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Abstract

Uniaxial compressive strength (UCS) and internal friction coefficient (u) are the most important rock
strength parameters. They could be determined by either laboratory tests or empirical correlations.
Sometimes, for many reasons, laboratory analysis is not possible. On the other hand, due to changes in the
rock composition and properties, none of the correlations could be applied as an exact universal one. In such
conditions, the proposed artificial intelligence method could be an appropriate candidate for estimation of the
strength parameters. In this work, the adaptive neuro-fuzzy inference system (ANFIS), which is one of the
artificial intelligence techniques, was used as a dominant tool to predict the strength parameters for one of
the Iranian SW oil fields. A total of 655 datasets (including the depth, compressional wave velocity, and
density data) were used. 436 and 219 datasets were randomly selected among the data for construction and
verification of the proposed intelligent model, respectively.

To evaluate the performance of the model, the root mean square error (RMSE) and correlation coefficient
(R?) values between the reported values for the drilling site and the estimated ones were computed. A
comparison between RMSE for the proposed model and that for the recent intelligence models shows that
the proposed model is more accurate than the others. Acceptable accuracy and using conventional well-
logging data are the highlight advantages of the proposed intelligence model.

Keywords: Uniaxial Compressive Strength, Internal Friction Coefficient, Well-Logging, Adaptive Neuro-
Fuzzy Inference System.

1. Introduction

Uniaxial compressive strength (UCS) and internal
friction coefficient (p) are the most important rock
strength parameters. These parameters have very
high usage in the mechanical and geomechanical
studies of rocks. Specially, in the stress-strain
analysis problems such as wellbore stability, these
parameters are essential. The values for UCS and
[ are determined by either core analysis
(laboratory method) or empirical correlations.
Laboratory methods are very expensive and time-
consuming. In addition, in practice, many
geomechanical problems in reservoirs must be
addressed when core samples are unavailable for
laboratory testing. In fact, core samples of
overburden formations, where many wellbore
instability problems are encountered, are almost
never available for testing [1]. To solve this
problem, a number of empirical relations have

been proposed that relate rock strength to the
parameters measurable with geophysical well logs
[1,2-8]. It should be noticed that each one of these
correlations has been developed from the specific
ranges of the well log data. Due to changes in the
rock composition and properties, which result in
changes in the data, none of the correlations could
be applied as an exact universal one because the
accuracy of no correlation is guaranteed for the
data that is different from the one used for
developing it. In such conditions, to overcome
these problems, intelligence techniques could be
very useful and helpful. In the recent years, there
has been an increasing interest in developing
intelligence models for prediction of the rock
strength properties in the world. A review of the
published-related studies is presented here.
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Noorani and Kordani (2011) tried to estimate the
uniaxial compressive strength of intact rocks
using a neuro-fuzzy (NF) model and a multiple
regression (MR) one. For this purpose, they used
15 laboratory datasets (including porosity,
saturation, dry density, tensile strength, Schmidt
Hammer number (SHN), sound velocity, point
load index (PLI), and UCS). Among the data
used, they used, respectively, 12 and 3 datasets as
the training data and test data. To evaluate the
performance of the models, the root mean square
error (RMSE) index was calculated; it was 6.1 for
the NF model and 13.63 for the MR one [9].
Amani and Moeini (2012) used the artificial
neural network (ANN) and the adaptive neuro-
fuzzy inference system (ANFIS) to predict the
shear strength of the reinforced concrete (RC)
beams. The ANN model, with multi-layer
perceptron (MLP), using a back-propagation (BP)
algorithm, was used to predict the shear strength
of the RC beams. Six important parameters were
selected as the input parameters including
concrete compressive strength, longitudinal
reinforcement volume, shear span-to-depth ratio,
transverse reinforcement, effective depth of beam,
and beam width. The ANFIS model was also
applied to a database, and the results obtained
were compared with the ANN model results and
empirical codes. The first-order Sugeno fuzzy was
used. Comparison between the models and the
empirical formulas showed that the ANN model
with the MLP/BP algorithm provided a better
prediction for the shear strength [10].

Dadkhah and Esfahani (2013) applied two soft-
computing approaches, neuro-fuzzy inference
system (ANFIS) and genetic programming (GP),
for the prediction of UCS. Block punch index
(BPI), porosity, P-wave velocity, and density were
used as the inputs for both methods, and were
analyzed to obtain the training data and testing
data. Of all the 130 datasets, the training and
testing sets consisted of randomly-selected 110
and 20 sets, respectively. The results obtained
showed that the ANFIS and GP models were
capable of accurately predicting the uniaxial
compressive strength (UCS) used in the training
and testing phase of the study. The GP model
results better predicted UCS compared to the
ANFIS one [11].

Ceryan (2014) applied support vector machines
(SVMs), relevance vector machines (RVMs), and
ANN, which are intelligent technique-based, to
predict UCS for the volcanic rocks in Turkey. In
these models, the porosity and P-durability index
representing microstructural variables were used
as the input variables. Their results indicated that
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the SVM and RVM performances were better than
the ANN model. Also the RVM run time was
considerably faster, and it yielded the highest
accuracy [12].

Mishra et al. (2015) applied some soft-computing
techniques including ANN, FIS, and ANFIS to
estimate UCS of intact rocks by the index tests.
BPI, point load strength (PLS), SHN, and
ultrasonic P-wave velocity (Vp) were used as the
input data. Various statistical parameters (VAF,
RMSE, and correlation coefficient) were
determined to check the predictive performances
of these models. On the basis of these statistical
parameters, it can be said that all the three models
are equally robust in estimating UCS from the
corresponding index test results. However, the
fuzzy inference system (Sugeno-type) emerges to
be a more competent analysis technique than the
other two models in this regard [13].

In this work, by using the adaptive neuro-fuzzy
inference system (ANFIS), an intelligence model
was proposed for the estimation of UCS and p
using the conventional well-logging data
(including depth, compressional wave velocity,
and density data) in one of the Iranian SW oil
fields. Some advantages of this work are as
follow:

e The estimation technique is relatively
simple, cheap, and quick.

e The inputs (depth, compressional wave
velocity, and density data) are available
in most wells.

o Generally, well logs can provide a
continuous record over the entire well, so
the well-log data, as the input, can be
estimated over the whole well.

e In the ranges of the data used, the
proposed model is intelligent.

2. Materials and method

2.1. Methodology

Adaptive neuro-fuzzy inference system (ANFIS)
was used as the dominant tool. It is a combination
of fuzzy logic and ANN. For example, when the
number of training pairs is small, the results
obtained for the neural network system may be
poor. In such conditions, if fuzzy systems are
combined with a neural network system, the
results can improve [14]. An ANFIS system,
which was first introduced by Jang in 1993,
constructs a FIS, whose membership function
parameters are adjusted using a back-propagation
algorithm either alone or in combination with a
least-squares type of method [15]. This
adjustment allows the fuzzy systems to learn from
the data they are modeling [16]. ANFIS is capable
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of mapping the unseen inputs to their outputs by
learning the rules from the previously-seen data
[17]. An ANFIS system has five layers including
an input layer, an input MF layer (for input
fuzzification), a rule layer, an output MF layer (for
defuzzification of outputs), and an output layer.
Figure 1 shows the structure of an ANFIS system.

Layer1 Layer2 Layer3 Layer4 Layer5

Figure 1. Structure of a simple ANFIS system.

2.2. Data analysis

This work was focused on one of the Iranian
southwest oil fields. From the studied field, 655
wire-line log data was obtained and used to
develop an intelligence model for prediction of
either UCS or p. The data consisted of the depth,
compressional wave velocity (V), and density
(RHOB log). Ranges of the data used are shown
in table 1.

2.3. Constructing the model

Appropriate assignment of the inputs and outputs
is the first step in any modeling process with
intelligence systems. In this study, since the UCS
and p determinations were the objective, they
were assigned as the output variables. The depth,
compressional wave velocity (V), and density
(RHOB log) were assigned as the input variables
(Figure 2).

Table 1. Data ranges used.

PV/T Proper Number of Points Range Mean

perty Training data Test data Training data Test data Trainingdata  Test data
Depth (m) 436 219 3922-4916 3930-49150 4421 44419
Wave velocity (us ft™) 436 219 43.6-93.89 45.16-93.19 51.316 51.406
Density (g cm™) 436 219 2.3-3.04 2.29-3.04 2.782 2.782
tJl\;I“Pa;‘)'a' compressive strength 436 219 1.9-100 2.01-89.91 64.93 64.87
Internal friction coefficient 436 219 0.2-0.72 0.2-0.71 0.6096 0.6128

Depth
Vo }‘ ANFIS — UCSorpu
Density

Figure 2. Schematic of output and input parameters of
system (ANFIS).

A total of 655 input-output datasets, which were
obtained using the wire-line logs in one of the SW
Iranian oil fields were used. The data was divided
into two groups. One group included 436 datasets,
which were selected randomly and used for
constructing the model, and the other one
included 219 datasets that were used for
validation of the model. There are three methods
including Genfisl and Genfis2, and Genfis3 to
generate the fuzzy inference system (FIS)
structure. They generate the fuzzy inference
system structure from the data using the
subtractive clustering and fuzzy c-means (FCM)
clustering, respectively. After the accuracy tests, it
was found that the Genfis2 result was better than
Genfisl and Genfis3 for either the UCS or the p
prediction. Therefore, to generate the FIS
structure, Genfis2 was used. The properties of the
constructed model are listed in table 2. Figure 3
shows the structure of the constructed model.
After constructing the model, it was implemented
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twice. First, it was implemented to predict UCS,
and, once again, it was implemented to predict .
The results obtained for a comparison made
between the values reported from the drilling site,
which were obtained using the wire-line logs, and
the values estimated from the test data using the
intelligence model are shown in figures 4 and 5.

Table 2. Properties of constructed model (Genfis2).

Inference type Method
AND prod
OR probor
Implication Prod
Aggregation max
Difuzzification wtaver
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Figure 3. Constructed model to predict either uniaxial
compressive strength or internal friction coefficient.
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Figure 4. Comparison between reported and estimated
values for the model in test data for uniaxial compressive
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Figurer 5. Comparison between reported and estimated
values for the model in the test data for internal friction
coefficient (L.

3. Results and discussion

In this study, the adaptive neuro-fuzzy inference
system (ANFIS) was applied for prediction of the
uniaxial compressive strength (UCS) and internal
friction coefficient (u) in one of the Iranian
southwest oil fields. ANFIS is one of the powerful
artificial intelligence techniques that is a
combination of the fuzzy logic and neural
networks, and combines the advantages of both
systems. After constructing and running the
model, the correlation coefficient (R?) between
the reported values from the drilling site and the
values estimated from the intelligence model was
computed in the test data. They were 0.890 and
0.892 for p and UCS, respectively (Figures 6 and
7). Also for a more accurate performance
evaluation of the model, the root mean square
error (RMSE) in the test data was computed using
(1), which was compared with the accuracy of the
recently-proposed intelligence and predictive
models (Table 3).

n oy
2
RMSE = Z[(X)experimenal - (X)predicted] /N

i=1
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where, Xexpimental @N0 Xpredictea are, respectively, the
field reported and the model estimated values for
either UCS or p. N is the number of dataset used.
According to table 3, the accuracy of the proposed
model is more acceptable than that for the others.
Moreover, in the previous models, most of the
input data are obtained by laboratory tests, which
are very time- and money-consuming. However,
in the proposed model, the conventional wire-line
logs, which are available in most wells, are
applied as the input data.
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Figure 6. Correlation between experimental and
predicted values from ANFIS in test data internal friction
coefficient ().
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Figure 7. Correlation between experimental and
predicted values from ANFIS in test data for uniaxial
compressive strength (UCS).

4. Conclusion

For several reasons such as time and money
limitations, laboratory determination of the rock
strength properties (UCS and p) is sometimes
impossible. In such conditions, the experimental
correlations are usually applied. Several
correlations have been proposed. However, since
the accuracy of no correlation is guaranteed for
the data that is different from the one used for
developing it, none of the correlations could be
applied as a universal one. In this study, using the
adaptive neuro-fuzzy inference system (ANFIS),
an intelligence model was proposed to predict
either UCS or p for an Iranian SW oil field. For
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evaluation of the model accuracy, the correlation
coefficient (R?) between the values predicted from
the model and the reported ones were calculated.
They were 0.890 and 0.892 for p and UCS,
respectively. The results obtained for the proposed
model could be acceptable, and this model could

be applied as an appropriate one to predict UCS
and p when laboratory analysis is not possible.
Acceptable accuracy and using conventional well-
logging data are the highlight advantages of the
proposed intelligence model.

Table 3. A comparison between proposed model and recent intelligence and predictive models.

. Used variables Number of data RMSE
Num Model Year Technique —
Input Output Training Test UCS 1}
1 Yurdakul et al. [18] 2011 ANN SHN UCS 25 6 7.92 -
2 Yurdakul et al. 2011 MR SHN UCS 25 6 46.51
3 Noorani & Kordani 2011 NF ®, S, p, St, SHN, V,, PLI UCS 12 3 6.1
4 Noorani & Kordani 2011 MR ®, S, p, St, SHN, V,, PLI UCS 12 3 13.63
5 Martins et al. [19] 2012 MR @, p,Vy, En UCS 45 10 11.09
6 Martins et al. 2012 ANN @, p,Vy, En UCS 45 10 11.49
7 Martins et al. 2012 SVM @, p,Vy, En UCS 45 10 11.12
8 Mishra & Basu [20] 2013 FIS @, p,BPI,PLS, SHN,Vp  UCS 44 16 8.21
9 Mishra & Basu 2013 MR @, p, BPI, PLS, SHN, Vp ucs 44 16 6.89
10 Ceryan 2104 SVM @, PDI ucs 24 23 11.87
11 Ceryan 2104 RVM @, PDI ucs 24 23 10.77
12 Ceryan 2104 ANN @, PDI ucs 24 23 14.69
13 Mishra et al. 2015 ANN BPI, PLS, SHN, Vp UCS 44 15 16.9
14 Mishra et al. 2015 FIS BPI, PLS, SHN, Vp ucs 44 15 9.54
15 Mishra et al. 2015 ANFIS BPI, PLS, SHN, Vp UCS 44 15 13.72 -
16 This study - ANFIS depth, Vp, p (RHOB log) UCS, p 436 219 5.24 0.025
where:
SHN: Schmidt Hammer number BPI: Block punch index PLI: point load index
PLS: point load strength PDI: P-durability index Em : modulus of elasticity
St : tensile strength V,: ultrasonic velocity Vp: P-wave velocity
@: porosity S: saturation p: density
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