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Abstract 

This paper proposes a method to solve multi-objective problems using improved Particle Swarm 

Optimization. We propose leader particles which guide other particles inside the problem domain. Two 

techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The 

first one is based on the mean of the m optimal particles and the second one is based on appointing a leader 

particle for any n founded particles. We used an intensity criterion to delete the particles in both techniques. 

The proposed techniques were evaluated based on three standard tests in multi-objective evolutionary 

optimization problems. The evaluation criterion in this paper is the number of particles in the optimal-Pareto 

set, error, and uniformity. The results show that the proposed method searches more number of optimal 

particles with higher intensity and less error in comparison with basic MOPSO and SIGMA and CMPSO and 

NSGA-II and microGA and PAES and can be used as proper techniques to solve multi-objective 

optimization problems. 

 

Keywords: Multi-objective Optimization, Particle Swarm Optimization, Intensity Distance, Mutation. 

1. Introduction 

Optimization means finding one or more solution 

regarding one or more objectives. One multi-

objective problem has more than one objective 

function which has to be minimized or 

maximized. The minimization and maximization 

of functions have a broad usage in scientific 

research as well as business applications. Multi-

objective optimization comes from the real world 

decision making problems in which one should 

decide to select a set of solutions rather than a 

solution. For a set of finite solutions we can have 

a set of solutions in which two selected solutions 

have priority over each others. In other words, the 

solutions of this set are far better than other 

solutions. This is also called the optimal-Pareto 

set. In fact, there is one optimal solution in the 

problem domain but the first set of optimal 

solutions are selected. Then, user can select the 

optimal solution among the given best solution 

[1]. Multi-objective algorithms cannot find the 

best solutions themselves. Thus, a good technique 

could be the combination of such algorithms with 

PSO to find better solutions [2]. PSO is a 

population based stochastic optimization 

technique developed by Eberhart and Kennedy, 

1995 [3], and inspired by social behavior of bird 

flocking or fish schooling. The system is 

initialized with a population of random solutions 

and searches for optimality by updating 

generations. In PSO, the potential solutions, called 

particles, fly through the problem space by 

following the current optimum particles. Each 

particle keeps track of its coordinates in the 

problem space associated with the best solution 

(fitness) achieved so far. (The fitness value is also 

stored.) Another "best" value that is tracked by the 

particle swarm optimizer is the best value, 

obtained so far by any particle in the neighbors of 

the particle. When a particle takes all the 

population as its topological neighbors, the best 

value is a global best. The particle swarm 

optimization concept consists of, at each time 

step, changing the velocity of (accelerating) each 

particle toward its personal best and local best 

locations (local version of PSO). Acceleration is 

weighted by a random term, with separate random 
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numbers being generated for acceleration toward 

personal best and local best locations [4]. 

 

2.  Standard PSO algorithm 

PSO is initialized with a group of random 

particles (solutions) and then searches for optima 

by updating generations. In every iteration, each 

particle is updated by following two "best" values. 

The first one is the best solution (fitness) achieved 

so far. (The fitness value is also stored.) This 

value is called pbest. Another "best" value that is 

tracked by the particle swarm optimizer is the best 

value, obtained so far by any particle in the 

population. This best value is a global best and 

called gbest[5,6,32]. When a particle takes part of 

the population as its topological neighbors, the 

best value is a local best and is called lbest. 

In order to establish a common terminology, in 

the following we provide some definitions of 

several technical terms commonly used: 

Swarm: Population of the algorithm. 

Particle: Member (individual) of the swarm. Each 

particle represents a potential solution to the 

problem being solved. The position of a particle is 

determined by the solution it currently represents. 

pbest (personal best): Personal best position of a 

given particle, so far. That is, the position of the 

particle that has provided the greatest success 

(measured in terms of na scalar value analogous 

to the fitness adopted in evolutionary 

nalgorithms). 

lbest (local best): Position of the best particle 

member of the neighborhood of a given particle. 

gbest (global best): Position of the best particle of 

the entire swarm. 

Leader: Particle that is used to guide another 

particle towards better regions of the search space. 

After finding the two best values, the particle 

updates its velocity and positions with following 

equations (1) and (2). PSO, includes parallel 

search algorithms based on population, which 

with a group of random answers (particles) start, 

then the optimal solutions of the problem space by 

date particle location in the search continues. 

Each particle Multidimensional) depending on the 

problem (with the two vectors
idx and 

idv represent 

the location and velocity of the i particle 

dimension d are to be determined. At each stage 

of the movement is the, location of each particle 

of the two values best on the day.  

The first value, which is the best experience ever 

gotten particle by showing _p best the second 

value is the best experience of all particles 

obtained by.
 _g best shown [5,6]. In each 

iteration, the algorithm after finding two values, 

the new particle velocity and position according to 

(1) and (2) is updated. 

1 ( )

2 ( )

( 1) . ( ( ))

. ( ( ))

id

id

id id best t id

best t id

v t wv t c rand p x t

c rand g x t

  

 

+
 

(1) 

( 1) ( ) ( 1)id id idx t x t v t  +  (2) 
 

In (1), W is a linear coefficient of inertia reduced, 

and is usually in the range [0,1], respectively and 

from which we in this paper considered equal to 

0.2. C1 and C2 are coefficients of learning or 

acceleration in the interval [0,2] is selected and in 

most cases for _g best , and the second and third 

equation (1) will be zero. The particle motion in 

the previous ones will be moving. This is because, 

typically W has both the 1.49 level and 2 Use 

[6,7,8]. We in this paper considered c1 and c2 

equal to 1 and 2 [15]. 

The right side of (1) is composed of three parts:, 

The first part of a multiple current speed of the 

particle is, the second part of the third rotation of 

a particle to the personal experience and basic 

variety rotate a bit to the experience is the best 

[2].w, seeking to establish a balance between local 

and global, for the first time in [9] proposed the 

specifies motion coefficient global search. In 

many cases, this leads to premature convergence 

and the algorithm will be a local optimum. To 

resolve this problem first in 2002, a new 

algorithm was presented with the name GCPSO 

[10] and in this method, a new parameter has been 

added to the algorithm. The question is if the 

answer queries about the random particle _g best  

optimized.  The main problem for solving multi-

objective optimization using PSO update equation 

is the speed, because it makes that all particles 

converge on one point to get a result of each run. 

To solve this problem, noted in the previous 

position, the new position stores them. The result 

of the selection of the initial population is 

doubled. The method is intended for particle and 

is selected from among Old and new particles in 

the initial population as regular and the other one 

is defeated [2]. To overcome the problem 

algorithm of premature convergence to a local 

optimum, in 2002, a new algorithm called GCPSO 

was presented [10] and in this method, a new 

parameter was added to the algorithm that would 

be random searches particle g_best around the 

optimal solution.   

 

3. Related works 

Multi-objective optimization was done in research 

on transportation planning in which the proposed 

problem was resource distribution of products 

[11]. MOPSO was applied to solve the problem. 
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The problem was divided into sub-solutions and 

objective functions were described based on 

variable dependencies. The result showed the 

robustness and flexibility of the research.  

A new technique was proposed in [12] to solve 

redundancy and reliability in which three 

functions were used simultaneously; objective 

function, cost function, and dynamic penalty 

function. The dynamic function controlled 

objective and cost function throughout iterations. 

Deb et al proposed an elitist non dominated 

sorting genetic algorithm for multi-objective 

optimization called NSGA-II. NSGA-II used 

elitism. In different dimensions in contrast with 

NSGA, NSGA-II worked by composing parent 

and offspring population and creating Rt. Then, Rt 

was classified using elitism. If in each class, the 

population is less than N (population size), all of 

the class members are chosen for next generation. 

The rest of the solutions are selected from other 

elite classes. On the other hand, if the population 

is greater than N, the better solutions for next 

generation are chosen based on intensity operator. 

The intensity is calculated using congestion 

procedure in objective function space and it can 

also be calculated in parameter space too. The 

constraint of the proposed technique was that 

intensity could offend convergence inside the 

algorithm in some cases [12]. Both intensity and 

convergence were targeted in [13] with 

introducing a new algorithm called MOGA. 

MOGA can also be used for composite 

optimization problems. The objective function 

procedure never guaranteed that a solution with 

lower rank always has a better scaled fitting F 

specially when there are solutions with better 

ranks and higher congestion. This can also offend 

convergence. However, in NSGA, the mentioned 

deficiency does not exist since it used queues. 

Share σ is a parameter that should be initialized at 

the beginning of algorithm like other GAs.  

Deb and his students in an elite category or 

sorting Non-dominated genetic algorithms) so-

called (NSGA_II offered. 

NSGA_II of one of the most common methods is 

EMO multiple Pareto optimal solutions for multi-

objective optimization problem acquires [14]. 

Multi-objective optimization using PSO was used 

in multi-objective handling system in [15]. The 

problem had three objectives: 

 Minimization of the algorithm's produced 

pareto in comparison with the main pareto. 

 Maximization of the founded solutions' 

distribution which makes uniform distribution 

achievable.   

 Maximization of solutions in the optimal-

Pareto. 

Firstly, this algorithm works by initializing the 

parameters. Then, better solutions are both 

identified and archived. Next, for each particle a 

leader is selected from the archive and that 

particle should move toward its leader. The 

intensity of particles is small throughout the 

search space in this algorithm. Likewise in [15] an 

MOPSO optimizer was introduced for integrated 

low-carbon distribution system for the demand 

side of a product distribution supply chain. The 

proposed MOPSO selected bad solutions for 

deletion. The optimization occurred based on 

priority, ranking, and scenario analysis. The 

optimization of CO2 production and its relevant 

cost had been targeted in this research. 

A new algorithm was proposed in [16] in which 

particle swarm optimization has been used. 

Particles produced offsprings in order to apply 

comparison in optimal-Pareto set. The problem in 

basic PSO is that the optimal-Pareto set 

comparison is not originally done in updating the 

best particle form each particle. To overcome this 

problem and to increase the sharing level among 

particles in a group NSPSO composes the entire 

best particles population (N) with their offsprings 

(N) and creates a temporary population of size 

2N. Then the comparison procedure starts within 

the entire 2N particles. To do so, the entire 

population should be sorted in different optimal-

Pareto sets as NSGA-II. A special rank is assigned 

to each particle in accordance with the optimal-

Pareto set the particle belongs and receives the 

particles in the first Pareto the fitness priority of 1 

and those in the second Pareto receives the fitness 

priority of 2 and likewise particles' fitness in each 

Pareto should have been calculated.  In addition to 

fitness priority, a cumulative distance for each 

particle must have been calculated as well to 

guarantee the distribution of optimal particles. 

Cumulative distance is also used to evaluate the 

distance of each particle with its neighbours. 

In [17] Sigma method as a new way to find the 

best local guides for each particle of the 

population has been introduced.  

In [18], the CMPSO method has been proposed 

which was the combination of basic PSO with 

cumulative distance to solve multi objective 

problems. Particles are kept in the archive based 

on the cumulative distance. If a non-optimal 

solution wants to enter the archive and the archive 

size is the predefined size, the particle with the 

smallest cumulative distance in the archive should 

be selected first and then compared with new 
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particle. The particle with the smaller cumulative 

distance is selected to be deleted from the archive. 

Keeping optimal particles in archive causes 

keeping good solutions and not missing them. 

Archives keep particles with greater cumulative 

distance and this leads to have diversity in 

solutions. Archive members in low density area 

have greater probability to be converted to 

optimal situations. This helps the algorithm to 

find the best optimal-Pareto set.  

In [19], a task scheduling using multi-objective 

genetic algorithm with fuzzy adaptive operators 

for computational grids and compared with fixed 

rate of mutation and crossover was proposed. 

Fuzzy method with a more efficient solution set of 

values for load balancing, makespan and price. 

We have to improve [19] proposed a method and 

with using experiments, all we show is more 

efficient and our method provides makespan, 

price and in some cases load balancing. 

In [20], the scheduling job-shop with discrete 

solution spaces multi-objective problem is solved 

using an algorithm MOPSO. 

In [20,21] flexible job-shop scheduling problem 

(FJSP), one of the classic problems of planning a 

multi-objective job-shop is inconsistent and 

contradictory, and is solved through using 

algorithm PSO and tabu search (TS).The 

computational results have proved that the 

proposed hybrid algorithm in [21] is an efficient 

and effective approach to solve the multi-

objective FJSP, especially for the problems on a 

large scale. In [22] a method using particle swarm 

optimization (PSO) is proposed to reduce the 

communication overhead and reduces the time to 

complete the process and improves resource 

utilization of the computational grid. The 

representations of the position and velocity of the 

particles in conventional PSO is extended from 

the real vectors to fuzzy matrices. The proposed 

approach is to dynamically generate an optimal 

schedule so as to complete the tasks within a 

minimum period of time as well as utilizing the 

resources in an efficient way. In [23], a presented 

multi-objective particle swarm optimization in 

systems handling is that multi-objective particle 

swarm optimization in systems handling is stated 

these objectives: Minimize the Pareto fronts 

distance generated by the algorithm and the Pareto 

front, maximize the development of solutions, so 

that a smooth and uniform distribution maximize 

the number of elements found in optimal Pareto. 

In this algorithm, we first initialize the population 

and then Non-dominated members are isolated 

populations. Archives are stored. For each particle 

of the members of the leadership archive, select 

the particles move toward the guide. In this paper, 

it is proved that the algorithm optimization 

MOPSO algorithm Optimization NSGAII, PAES, 

Micro GA Better Performance and better 

solutions with greater density in more smoothly 

and with less error is generated. In [24], the 

integration of low-carbon distribution in EPA 

using the optimization MOPSO algorithm. Done 

integration to distribute applicants will be done in 

the supply chain is presented. MOPSO non-

optimal is a set of solutions from the solution 

desirable and practical search which remove them. 

Optimization and prioritization, rating and 

analysis scenario are done. Optimized of 

greenhouse gases CO2 and cost optimization are 

concerned. 

Scheduling algorithms plays an important role in 

grid computing, parallel distributed systems for 

scheduling tasks and deploys them to appropriate 

resources. Grid computing system has three 

objectives makespan, price and balance the load. 

In [25] the problem of scheduling independent 

tasks in heterogeneous distributed systems such as 

grid using multi-objective optimization algorithm 

non-dominated density of particles is studied. This 

paper presents a scheduling algorithm based on 

multi-objective optimization offers free particles. 

The work optimized simultaneously two 

objectives makespan and circulation time. 

In [26] takes advantages of genetic algorithm, 

brings forward a novel heuristic genetic load 

balancing algorithm and applied to solve grid 

computing load balancing problem. 

In [27], the price and makespan as the main 

objective, regardless the load balancing by using a 

GA algorithm for scheduling problem modeling 

are proposed. In [28], the two types of GA to 

improve the performance of the scheduling 

algorithm are presented and minimize the total 

execution time and meet load balancing. 

In [29], the balance is the net charge on the 

computational grid using genetic algorithms 

regardless of makespan or fees for network 

resources represented. In [30], the different load 

balancing strategy based on a tree representation 

of a network is studied. This enables conversion 

of any network architecture to a unique tree with a 

maximum of four levels. Task scheduling 

algorithm in [30,31] is considered only load 

balancing without makespan or price to users 

consider. 

 

4. Proposed technique 

In the proposed technique, each particle is 

dedicated a random amount.   Particles are divided 

based on optimal or bad solutions archived. For 
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each article a leader is selected and each article 

should move toward that article. After movement 

of particles, mutation occurs. Mutation could 

decrease convergence [14] and this reduction is 

necessary if the uniform distribution should be 

achieved. At first, the probability of occurring 

mutation is high and gradually this probability is 

decreased.  Next, the personal best of each particle 

should be updated. This continues iteratively and 

new optimal solutions are archived. Sometimes 

the replacement of archive elements is necessary 

specially when we have other candidate optimal 

solutions and the archive is full. This continues 

until stop criterion achieves otherwise the leader 

selection and deletion of extra leaders continue. 

 

4.1. Leader selection 

The way how the leaders are selected has great 

impact on the proposed technique. Thus, a new 

leader selection is proposed to improve a basic 

MOPSO algorithm. The selected leaders are the 

best elements in optimal-Pareto. Two ways are 

suggested to choose a leader for each particle. 

 

4.1.1. Leader selection (1st approach) 

In the first way, a roulette wheel is used to select 

the M optimal solutions randomly. The places 

with fewer elements have more probability to be 

selected because this increases the optimal set 

domain. The mean of M selected articles is 

appointed as a leader. This leader selection is 

shown in figure 1 under the assumption of M=2. 

As it is shown in figure 1, particle D is the leader 

of particle A which is the mean of leaders B and 

C. In the proposed technique, more optimal 

solutions will be obtained for M = 3. This means 

that the main leader for each particle is found 

through calculating the average of three leaders. 

 
Figure 1. Leader selection (1st approach). 

 

4.1.2. Leader selection (2nd approach) 

In the second approach, a leader is selected for 

any of N particles in population. The first 

approach in leader selection is also applied in 

which M=3. All the particles should move toward 

the leader and consequently to the optimal-Pareto. 

Figure 2 depicted the proposed approach. Particle 

D is the selected leader for N particles which is 

the mean of leaders A and B. 

 
Figure 2. Leader selection (2nd  approach). 

 

4.2. Leader deletion 

Some of the elements of the archive should be 

deleted provided that the archive queue becomes 

full. Through this way new optimal candidate 

solutions can be inserted to the archive. To delete 

an element uniformity criterion has been used to 

keep the set of optimal particles uniform. We 

want to delete those particles with less intensity 

distance. The process of leader deletion has been 

shown in figure 3. Intensity distance is calculated 

using (6). As it is shown in figure 2, particle A is 

deleted because of having smaller cumulative 

distance. 

 
Figure 3. Leader deletion. 

 
2 min{ , }j

i ijd d x Q j i    (3) 

2 2min{ , , }j

i ij ij id d d d x Q j i     (4) 

2

1
( ( ( ) ( )))

M i j

ij k k ki
d f x f x


   (5) 

2 2( ) / 2iQ i jc d d   (6) 

Generally, the proposed technique has been tested 

using four standard tests in multi-objective 

optimization. The evaluation criteria in this paper 

are: the number of elements in optimal-Pareto set, 

uniformity, and error. The results show that the 

proposed technique searches more numbers of 

optimal particles with higher intensity and less 

error in comparison with basic MOPSO. The 

proposed technique can be selected as a good 

replacement in solving multi-objective 

optimization problem. The proposed algorithm is 

shown in figure 4. 



Motameni/ Journal of AI and Data Mining, Vol 4, No 1, 2016. 
 

72 

 

Figure 4. Proposed algorithm. 

 

5. Evaluation 

The proposed technique has been evaluated based 

on three facts: 

 The number of elements in optimal-Pareto 

set: the summation of each particle distance 

from nearest particle in optimal-Pareto set over 

the number of detected solutions as in (7). The 

less GD is, the more elements belonging to the 

optimal-Pareto set[14]. 
2

1

n

ii
d

GD
n


  

(7) 

 Uniformity: assuming zero for this 

parameters means that the element of 

pareto set has been distributed uniformly as 

shown in (8)[14]. 
2

1

1 1 2 1

1
( )

1

min( ( ) ( ) ( ) ( ))

n

ii

i j i j

i

i

SP d d
n

d f x f x f x f x

d meand


 



   




 

(8) 

 Error: assuming zero for this 

parameter means that all produced 

solutions from the proposed algorithm 

belong to optimal-Pareto set as (9) [14]. 

1

n

ii
e

ER
n


  

(9) 

5.1. First test function 

We use the first test function as in [12] and (10). 
2

1

2

2

( )

( ) ( 2 )

f x x

f x x



 
 

(10) 

 

For the first test function, the initial population 

was assumed to be 50, the iteration number was 

assumed to be 20 and the repository capacity was 

assumed to be 100. 

In tables 1 to 4 the results of the comparison 

proposed technique by MOPSO and SIGMA and 

CMPSO is to for first test function. This table has 

three values of the best, worst and average values 

of GD, SP, are error. 

GD in the SIGMA less than other techniques, and 

it is for this reason that the number of elements 

found in less optimal and most repetitive elements 

is found. However, in the above aspects, the 

proposed technique is more than GD. As a result 

of using a less optimal number of elements can be 

found Sigma. 

The sigma error rate in comparison to the 

proposed high you can conclude that fewer 

elements have been found to be the optimal set. 

In the first part of table 1 shows that the two 

proposed algorithms have less GD than the basic 

MOPSO and SIGMA and CMPSO. This means 

that more detected particles belong to the optimal-

Pareto set. In the second part of table 1 shows that 

the two proposed algorithms have less SP than the 

basic MOPSO. As a result the distribution is more 

uniform. Also In the third part of table 1 shows 

that the error in basic MOPSO is more than the 

two proposed algorithms. In the Fourth part of 

table 1 compares the result based on time 

execution. 

 

Table 1: GD/SP/ERROR/TIME result for first function. 
GD/SP/ 

ERROR 

MOPSO SIGMA CMOPSO MOPSO1 MOPSO2 

Best 

Worst 

Average 
 

Best 

Worst 

Average 
 

Best 

Worst 

Average 

0.2159 

0.3274 

0.25072 
 

0.09628 

1.2454 

 0.37498 
 

0.0826 

0.1304 

 0.11082 

0.013288 

0.028923 

0.018854 
 

0.11698 

0.8231 

0.364742 
 

0.1071 

0.1453 

 0.12248 

0.10925 

0.62396 

0.19627 
 

0.12946 

0.37104 

  0.294364 
 

0.0826 

0.1304 

  0.10834 

0.1142 

0.31341 

0.18849 
 

0.12964 

0.87629 

  0.35284 
 

0.0741 

0.115 

  0.09718 

0.090054 

0.20463 

0.145853 
 

0.090545 

0.99389 

 0.433475 
 

0.0741 

0.1071 

  0.09566 

TIME 
 

Best 

worst 

  average 

MOPSO1 
 

15.1353 

50.0331 

    31.68764 

MOPSO2 
 

4.982 

38.7575 

25.70032 

 

5.2. Second test function 

We use the second test function as in [12] and 

(11). 
1 2 2

1 11

0.8
2

2 1

( ) ( 10exp( 0.2 ))

( ) ( 5sin )

n

i ii

n

i ii

f x x x

f x x x







   

 




 

(11) 

 

For the second test function, the initial population 

was assumed to be 100, the iteration number was 

assumed to be 200 and the repository capacity 

was assumed to be 200.  

In tables 5 to 8 the results of the comparison 

proposed technique by MOPSO and SIGMA and 

CMPSO is to for second test function. This table 

has three values of the best, worst and average 

values of GD, SP, are error. GD in the SIGMA 

less than other techniques, and it is for this reason 

that the number of elements found in less optimal 

and most repetitive elements is found. However, 

in the above aspects, the proposed technique is 

more than GD. As a result of using a less optimal 

number of elements can be found Sigma. The 

Initialization of the population 1 

Separation and archiving  optimal particles   2 

Tabulating the detected objective search space 3 

 Leader selection for each particle from archive set and 

moving toward leader 
4 

Updating the personal best of each particle 5 

  َ Addition of current optimal particles to the archive 6 

Deletion of non-optimal elements in archive 7 

Archive elements => dedicated capacity => deletion of extra 

elements 
8 

Finish if stopping criterion satisfied otherwise goto step 3 9 
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sigma error rate in comparison to the proposed 

high you can conclude that fewer elements have 

been found to be the optimal set. 

In the first part of table 2 shows that the two 

proposed algorithms have less GD than the basic 

MOPSO and SIGMA and CMPSO. This means 

that more detected particles belong to the optimal-

Pareto set. In the second part of table 2 shows that 

the two proposed algorithms have less SP than the 

basic MOPSO. As a result the distribution is more 

uniform. Also In the third part of table 2 shows 

that the error in basic MOPSO is more than the 

two proposed algorithms. In the fourth part of 

table 2 compares the result based on time 

execution. 

 

Table 2: GD/SP/ERROR/TIME result for second 

function. 
GD/SP/ 

ERROR 

MOPSO SIGMA 

 

CMOPSO MOPSO1 MOPSO2 

Best 

Worst 

Average 
 

Best 

Worst 

Average 

2.03851 

2.4601 

2.180802 
 

0.0395 

0.0769 

 0.06012 

0.2247 

0.4519 

0.364894 
 

0.0494 

0.0962 

 0.07812 

2.5685 

2.0385 

2.26366 
 

0.0339 

0.1129 

  0.05918 

1.7619 

2.6521 

2.02984 
 

0.0366 

0.0926 

  0.05726 

1.8274 

2.3863 

2.101662 
 

0.0303 

0.0822 

  0.05332 

TIME 
 

Best 

worst 

average 

MOPSO1 
 

40.6679 

77.8366 

           55.24176 

MOPSO2 
 

29.8304 

56.6297 

   41.643 
 

In [14] MOPSO was compared with NSGA-II, 

microGA, and PAES and the results are shown in 

table 3. As it is shown in table 3, MOPSO has the 

smallest GD in comparison with other techniques. 

Tables 3 are in [14]. 

 

Table 3: GD/SP/ERROR result for third function. 
GD MOPSO NSGA-II microGA PAES 

Best 

Worst 

Average 

0.00745 

0.00960 

0.008450 

0.006905 

0.103095 

0.029255 

0.006803 

0.010344 

0.008456 

0.01467 

0.157191 

0.54914 

Medium 0.00845 0.017357 0.008489 0.049358 

Std. Dev. 0.000051 0.02717 0.000987 0.030744 

SP 

Best 

Worst 

   Average 

   Medium 

   Std. Dev. 

MOPSO 

0.06187 

0.118445 

  0.09747 

  0.10396 

  0.01675 

NSGA-II 

0.018418 

0.065712 

  0.036136 

  0.036085 

  0.010977 

microGA 

0.071686 

0.203127 

  0.128895 

  0.126655 

  0.029932 

PAES 

0.064114 

0.340955 

  0.197532 

  0.186632 

  0.064114 

ER 

Best 

Worst 

   Average 

    Medium 

   Std. Dev. 

MOPSO 

0.18 

0.37 

    0.2535 

     0.255 

   0.04082 

NSGA-II 

0.06 

1.01 

      0.56 

      0.495 

  0.384516 

microGA 

0.18 

0.36 

      0.27 

      0.245 

   0.053947 

PAES 

0.10 

0.68 

      0.27 

      0.245 

    0.10489 
 

 

5.3. Third test function 

We use the third test function as in [12] and (12). 

2

1

2

2

1
( ) (1 exp( ( ) )

1
( ) (1 exp( ( ) )

x
f x

n

x
f x

n


  


  





 
(12) 

For the third test function, the initial population 

was assumed to be 100, the iteration number was 

assumed to be 200 and the repository capacity 

was assumed to be 200.  

In table 4 the results of the comparison proposed 

technique by MOPSO and CMPSO is to for third 

test function. This table has three values of the 

best, worst and average values of GD, SP, are 

error. GD in the SIGMA less than other 

techniques, and it is for this reason that the 

number of elements found in less optimal and 

most repetitive elements is found. 

However, in the above aspects, the proposed 

technique is more than GD. As a result of using a 

less optimal number of elements can be found 

Sigma. The sigma error rate in comparison to the 

proposed high you can conclude that fewer 

elements have been found to be the optimal set. 

In the first part of table 4 shows that the two 

proposed algorithms have less GD than the basic 

MOPSO and SIGMA and CMPSO.  

This means that more detected particles belong to 

the optimal-Pareto set. In the second part of table 

4 shows that the two proposed algorithms have 

less SP than the basic MOPSO and SIGMA and 

CMPSO. As a result the distribution is more 

uniform. Also In the third part of table 4 shows 

that the error in basic MOPSO is more than the 

two proposed algorithms. In the fourth part of 

table 4 compares the result based on time 

execution. 

 

Table 4: GD/SP/ERROR/TIME result for third function. 
GD/SP/ 

ERROR 

MOPSO SIGMA CMPSO MOPSO1 MOPSO2 

Best 

Worst 

Average 
 

Best 

Worst 

Average 

Best 

Worst 

Average 

0.047057 

0.054195 

0.050508 
 

0.096128 

0.11224 

0.104914 
 

0.0253 

0.0319 

 0.02836 

0.003502 

0.016435 

0.008953 
 

0.10691 

0.12798 

0.119148 
 

0.0678 

0.0833 

 0.07502 

0.046153 

0.076365 

0.055487 
 

0.073575 

0.11286 

0.100004 
 

0.0238 

0.0476 

  0.0316 

0.03973 

0.055144 

0.043991 
 

0.082234 

0.10116 

 0.092765 
 

0.0229 

0.0268 

  0.02506 

0.039172 

0.044375 

0.042329 
 

0.051319 

0.090021 

 0.068794 
 

0.0196 

0.028 

    0.0245 

TIME 
 

Best 

worst 

 average 

MOPSO1 
 

65.8227 

99.5306 

 756.458 

MOPSO2 
 

42.8899 

85.4931 

           73.79252 

 
Table 5. GD/SP/ERROR analysis on first test function. 

GD/SP/ERROR 

M 2 5 15 

Best 

worst 

average 
 

Best 

worst 

average 
 

Best 

worst 

Average 

0.1142 

0.31341 

0.18849 
 

0.12964 

0.87629 

0.35284 
 

0.0741 

0.115  

0.09718  

0.11619 

0.36649 

0.21468 
 

0.11313 

0.54794 

0.23272 
 

0.0654 

0.1228 

0.08546 

0.08122 

0.32001 

0.179382 
 

0.16972 

0.3692 

0.243934 
 

0.0741 

0.1525 

0.10474 

 

Table 6. GD/SP/ERROR analysis on second test function. 
 

GD/SP/ERROR 

M 2 5 15 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

Best 

worst 

Average 

1.7619 

2.6521 

2.02984 
 

0.02801 

0.19154 

0.07101 
 

0.0366 

0.0926 

0.05726 

1.7713 

2.2464 

2.06912 
 

0.03613 

0.058174 

0.046731 
 

0.0375 

0.0649 

0.04274 

1.6021 

3.398 

2.42 
 

0.034087 

0.29466 

0.174293 
 

0.0328 

0.1111 

0.0686 
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6. Experimental result 

6.1.1. First analysis 

This analysis is done to determine the best M, and 

to calculate the mean of M leaders for the first 

proposed technique.  

Assuming 2, 5, and 15 for M, the results are 

calculated. Tables 5 to 7 show that the best 

assumption is M=2 that is few errors, the SP and 

GD. 
 

Table 7. GD/SP/ERROR analysis on third test function. 

GD/SP/ERROR 

M 2 5 15 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

Best 

worst 

Average 

0.03973 

0.055144 

0.043991 
 

0.082234 

0.10116 

0.092765 
 

0.0229 

0.0268 

0.02506 

0.034591 

0.050634 

0.039307 
 

0.053142 

0.086248 

0.067503 
 

0.017 

0.0244 

0.02092 

0.035432 

0.063236 

0.048697 
 

0.037104 

0.057453 

0.047034 
 

0.0152 

0.0227 

0.01962 

 

6.1.2. Second analysis 

This analysis is done to determine the best N, for 

the second proposed technique. This analysis also 

helps to determine how many particles need a 

certain leader to achieve better optimal-Pareto 

solutions. Assuming 5, 20, and 50 for N, the 

results are calculated. Tables 8 to 10 show that the 

best assumption is N=50 that is few errors, the SP 

and GD. 

 

Table 8. GD/SP/ERROR analysis on the first test 

function. 
GD/SP/ERROR 

N 5 20 50 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

0.066882 

0.25464 

0.156502 
 

0.16708 

1.1823 

0.409728 
 

0.17949 

0.36342 

0.272078 
 

0.1387 

1.0292 

0.349194 
 

0.090054 

0.20463 

0.145853 
 

0.20104 

0.99389 

0.596456 
 

0.0741 

0.1071 

0.09566 

Best 

worst 

Average 

0.0654 

0.1379 

0.10332 

0.0741 

0.0991 

0.0842 
 

Table 9. GD/SP/ERROR analysis on the second test 

function. 
GD/SP/ERROR 

N 5 20 50 

Best 

worst 

Average 
 

1.7194 

2.7931 

2.094 
 

1.7304 

2.5637 

2.05442 
 

1.8274 

2.3863 

2.101662 

Best 

worst 

Average 
 

 

0.035883 

0.19398 

0.098005 
 

0.038456 

0.20685 

0.12092 

0.014392 

0.16151 

0.07814 

Best 

worst 

Average 

0.0274 

0.0577 

0.04244 

0.0377 

0.0561 

0.04376 

0.0303 

0.0822 

0.0533 

 

6.1.3. Third analysis 

This analysis is done to determine the dimensions 

of the problem, for both techniques. The 

consequences in tables 11 to 13 show that lower 

dimensions have better results and the proposed 

techniques is better in comparison with basic 

MOPSO. 

 

Table 10. GD/SP/ERROR analysis on the third test 

function. 
GD/SP/ERROR 

N 5 20 50 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

Best 

worst 

Average 

0.042976 

0.064321 

0.051529 
 

0.052436 

0.081611 

0.065549 
 

0.0167 

0.0226 

0.01964 

0.03617 

0.047743 

0.043034 
 

0.070877 

0.075822 

0.073381 
 

0.0182 

0.0261 

0.02348 

0.039172 

0.044375 

0.042329 
 

0.051319 

0.090021 

0.068794 
 

0.0196 

0.028 

0.0245 
 

 

Table 11. GD/SP/ERROR analysis on the first proposed 

technique. 
GD/SP/ERROR 

NVAR 3 10 30 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

Best 

worst 

Average 

1.7619 

2.6521 

2.02984 
 

0.02801 

0.19154 

0.07101 
 

0.0366 

0.0926 

0.05726 

8.1567 

13.6528 

10.9251 
 

0.020605 

0.83062 

0.231264 
 

0.027 

0.1892 

0.07266 

33.367 

45.3985 

37.68592 
 

0.032489 

0.3059 

0.181066 
 

0.1064 

0.1304 

0.11872 
 

Table 12. GD/SP/ERROR analysis on the second 

proposed technique. 
GD/SP/ERROR 

NVAR 3 10 30 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

Best 

worst 

Average 

1.8274 

2.3863 

2.101662 
 

0.014392 

0.16151 

0.07814 
 

0.0303 

0.0822 

0.05332 

9.4872 

11.3522 

10.2596 
 

0.018486 

0.99951 

0.267326 
 

0.06 

0.0862 

0.06914 

26.9047 

37.5597 

33.13216 
 

0.050401 

0.46794 

0.256166 
 

0.0357 

0.1304 

0.0793 
 

As it is shown in table 12, with higher dimensions 

MOPSO does not work on second test function. It 

only works for dimensions 3 and 10.  
 

Table 13. GD/SP/ERROR analysis on the second test 

function. 
GD/SP/ERROR 

NVAR 3 10 

Best 

worst 

average 
 

2.03851 

2.4601 

2.180802 

9.4417 

13.7426 

11.78792 

Best 

worst 

average 
 

Best 

worst 

     average 

0.045384 

0.23174 

0.115702 
 

0.0395 

0.0769 

    0.06012 

0.089812 

1.5549 

0.611626 
 

0.0588 

0.119 

0.09424 
 

CMPSO is not suitable for higher dimensions with 

second test function. It only has appropriate 

results for three and ten dimensions. Based on the 

comparisons made in table 14 even this result is 

not optimal.  

SIGMA technique is not suitable for higher 

dimensions with second test function. It only has 

appropriate results for three and ten dimensions. 

Based on the comparisons made in table 15 even 

this result is not optimal.   
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Table 14: Test results for second test function. 
GD/SP/ERROR 

NVAR 3 10 
Best 

worst 

average 
 

Best 

worst 

average 
 

Best 

worst 

average

2.5685 

2.0385 

2.26366 
 

0.04189 

0.13083 

0.073292 
 

0.0339 

0.1129 

0.05918 

12.0271 

15.5735 

13.45778 
 

0.016527 

1.0559 

0.299453 
 

0.0625 

0.1429 

0.11088 
 

 

Table 15: Test results for second test function. 
GD/SP/ERROR 

NVAR 3 10 30 

Best 

worst 

Average 
 

Best 

worst 

Average 
 

Best 

worst 

Average 

0.2247 

0.4519 

0.364894 
 

0.035788 

0.15884 

0.083683 
 

0.0494 

0.0962 

0.07812 

3.6339 

8.3863 

5.32646 
 

0.11267 

2.7703 

1.140006 
 

0.1875 

0.25 

0.21804 

16.3493 

42.0749 

32.44846 
 

1.905 

15.3253 

6.2378 
 

0.1875 

0.5455 

0.38548 

 

7. Discussion 

We have changed the leader selection and leader 

deletion in basic MOPSO to have more uniform 

distribution in the set of optimal-Pareto particles. 

The proposed approach also leads to have fewer 

errors and to detect more optimal particles. In the 

first leader selection approach, since the mean of 

M leader is calculated the results solutions will 

have more uniform optimal-Pareto particles. 

Likewise the result SP parameter is also smaller 

than the basic MOPSO and SIGMA and CMPSO. 

In the second leader selection approach, one 

leader is considered for N particles. This yields to 

have more solutions with uniform distribution. 

Also the time to achieve optimal solutions 

decreased. For leader deletion the proposed 

technique helps to increase the optimal-Pareto 

solutions or in other words, GD will be decreased. 

Finally, error was also declined.  

 

8. Conclusion 

In this paper a technique was proposed to enhance 

the basic MOPSO. The results prove the 

enhancement in comparison with the basic 

MOPSO and SIGMA and CMPSO and NSGA-II 

and microGA and PAES. In fact the proposed 

MOPSO has considerable results to detect optimal 

solutions based on the test functions. Moreover, 

the proposed MOPSO keeps optimal-Pareto 

solutions more uniform and with more intensity. 

As a future work we can make the algorithm and 

its parameters more accurate to achieve acceptable 

results for dynamic functions. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 و توزیع یکنواخت راهنماانتخاب  برایی معیار :ذرات برای مسائل چند هدفه گروهبهینه سازی  الگوریتم 

  

 همایون موتمنی 

 .ایران دانشگاه آزاد اسلامی واحد ساری، ساری،، گروه مهندسی کامپیوتر

 21/23/1322؛ تاریخ پذیرش: 30/21/1322تاریخ دریافت: 

 چکیده:

برای  اهنماذرات ر شده است، که در آنذرات پیشنهاد  گروهبهینه سازی الگوریتم  برای حل مسائل چند هدفه با استفاده از بهبود یدر این مقاله روش 

ر شده است. دپیشنهاد  بهینه برای بهبود راه حل های انتخاب و حذف ذرات. دو روش برای بکار گرفته شده استات موجود در دامنه مسئله ذرهدایت 

. یک معیار تراکم برای حذف گیردصورت میذرات  n برای هر اهنماذره بهینه و در راه دوم انتخاب یک رm بر اساس میانگین  راهنماانتخاب  راه اول

ند هدفه مورد ارزیابی قرار سه آزمون استاندارد در مسائل بهینه سازی تکاملی چروش ارائه شده بر اساس  شده است.ذرات در هر دو روش استفاده 

 نتایج نشان باشد.تی و خطا مییکنواخ صر موجود در مجموعه بهینه پارتو،عنا تعداد ،این مقالهدر  ی شدهارزیاب پارامترهای و هامعیار گرفت.

  SIGMA وCMPSO  پایه وPSO شدرستی و با تراکم بالا و خطای کمتر در مقایسه با رودهد که روش ارائه شده تعداد ذرات بهینه بیشتری را به می

بهینه سازی چند هدفه  روش مناسب برای حل مسائل به عنوان یکتوان از این روش میکند و جستجو می PAESو microGA و  NSGA-II و

 .نموداستفاده 

 .ذرات، فاصله تراکم، جهش بهینه سازی چند هدفه، بهینه سازی گروه :کلمات کلیدی

 


