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Abstract

Nearest neighbor (NN) searching is a challenging problem in data management, and has been widely studied
in data mining, pattern recognition, and computational geometry. The goal of NN searching is an efficient
report of the data nearest to a given object as a query. In most studies, both the data and the query are
assumed to be precise. However, due to the real applications of NN searching such as the tracking and
locating services, GIS, and data mining, it is possible for both the data and the query to be imprecise. In such
situations, a natural way to handle the issue is to report the data that has a non-zero probability (called the
non-zero NN) as the NN of a given query. Formally, let P be a set of n uncertain points modeled by some
regions. We first consider the following variation in an NN searching problem under uncertainty. If the data
is certain and the query is an uncertain point modeled by an axis-aligned parallel segment, we propose an
efficient algorithm in O(nlogn) pre-processing and O (logn +k) query time, where k is the number of

non-zero NNs. If both the query and the data are uncertain points modeled by distinct unit segments parallel
to the x-axis, we propose an efficient algorithm that reports the non-zero NNs under Manhattan metric in

O (n®a(n?)) pre-processing and O(logn +k) query time, where «(.) is the extremely slow growing

functional inverse of the Ackermann function. Finally, for the arbitrarily length segments parallel to the x-
axis, we propose an approximation algorithm that reports a non-zero NN with a maximum error L in

O (n*a(n?)) pre-processing and O (logn +k) query time, where L is the query length.

Keywords: Nearest Neighbor Searching, Uncertainty, Imprecision, Non-zero Probability.

1. Introduction

Nearest Neighbor (NN) searching, which is a
classic problem in computational geometry, has
many applications in robot path planning, facility
location, data mining, target tracking, and
geographic information systems. In this problem,
the goal is the proper pre-processing of a set of n
data points in order to report efficiently the data
nearest to a given query point. Due to several
reasons such as noise, security issues, limited
computations, and limited precision of measuring
devices, gathering and analyzing real data come
with some inevitable errors. Thus the algorithms
that work based on the assumption that the data
(and also computations) are completely precise
fail in face with such a real input [1, 2]. For
example, in facial recognition systems, we need to
identify a person using some features in a
database containing original face images. Due to

the nature of such problems, extracting the
features from the original faces (in different
positions or video frames), and also the query
features are uncertain, and, therefore, the query
does not match exactly to one of the original ones,
and consequently, it should be handled under
uncertainty circumstances [3]. One geometric
approach implemented to smooth such uncertainty
issues is to consider a tolerance for data, e.g.
considering a region —called the uncertainty
region— like a segment, a rectangle or a disk
instead of an uncertain point [4, 5]. Thus an
uncertain region is a region containing all the
instances of an imprecise point. Therefore, since
the distance between two imprecise points is not
defined precisely, different cases may happen. In
fact, the distance between two imprecise points
can be defined as the distance between any
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selected instances from their uncertainty region,
especially, the instances resulting in minimum and
maximum distances. Such instances can be useful
in applications for obtaining the worst and best
cases of a solution under imperfect information or
uncertain circumstances.

1.1. Problem definition

One way to consider NN searching under
uncertainty is to report the data that has a non-
zero probability to be an NN of a given query [8].
It means that there is at least one placement of
instances of uncertain regions such that the
reported data is NN of the query. Let
P ={p,,...p,} be a set of n uncertain points in a

plane whose uncertainty regions are modeled by n
regions, e.g. segments. (In this case, we assume
that the data has some error only in one direction.)
The uncertainty region of p; € P is the set of all
possible points (instances) in which p; is located.
For a query point g, we aim to report all points in
P that have a non-zero probability to be the NN of
q —called non-zero NN, denoted by NzNN. That
means that when an uncertain point p is reported,
there is a choice of points (called a placement)
exactly one instance from each uncertainty region
such that the instance of p is the nearest instance
to g among all instances. Note that it is possible
that g is also an uncertain point. Thus in this case,
there is a placement of p and an instance of q like
g' such that the instance of p is the nearest
instance to ' among all instances (see Figure 1).

P2
P1

Pa

Ps P3

Figure 1. {p;,p,.,Ps} are non-zero NN of uncertain query
q.

1.2. Previous work

Under the assumption that the data is precise, a
simple and efficient method can be used to find
that NN is a decomposing workspace using the
Voronoi diagram of the data points in the
O(nlogn) time. Thus in the query phase for a
given query point g, it is sufficient to report NN in
the O(logn) time by locating g in the Voronoi
regions and reporting the corresponding data [6].
For uncertain points and certain query, the
original VVoronoi diagram has been extended to
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the non-zero probabilistic Voronoi diagram
(PVD) [7, 8]. Each cell in PVD contains the points
that have non-zero probability to be the NN of the
corresponding data. Sember et al. [7] have shown
the worst case complexity of PVD for uncertain

points modeled by disks is O (n*) but they did not

compute any lower bound for its complexity.
Agarwal et al. [8] have shown that if the query is
certain and the points are uncertain regions
modeled by disks, PVD can be built in the 8(n®)

time. Hence, it is possible to report NzZNN in the
O(logn +k) time, where k is the number of

possible non-zero probability points. Also by
applying the expected distance between the
uncertain points, the problem can be solved in the
O(logn) time using the O(n) space and the
O(nlogn +nm) preprocessing time, where m is

the number of possible values in the data [9].
Cheng et al. [10] have introduced a method based
on branch and prune on the R-tree. Further, Zhang
et al. [11] have shown that in d-dimensional, there
is no polynomial algorithm to compute PVD, and
they combined PVD and R-tree to propose a
heuristic method to report NzNN. However, the
method did not guarantee a proper performance.
Emrich et al. [12,13] have presented an effective
criterion for detecting NzNN, and proposed a
heuristic method to report NzZNN but their method
did not guarantee any performance in the worst
case.

Beside the region-based models used for
modelling uncertainty, other models have been
proposed as well. Davoodi et al. [14] have
introduced a generalization of the region-based
models —called the A-geometry model— for
handling a dynamic form of imprecision that
allows the precision changes in the input data of
the geometric problems. They have also studied
the problems of proximity, bounding box, and
orthogonal range searching under this model [14,
15]. Meyers et al. [16] have introduced a new
model called the linear parametric geometric
uncertainty model (LPGUM), and have proposed
algorithms to find the closest and farthest pairs
and range searching under LPGUM [17].

In some real applications, it is useful to report NN
with the highest probability. Yuen et al. [18] have
studied the superseding NN search on uncertain
spatial databases, i.e. finding the data with the
highest probability to be NN of the query. They
have shown that sometimes no object is able to

supersede NN, and proposed an O(n?) time

algorithm to find the superseding set. Beskales
[19] has considered finding the top k probable
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NN, and has presented 1/O efficient algorithms to
retrieve them and extended algorithms to support
the threshold queries. Cheema [20] has formalized
the probabilistic reverse NN, and has proposed an
efficient branch and prune algorithm, and
retrieved uncertain data that has a probability
more than a given threshold. In the reverse NN
problem, the goal is to find all the data points
whose NNs are a given query point. Xiang [21]
has focused on another important query-based
problem, namely, probabilistic group nearest
neighbor (PGNN) query. The goal is specifically
given a set Q of query points; a PGNN query
retrieves data objects that minimize the aggregate
distance (e.g. sum, min, and max) to Q. He has
proposed effective pruning methods to reduce the
PGNN search space, and has considered extensive
experiments to demonstrate the efficiency of the
method.

In this work, we studied NN searching for
uncertain query and uncertain data, and proposed
efficient algorithms to find NzNNs. In section
two, we propose an algorithm for certain data and
uncertain query when they are modeled by distinct
parallel unit segments. Our algorithm works under
Manhattan metric in the O (logn +k) query time
with the O(nlogn) pre-processing time and
space, where k is the output size. Wang et al. [13]
have shown that if the data is certain and the
guery has m possible locations, the k-NNs can be
reported in the O(mlogm +(k +m)log®n) time
using the O(nlognloglogn) space. Form =1,
our algorithm outperforms in both the pre-
processing space and the query time. In section
three, we propose an O(logn +k) query time
algorithm with O (na(n?)) pre-possessing time
and space for uncertain data and uncertain query,
where «(.) is the inverse of the Ackermann’s
function.  Our algorithm guarantees the
performance in the worst case, and if the query is
exact, it uses less space than the PVD method that
uses a #(n*) space. In section four, for uncertain
data and uncertain query, we propose an
approximation algorithm with the maximum error
of the query length. Finally, we draw conclusions,
and suggest future works in this area.

2. NN searching for certain data and uncertain
query

Let p={p,,...p,} be a set of n points in the
plane. For a given uncertain query point g
modeled by an axis-aligned parallel segment, the
goal is to report NzZNN under Manhattan metric.
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This means that if point p is reported, there exists
an instance of the query like g' whose NN is p. A
popular method —called the Minmax method
[18]— reports such a nearest data by computing
the minimum distance among all the farthest
instances of any data. In other words, p; is NzZNN
of a certain query point q if:
(2)

vp; €P:dy, (p;.0)<d,, (p;.0),
where, d ;. (.,.) and d,_, (.,.) denote, respectively,
the minimum and maximum possible distances
between two objects. If g is an uncertain query
point (e.g. modeled by a segment), the Minmax
method may report incorrect nearest data because
different instances of q can be selected. Figure 2
shows an example of two data points a and b and
an uncertain query point g. The bisector of aand b
is shown by B . It is easy to see that all points

above B, (including all instances of ¢, especially
its end-points g’ and g~) are closer to a than to b.
Thus b does not have any chance to be NN of g.
However, if we use the Minmax method, b will be
reported as an NzNN. Hence, we define the
following definition for reporting NzNN. Point p;
is NzNN of q if and only if

Jan instanceq’of g such that

vp, eP:d(pi,q')sd(pj,q') (2)

q,- q qu
’P—‘/’,.
, -
a ‘,,’*"- Amax
",
,'dmm
______ 7/______________
Bab /.
be

Figure 2. b is not NzNN of g, although it is reported in
case that Minmax method is applied.

Therefore, to handle the problem, we construct the
Manhattan VVoronoi diagram in the pre-processing
phase. It consists of four different line slopes

(horizontal, vertical, and the lines with slopes %

and 3%). A set of lines or segments are said to

be c-oriented if all of them are parallel to at most
c possible orientations. The edges of the
Manhattan Voronoi diagram are 4-oriented. We
use the following theorem to detect NzNN.

Theorem 1 Point p; € P is NzNN of a given
query point g if and only if g intersects the
Voronoi cell of p;.

Proof. Suppose that point p; is NzZNN of g. Thus
there exists an instance of g like g' such that it is
nearest to p; among all points of P. This includes
q'lies in the Voronoi cell of p,, and
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consequently, q intersects the Voronoi cell of p; .
Conversely, let g be an instance of g located in
the Voronoi cell of p,. By the definition of the
Voronoi cell, we have:
d(p,,q)<d (pj q) forj =1,...n.i#j.
Thus based on Eq. (2), point p; is NzNN of g.

]

Therefore, we can conclude this section by the
following theorem.

Theorem 2 Let P ={p,,...,p,} be a set of n

points in the plane, and the query is an uncertain
point modeled by an axis-aligned parallel
segment. Then NzNN of g can be reported in
O(logn +k)time using the O(nlogn) pre-
processing time, where k is the size of the output.

Proof. Based on theorem 1, for finding NzNNs, it
is sufficient to find the Voronoi cell(s) containing
g. Therefore, using the two end-points of ¢, we
can perform two standard point locations over the
Voronoi cells in the O (logn) time, and report the

two cells containing the endpoints —called vc,

and vc, . (In the case where both end-points of q

lie on the same cell, the problem is easily solved
because the Voronoi cells are convex.) In
addition, since q is a segment, it intersects the
cells between vc, and vc,, and should report all

of them. To this end, we have 4-oriented segment
intersection searching because edges of the
Manhattan Voronoi diagram are 4-oriented, and
we can report NzZNN in the O(logn +k) time

using the O (nlogn) pre-processing time [22, 23].

3. NN searching for uncertain data and
uncertain query

In this section, we consider the case where both
the query and the data are uncertain, and we
propose an efficient algorithm to find NzNNs. Let
P={p,...p,} be a set of n uncertain points
modeled by unit segments parallel to the x-axis
(called x-parallel) whose projections onto the x-
axis do not intersect each other. Using Eq. (2) for
an uncertain query point g modeled by a unit x-
parallel segment, we first present a method to
detect NzNNs.

3.1. Detecting non-zero NNs
Let {q,,q,} be the end-points of a given uncertain
query point g, and {e;.e;| be the end-points of

p, eP fori =1 2,...,n . The maximum distance
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between p, and a point p e R? occurs on the end-
points, and can be computed using the following
equation (see Figure 3).

O (P, P)=max(d (e,,p).d (e, p))- (3)

_______ dmax(PPi)
E p
— o
€ Dj €’

Figure 3. Maximum distance between point p and
uncertain point p, .

In order to detect NzNNs, we use the following
method. Consider g, as a certain query point, and
apply the Minmax method [18]. Let

M,={d,,....d,} be a set of maximum distances
between g, and p,eP for i=1..,n (eg.
doe (0,0 ). Set and let
mindata, be some uncertain point in which
d . (Mindata,,g,)=m,.

We assume a diamond (a disk under Manhattan
metric) centered at ¢, with radius m,. We denote
such a diamond by Maq,. Similarly, we assume
Mg, using mindata, and q, (see Figure 4).
From the geometric viewpoint, these diamonds

correspond to the Minmax method when the query
lieson q, or q, [8].

m, = mm]signdi ,

Figure 4. Diamonds Mg, and Mq, .

Observation 1 There is no uncertain point that
lies completely in Mg, (Mq,), except Mindata,
(Mindata, ).

Indeed, existing of an uncertain point that lies
completely in Mq, (Mq,) contradicts with the

definition for Mg, (Mq,). The following lemma
states that any uncertain point intersecting M, (
Mq, ) should be reported as NNzN.

Lemma 1 For an uncertain query point q with
end-points {q,,q,}, every uncertain point p P

that intersects Mg, (Mg, ) is a NzNN of g.
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Proof. Let e, be the end-point of p that lies in Mq,
. We show that there is an instance g’ of q where
din (P.0")<d, . (p;,0) for allp, eP,i=1...,n
and p,=p. To this end, we construct a

placement such that p is a NzZNN of g. For any
segment (an uncertain point) that intersects Mq,,

we choose the end-point that lies outside Mq, for
mindata, , we choose the end-point that lies on
the boundary of Mg, and finally, for p and q, we
choose e, and g, as the instances (see Figure 5).
By the definition for Mg, , we have the following
equation:

d(e,,q,)<d,, (p;,q,) fori=1...n (4)

Thus based on Eg. (2), it can be concluded that p
isa NzNN of g.

Mindata4
.

Figure 5. Suitable placement of uncertain points
mentioned in proof of lemma 1.

In order to obtain all NNzNs, we should consider
all instances of the query that lie between g, and
q,. By lemma 1, it is clear that the uncertain
points intersecting Mq, or Mq, are NzNN of q.

Furthermore, we need to take into account the
points that do not have any intersection with Mq,

(and Mq,).

We say that p; eP prunes p; eP with respect
to an uncertain query g, if
e (P20 7)<, (p;.0") for all instances g’ of
g. We consider all uncertain points that lie outside
Mg, and Mgq, that mindata, and mindata,

cannot prune them, and define the critical regions
C to remove such uncertain points (see Figure 6).

C :{p € RZ|dmin (plq')
<d . (mindata,,q") &d ;. (p.q")
<d, (Mmindata,,q") : vq'of g

(5)
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Mindata,
v

a4
Mindata,

Figure 5. Critical regions with respect to mindata, and
mindata,.

In order to compute the critical regions C, we
consider four lines passing through the edges of
the diamonds Mq, and Mq, (see Figure 7). We
can construct C by extending the edges for Mg,
and Mq, and finding the intersection points. For
example, as shown in figure 7, the critical region
that lies above q can be computed by the
intersection of lines Lu and Ru of Mg, and

Mg, .

~

P

Ry,» “La
4

Figure 6. Definition of critical regions C by lines passing
through edges of a diamond.

Since, in this section, we assume that the
segments are unit, Mg, and Mq, overlap, thus
we have two similar critical regions above and
below g. Considering the above one, let v, be the
top-most point of the critical region, and v, be
the intersection point of Mg, and Mq,. Assume
two horizontal lines h, and h,; passing through
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v, and v, respectively. Figure 8 shows these

u

notations.

Figure 7. Definitions for h, and h, .

Lemma 2 The distance between h, and h,

(introduced above) is at most L, where L is the
query length.
Proof. Without a loss of generality, we assume

that Mq, is smaller than Mq,. Let & be the
maximum distance of mindata, from q,. We
construct a diamond centered at g, with radius ¢,
and denote it by Maxq,. The distance between
Mg, and Maxq, is L, which is the sum of the
two segments a and b (a+b =L ) (see Figure 9).
The two gray triangles are similar because their
angles are equal. It is clear that e, <e,, and by
similarity of the triangles, it can be concluded that
c<a. Therefore, b+c<L, and the proof is
complete.

Corollary 2 If Mg, and Mq, are disjoint, the

distance between h, and the line passing through

g is at most L, where L is the length of g.
Considering figure 10, the proof of the corollary is
similar to the proof of lemma 2.

Maxqy™,
.

Figure 8. Definition of Maxq, , &, b, and c used in proof of
lemma 2.
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Theorem 6 Let P be a set of disjoint unit
segments as uncertain data. For a given uncertain
query point g modeled by an x-parallel segment
with length L, the segments intersecting the
critical regions (see Eq. (5)) are NzNN of g.

Proof. Suppose that the critical regions above and
below q are denoted by c, and c,, and

p;,p; P intersect ¢, and c,, respectively.

Since all the segments are unit, there is no
uncertain point that lies completely on ¢, or c,.

Thus we need to show that p; does not prune p; .
Suppose that both p; and p; intersect c,. We

choose the end-point of p; that lies in ¢, as its

instance. Let p be the intersection of the segment
perpendicular to g from the instance. We have the
following equations under Manhattan metric (see
Figure 11).

dmax(pj,p)zhj Vo
dmin(pi1p)zvi '

Figure 9. Distance between h, and query.
Assume, to the contrary, that p; prunes p; . Since
p, lies above p;, v, <v; and v, =v, +v for

some v >0 . According to lemma 2, we know that
v <L and h, >L (note that members of p do not

overlap). Thus we have:
h, =L +h, forsome h >0.

If p, is pruned by p;, we have the following

equation:
hj V<V, —L+h<v,

Figure 10 Minimum and maximum distances of p, and
p; fromp.



Mesrikhani & Dvoodi/ Journal of Al and Data Mining, Vol 5, No 1, 2017.

which is a contradiction to v <L . If p, intersects
c,,and p; intersects c,, we can get symmetry of

p; with respect to g, and similarly, prove that p,
cannot prune p, (see Figure 12).

3.2. Reporting non-zero NNs
By the argument in Section 3.1 we must report all

the uncertain points that intersect Mq,, Mq,or
the critical regions as NzNN, so we need to
compute diamonds Mg, and Mq, to find the
critical regions.

Figure 11. Symmetry of p, with respect to query point q.

It is clear that m, =min,,_.d, is a lower envelope
of M,={d,,....d,}, where d; is the maximum
distance between g, and p, P . The projection
of d, onto the xy-plane is the farthest point
Voronoi diagram of p,. Therefore, the xy-
projection of the graph of the function m, is a
planar sub-division with o(nza(nz)) vertices, and

it can be computed in the O(n?logn) pre-
processing time, where a(.) is the extremely slow
growing functional inverse of the Ackermann’s
function [8,24]. Thus by pre-processing the
projection of m, (m,) onto the point location
gueries, we can perform two standard point
locations for g, and q,, and compute Mg, and
Mg, in the O(logn) time [6]. By theorem 6 and
lemma 1, we need to report all the segments that
intersect Mq,, Mq, or the critical regions. Since
Mdq,,Mq,, and the critical regions construct a 4-
oriented set, we can report such segments in the
O(Iogn +k) time using the O(nlogn) space,
where k is the output size [22,23]. Therefore, we

can conclude this section by the following
theorem.

Theorem 3. Let P={p,,...,p,} be a set of n

uncertain points modeled by unit x-parallel
segments that do not intersect each other. Then for
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any uncertain query modeled by an x-parallel
segment, we can report NzNNs in the

O(logn+k) time using the o(nza(nZ))space,
where K is the output size.

4. Approximation algorithm for NN searching
for uncertain data and uncertain query

Let P={p,,...,p,} be asetof n uncertain points

modeled by arbitrary x-parallel segments. Then
the segments that intersect the defined critical
region C in Eqg. (5) may prune each other. In this
case, we report all the segments intersecting
Mq,,Mq,, and C. For such NN reporting, we
claim that the maximum error is L, where L is the
query length. This error means that if p; prunes

p, and we move p, towards g at most L (under
Manhattan metric), there is no segment that
prunes p; any more.

Lemma 3. An uncertain point p, € P intersecting
the critical region C is a NzNN of query g with
maximum error L, where L is the length of g.
Proof. Assume that p; is pruned by some points in
C. The goal is to show that if we move p,
towards q at most L (under Manhattan metric),
there is no segment that prunes p;. If Mq, and
Mg, overlap, according to lemma 2, the
maximum distance between p, and Mgq, (or
Mg, ) is L, and by moving p; towards g at most L,
it intersects Mq, (or Mq,), and the goal is
achieved. If Mg, and Mq, are disjoint, by
corollary 2, the maximum distance between p;
and g is L, and by moving p, towards g at most L,
p, intersects with g, and the proof is complete.
The approximation factor L for the mentioned
approach is tight. When sizes of Mg, and Mq,

are equal, the amount of error is exactly L. See
figure 12 as such a tight example.

Figure 12. Maximum length for approximation factor.
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5. Conclusions and future work

In this paper, we considered the nearest neighbor
(NN) searching problem under uncertainty, and
proposed algorithms for its variations under
Manhattan metric. For the uncertain query and
certain data points, we proposed an efficient
algorithm that reported non-zero NNs in the
O(nlogn) space and O(logn+k ) time, where k

is the output size. For the uncertain query and
uncertain points modeled by unit segments, we
proposed an efficient algorithm that reported non-

zero NNs in the o(nza(nz)) space and the

O (logn+k) time. For the uncertain query and

uncertain points modeled by segments with
arbitrarily length, we proposed an approximation
algorithm that reported non-zero NNs with the

maximum error L in the o(nza(nz)) space and

the O(logn+k) time, where L is the query

length. As a future work, if the data and query are
uncertain and the goal is to report non-zero NNs
under Euclidean metric, instead of the constructed
diamonds explained in section three, we should
compute disks and the critical regions whose
boundaries are defined by some algebraic
equations. Thus we need to design an efficient
algorithm for detecting intersection of geometric
objects with algebraic equations.
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