-

zero NNs in the   2 2O n n  space and the 

 logO n k  time. For the uncertain query and 

uncertain points modeled by segments with 

arbitrarily length, we proposed an approximation 

algorithm that reported non-zero NNs with the 

maximum error L in the   2 2O n n  space and 

the  logO n k  time, where L is the query 

length. As a future work, if the data and query are 

uncertain and the goal is to report non-zero NNs 

under Euclidean metric, instead of the constructed 

diamonds explained in section three, we should 

compute disks and the critical regions whose 

boundaries are defined by some algebraic 

equations. Thus we need to design an efficient 

algorithm for detecting intersection of geometric 

objects with algebraic equations. 

 

References 
[1] Löffler, M. & Snoeyink, J. (2010). Delaunay 

triangulation of imprecise points in linear time after 

preprocessing. Computional. Geometry Theory and 

Application, vol. 43, no. 3, pp. 234–242. 
  

[2] Ostrovsky-Berman, Y. & Joskowicz, L. (2005). 

Tolerance envelopes of planar mechanical parts with 

parametric tolerances. Computer Aided Design, vol. 

37, no 5: pp. 531–544. 
 

[3] Khoshdel, V. &  Akbarzadeh, A. R (2016). 

Application of statistical techniques and artificial 

neural network to estimate force from sEMG signals. 

Journal of Artificial Intelligence & Data Mining. vol. 4, 

no. 2, pp. 135-141. 
 

[4] Löffler, M. (2009). Data imprecision in 

computational geometry, PhD Thesis. Department of 

computer science. University Utrecht. 
 

[5] Khanban, A. A. (2005). Basic algorithms of 

computational geometry with imprecise input. PhD 

Thesis. Department of computing imperial college, 

University of London. 
 

[6] de Berg, M., Cheong, O., Van Kreveld, M. & 

Overmars, M. (2008). Computational geometry 

algorithms and applications, third edition, Berlin 

Heidelberg: Springer-Verlag. 
 

[7] Sember, J. & Evans, W. (2008). Guaranteed 

voronoi diagrams of uncertain sites. 20th Canadian 

Conference on Computational Geometry, Montreal, 

Canada, 2008. 
 

[8] P.K. Agarwal, et al. (2013). Nearest neighbor 

searching under uncertainty II. 32th symposium on 

Principles of database systems. New York, USA, 2013. 
 

[9] Zhang, W. (2012). Nearest neighbor searching 

under uncertainty, PhD Thesis. Duke University. 
 

[10] Cheng, R., Kalashnikov, D. & Prabhakar, S. 

(2004). Querying imprecise data in moving object 

environments. IEEE Transactions on Knowledge and 

Data Engineering, vol. 16, pp.1112 – 1127. 
 

[11] Zhang, P., Cheng, R., Mamoulis, N., Renz, M., 

Zufile, A., Tang, Y. & Emrich, T. (2013). Voronoi-

based nearest neighbor search for multi-dimensional 

uncertain databases. 29th International Conference on 

Data Engineering , Brisbane, Australia, 2013. 

 

[12] Emrich, T., et al. (2010). Boosting spatial pruning: 

on optimal pruning of MBRs. 40th International 

Conference on Management of data, Indiana, USA 

,2010. 
 

[13] Wang, H. & Zhang, W. (2014). L1 Top-k Nearest 

Neighbor Searching with Uncertain Queries. 

Proceedings of the VLDB Endowment, vol. 8, no. 1, 

pp. 13-24. 
 

[14] Davoodi, M., Modades, A., Sheikhi, F. & 

Khanteimouri, P. (2015). Data imprecision under  -

geometry model. Information Sciences, vol. 295, pp. 

126–144. 
 

[15] Davoodi, M. & Mohades, A. (2013). Data 

Imprecision under  -geometry: range searching 

problem. Scientia Iranica, vol. 20 , no.3, pp. 663–669. 

 

[16] Myers, Y. & Joskowicz, L. (2010). Point distance 

and orthogonal range problems with dependent 

geometric uncertainties. 14th Symposium on Solid and 

Physical Modeling, New York, USA, 2010. 
 

[17] Joskowicz, L., Ostrovsky-Berman, Y. & Myers, 

Y. (2010). Efficient representation and computation of 

geometric uncertainty: the linear parametric model. 

Precision Engineering, vol. 34, no. 1, pp. 2–6. 
 

[18] Yuen, S., et al. (2010). Superseding nearest 

neighbor search on uncertain spatial databases. IEEE 

Transactions on Knowledge and Data Engineering, vol. 

22, no. 7, pp.1041-1055. 
 

[19] Beskales, G., Soliman, M. & Ilyas, I. 

(2008).Efficient search for the top-k probable nearest 

neighbors in uncertain databases. Proceedings of the 

VLDB Endowment, vol. 1, no. 1, pp. 326-339. 
 

[20] Cheema, M., et al. (2010). Probabilistic reverse 

nearest neighbor queries on uncertain data. IEEE 

Transactions on Knowledge and Data Engineering, vol. 

22, no. 4, pp. 550-564. 

http://jad.shahroodut.ac.ir/?_action=article&au=9838&_au=A.+R++Akbarzadeh
http://jad.shahroodut.ac.ir/issue_84_97_Volume+4%2C+Issue+2%2C+Summer++and+Autumn+2016%2C+Page+125-251.html
http://jad.shahroodut.ac.ir/issue_84_97_Volume+4%2C+Issue+2%2C+Summer++and+Autumn+2016%2C+Page+125-251.html


Mesrikhani & Dvoodi/ Journal of AI and Data Mining, Vol 5, No 1, 2017. 
 

109 

 

[21] Xiang, L. & Chen, L. (2008). Probabilistic group 

nearest neighbor queries in uncertain databases. IEEE 

Transactions on Knowledge and Data Engineering, vol. 

20, no. 6, pp. 809-824. 
 

[22] Tan, X., Hirata, T. & Inagaki, Y. (1991). The 

intersection searching problem for c-oriented polygons. 

Information Processing Letters, vol. 37, no.4, pp. 201–

204. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

[23] Güting, R. H. (1984). Dynamic c-oriented 

polygonal intersection searching. Information and 

control, vol. 63, no. 3, pp.143–163. 
 

[24] Huttenlocher, D. P., Kedem, K., & Sharir, M. 

(1993). Discrete & Computational Geometry, vol. 9, 

no.3, pp. 267-291. 
 

 



 

 

 

 نشریه هوش مصنوعی و داده کاوی

 

 

 

 نزدیکترین همسایه غیرصفر احتمالی

 

 منفرد منصور داودی و *خانیامیر مصری

 .زنجان، ایران-انشگاه تحصیلات تکمیلی علوم پایهد، دانشکده علوم رایانه و فناوری اطلاعات

 07/40/7402 ؛ پذیرش72/40/7402 ارسال

 چکیده:

کهایی، شخهص ا او هو ی ههدسهه مااسهباشی رهه  هور  ها است کهه در داده، یکی از مسائل مهم در مدیریت داده(NN)جستجوی نزدیکترین همسایه 

یجو داده شهده رهه  هور  کهارا اسهت. در رسه اری از ، گزارش نزدیکترین داده نسبت ره پرسNNهدف در مسئله  گسترده مورد مطاوعه قراگرفته است.

ی  GISیهاری، ههای یاقعهی مانههد ردیهاری، مکا یجو دق ق فرض شده است، در حهاوی کهه در رسه اری از کاررردها ی پرسهای  ور  گرفته دادهپژیهش

اسهت  -نزدیکترین همسایه غ ر فر-ایهها، گزارش دادحلرهارراین در چه ن موقع تی یکی از راهد. یجو نادق ق راشهها ی پرسکایی ممکن است دادهداده

راشد که رهه  هور  نهواحی ههدسهی  غ رقطعینقطه  𝑛شامل  Pفرض که د  شده راشد. یجو دادهکه را احتمال رزرگتر از  فر، نزدیکترین همسایه پرس

های مهوازی خطیجو نادق ق راشد که ره  ور  پارهها دق ق ی پرسایم. اگر دادهمصتلفی از مسئله را رررسی کرده هایدر این مقاوه ما حاوت اند.مدل شده

O(nپهردازش ایم که را زمها  پ شها مدل شده راشد، ما او وریتمی کارایی ارائه کردهماور log n)  در زمها ،O(log n + k) های نزدیکتهرین همسهایه

مهدل  ههاx  ههای یاحهد مهوازی ماهورخطیجو نادق ق راشهد که رهه  هور  پارهها ی پرساگر دادهاندازه خریجی است.  𝑘کهد که غ ر فر را گزارش می

𝑂(log، در زمها  𝑂(𝑛2𝛼(𝑛2))پهردازش اند، او وریتمی کارایی ارائه شده است که شات متهر مهههتن ی زمها  پ ششده 𝑛 + 𝑘)  نزدکتهرین همسهایه

.)𝛼کهد که غ ر فر را گزارش می های را انهدازه دوصهواه مهوازی خطاوعاده پای هی دارد. در نهایت ررای پارهشارع معکوس آکرمن است ی سرعت رشد فوق (

𝑂(𝑙𝑜𝑔ی در زمها   𝑂(𝑛2𝛼(𝑛2)) پهردازشایم که نزدیکترین همسهاایه غ ر هفر را رها زمها  پ شها، ما او وریتمی شقریبی ارائه کرده xماور  𝑛 + 𝑘) 

 یجو است.اندازه پرس 𝐿کهد که گزارش می 𝐿های غ ر فر را را خطای همسایه نزدیکترین

 .قطع ت، عدم دقت، احتمال غ ر فرجستجوی نزدیکترین همسایه، عدم :کلمات کلیدی

 


