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Abstract 

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. 

The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison 

with their surrounding background. One way to improve the performance and runtime of these algorithms is 

to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of three popular linear 

dimensionality reduction methods on the performance of three benchmark anomaly detection algorithms. 

The Principal Component Analysis (PCA), Fast Fourier Transform (FFT) and Discrete Wavelet Transform 

(DWT) as DR methods, act as pre-processing step for AD algorithms. The assessed AD algorithms are Reed-

Xiaoli (RX), Kernel-based versions of the RX (Kernel-RX) and Dual Window-Based Eigen Separation 

Transform (DWEST). The AD methods have been applied to two hyperspectral datasets acquired by both the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Mapper (HyMap) sensors. The 

evaluation of experiments has been done using Receiver Operation Characteristic (ROC) curve, visual 

investigation and runtime of the algorithms. Experimental results show that the DR methods can significantly 

improve the detection performance of the RX method. The detection performance of neither the Kernel-RX 

method nor the DWEST method changes when using the proposed methods. Moreover, these DR methods 

increase the runtime of the RX and DWEST significantly and make them suitable to be implemented in real 

time applications. 
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1. Introduction 

Hyperspectral imaging is a suitable tool for target 

detection and recognition in many applications, 

including search-and-rescue operations, mine 

detection, and military usages. Hyperspectral 

sensors are powerful tools for distinguishing 

between different materials on the basis of each 

object's unique spectral signatures; these sensors 

are able to do this because they collect 

information about surfaces and objects in 

hundreds of narrow contiguous spectral bands in 

the visible and infrared regions of the 

electromagnetic spectrum [1]. 

Anomaly Detection (AD) is a special kind of 

target detection (TD) techniques with no priori 

information about the targets. The main purpose 

of these algorithms is to find the objects in a given 

image that are anomalous with respect to their 

surrounding background [1]. In other words, the 

point of anomaly detectors is to find the pixels 

whose spectra significantly differ from the 

background spectra [2]. The main advantage of 

these methods is that they don’t need priori 

information about the target signature, nor do they 

need any form of atmospheric or radiometric 

corrections on data [3]. 

The Reed-Xialoi (RX) is the most widely used 

AD algorithm; it is known as a benchmark 

anomaly detector for multi/hyperspectral images. 

This algorithm, which is derived from the 

generalized likelihood ratio test (GLRT), assumes 
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that the background pixels in a local 

neighbourhood around the target can be modelled 

by the multivariate normal (Gaussian) distribution 

[4,5]. 

The most reported problem for the RX and many 

of its modified versions is the “small sample 

size”. This problem concerns the estimation of a 

local background covariance matrix from a small 

number of very high dimensional samples. This 

may result in a badly conditioned and unstable 

estimate of local background covariance matrix 

that strongly affects the detection performance of 

the AD algorithm [6]. The first solution to this 

problem is enlarging the sample size by 

expanding the local window size. This solution 

tries to resolve the non-homogeneity of the local 

background, which undermines the effectiveness 

of the covariance matrix estimation. Another 

solution for this problem is using the Dimension 

Reduction (DR) [6,7]. 

The performance of many AD algorithms can be 

improved by using a pre-processing DR step. The 

reason is that the hypercube is a relatively large 

empty space and the most important or interesting 

information is represented in a few features [8,9]. 

The DR step, used as a pre-processing step of the 

AD algorithm, can reduce the inter-band spectral 

redundancy and ever-present noise. Although the 

DR is lossy, it increases the separation between 

anomaly and background signatures. Thus, the 

detection performance of the anomaly detector is 

improved. 

Another reason for using DR algorithms is that 

AD algorithms, such as RX, involve the inverse 

local clutter covariance matrix. This covariance 

matrix is usually singular, due to the high 

dimensionality of the hyperspectral data [10]. In 

addition, in hyperspectral image data, the 

correlation between the different bands, i.e. 

information redundancy, is high. As a result, by 

reducing the number of image bands, the 

correlation between them is decreased and 

therefore the problem is solved. Furthermore, 

since DR brings data from a high order dimension 

to a low order dimension, it can overcome the 

“curse of dimensionality” problem [11]. 

DR techniques are divided into two categories: 

linear and nonlinear. Although linear techniques 

do not exploit the nonlinear properties in 

hyperspectral data, they can be fast enough for 

real time applications. A popular linear DR 

method, which is ideally used for small target 

detection is Principle Component Analysis (PCA) 

[12]. There are other linear DR methods, such as 

the Discrete Wavelet Transform (DWT) and Fast 

Fourier Transform (FFT), which can be used to 

improve the performance and runtime of AD 

algorithms [13,14]. 

A general framework of an AD scenario is shown 

in figure 1. For the first step, the spectral 

dimension of an image cube is reduced through 

using a DR method. The AD algorithm is then 

used to analyse new image; the result is a two 

dimensional matrix named “AD matrix”. To 

specify the locations of anomalies or targets in the 

image, a post-processing threshold step can be 

added to the algorithm. 

 

Figure 1. Flowchart of hyperspectral AD using the pre-

processing DR method. 

In this study, three linear DR methods PCA, DWT 

and FFT are used as a pre-processing step for 

three famous AD methods: RX, Kernel-RX and 

DWEST and the impact of DR step on the 

performance of the AD methods is evaluated. The 

Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) and Hyperspectral Mapper (HyMap) 

datasets are being used to both apply and evaluate 

the performance of methods on real hyperspectral 

remotely sensed images using Receiver Operation 

Characteristic (ROC) curve [15], area under the 

ROC curve (AUC) [7], visual investigation and 

runtime of the algorithms. 

This paper is organized as follows: Section 2 

provides a brief overview of three popular AD 

methods: RX, Kernel-RX, and DWEST. In 

section 3, the DR methods (PCA, DWT and FFT) 

are introduced. The results of the experiments will 

be discussed in section 4. Lastly, concluding 

remarks are given in section 5. 

 

2. Anomaly detection methods 

2.1. RX detector 

The RX algorithm is the most famous AD 

algorithm, developed by Reed and Yu [16]. RX is 
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considered to be a benchmark AD algorithm for 

hyperspectral images; it works as follows: 

Assume that r is an image pixel vector that has L 

elements, where L is the number of image’s 

spectral bands. The RX detector is defined by (1).  

    1 ( )
T

rxd L Lr r C r  

     (1) 

In this equation, µ is the sample mean and C is the 

sample data covariance matrix. Finally δrxd(r) is 

the well-known mahalanobis distance that shows 

the abnormality amount of pixel under test (PUT). 

The result of AD process is a two-dimensional 

detection matrix. To determine the exact location 

of targets (anomalies), a threshold should be 

performed on the detection matrix. 

 

2.2. Kernel-RX detector 

The Kernel RX is a nonlinear version of the RX 

detector, which was introduced by Kown and 

Nasrabadi [5]. This method is based on the kernel 

theory. It performs far better than the standard RX 

detector. The kernelized version of the RX 

detector is defined by (2). In this equation T

rK , 

b

TK


 and bK  are defined as follows: 
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k(Xb,r)T represents a vector whose entries are 

kernels k(x(i),r), i=1…M, and  
1

1
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represent the scalar mean of k(Xb,r)T. In addition, 

Kb is the Gram matrix before centering, and the 

elements of M×M matrix (1M)i,j=1/M. 

 

2.3. DWEST 

Dual Window-based Eigen Separation Transform 

(DWEST) is an adaptive anomaly detector, 

developed by Kwon et al. [17]. This method uses 

two windows, called “inner windows” and “outer 

windows”, both of which are designed to 

maximize the separation between two-classes of 

data: target class data and background class data. 

The inner window is used to capture targets in the 

window; the outer window is used to model the 

local background. This algorithm extracts targets 

by projecting the differential mean between two 

windows onto the eigenvectors, which are 

associated with the first few largest Eigen-Values 

of the difference covariance matrix. If the 

covariance matrix of the inner and outer windows 

is named Cin and Cout, the difference covariance 

matrix which represents the differential second-

order statistics between the two classes, is defined 

in the following way: 

diff inner outerC C C    (6) 

The eigenvalues of Cdiff are divided into two 

groups, negative values and positive values. The 

eigenvectors associated with a small number of 

large positive eigenvalues of Cdiff can successfully 

extract the materials in the inner window that are 

spectrally distinctive. If the mean of inner and 

outer windows represented by min and mout, and 

the eigenvectors represented by the positive 

eigenvalues in this set are donated by {vi}, the 

DWEST detector projects the differential mean of 

two windows (which is defined by (7)) onto {vi} 

by (8) [18,19]. 

diff inner outerm m m    (7) 

( ) ( )
i

DWEST T

i diff

v

r v m r     (8) 

 

3. Dimensionality reduction methods 

3.1. PCA 

PCA is the best known technique for data 

reduction. The main purpose of PCA is to reduce 

a dataset that consists of a large number of 

interrelated variables, while retaining the variation 

of the dataset as much as possible. This purpose is 

achieved by transforming the data into a new set 

of variables, the principal components (PCs), 

which are both uncorrelated and ordered so that 

the first few PCs retain most of the variation 

present in all of the original variables [20]. An 

important problem in PCA-RX is the number of 

PCs that determine the amount of band reduction 

for a hyperspectral image. 

 

3.2. DWT 

As a different DR method, one can use the DWT 

to reduce the dimension of a hyperspectral image; 

it was first investigated for AD methods by Zare-

Baghbidi et al. [13]. A pixel within the 

hyperspectral image, like a signal, has low 

frequency components for its major part, and high 

frequency components for its minor part. Thus, 

the main behaviour of a signal can be found in 

approximation coefficients of the DWT, which are 

related to low frequencies of the main signal [21]. 

As an example, Figure 2 presents the spectral 

signature of a given pixel a from a hyperspectral 

image with 64 bands (part [a]). The four-level 

DWT coefficients of this signal, obtained using 

the Daubechies4 wavelet transform [22], are 
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presented in part (b) of figure 2. As can be seen, 

only four samples, which are related to low 

frequencies in the original signal, carry relevant 

information about the signal. However, the rest of 

samples do not contain any relatively important 

information. Therefore, these samples can be 

discarded without losing significant information. 

As a result, the first four samples are the 

approximation coefficients of the main signal and 

are used to detect the anomalies. 

The DWT DR method first calculates the DWT 

coefficients of every pixel in a hyperspectral data 

cube using the Daubechies8 wavelet. This wavelet 

transformation decomposes the main signal until 

eight samples are left. The eight samples provided 

in a matrix are called the “approximation matrix”. 

The approximation matrix is an image that has 

eight bands; this matrix is an abstract of the 

original image and can represent the main 

behaviour image data. Therefore, the anomaly 

detectors can be performed on this matrix.  

 

Figure 2. (a) A spectrum pixel of a hyperspectral image, 

(b) 4-level DWT of the main signal. 

 

3.3. FFT 

For the purpose of AD, the DFT can be used in a 

three-step framework (see Figure 3) [14]. In the 

first step, the Discrete Fourier transform (DFT) of 

every image pixel is calculated using the Fast 

Fourier Transform (FFT) [23]. The “DFT 

amplitude” of the “DFT values” is then 

calculated. The results are stored in a matrix 

named “amplitude” (Figure 3.b). The last step 

uses a few bands of the amplitude matrix, which 

are related to low frequencies (and high values) of 

the main image. A new matrix is formed by this 

process. This new matrix is actually the abstract 

of the FFT amplitude matrix (Figure 3.c). The size 

of this abstract matrix is related to the amount of 

band reduction, and can be selected during the 

experiment. 

 

Figure 3. (a) Hyperspectral image matrix, (b) FFT 

Amplitude of hyperspectral matrix, (c) Abstract of FFT 

Amplitude matrix [14]. 

4. Experimental results 

4.1. HyMap data 

This hyperspectral data is an image of the Cooke 

City in Montana, collected by HyMap 

(Hyperspectral Mapper) sensor. This image, 

which released for Target Detection Blind Test 

project, has 126 spectral bands with wavelengths 

from 453 to 2496 nanometers (nm) and an 

approximate ground sampling distance (GSD) of 

3 meters [24]. During the image acquisition 

campaign, 12 real targets were located in an open 

grass region. Targets of this image are divided 

into two parts: self-test and blind-test. Because 

only the real location of the self-test targets is 

available, this part of the image cannot be used to 

evaluate the performance of the AD algorithms. 

Due to this limitation, some self-test targets (red 

cotton, blue cotton, yellow nylon, and red nylon) 

were selected and implanted in another part of the 

image. To implant the targets in this sub-image 

(named “Img-I”) a target implanted method [25] 

has been used. For this method, a synthetic sub-

pixel anomaly, z, is a combination of both the 

target and background, as shown in (9). In this 

equation, t and b shows (i.e., denotes) the target 

and background respectively. Therefore, sub-pixel 

(z) consists of the target’s spectrum with fraction 

f, and the background’s spectrum with fraction (1-

f) [25]. 

 . 1 .z f t f b     (9) 

This implantation method does not include the 

adjacency effects of the target spectrum on the 

local background pixels. To have a more realistic 

condition, the background pixels, which are 

neighbours of the targets, can be affected by a 

target pixel. This effect can be achieved by using 

a Gaussian function with a width of w, as shown 

in (10), where pi is the spatial distance between 

background pixel (zi) and the target pixel (t) [4]. 
2 2

2 2
exp . . 1 exp . .i i

i iz f t f b
w w

     
         

    
  (10) 

To construct the desired image, according to 

figure 4, a part of the main image is selected; the 

targets are then implanted in the selected sub-

image (Figure 4(a)). To apply the effect of the 

background on targets and make sub-pixels, 

outlines of targets have been selected and 

combined with their adjacent background 

according to (9) with the coefficient f=0.6. To 

apply the effect of anomalies on the background 

pixels (10) is used. The final image with 

implanted targets includes sub-pixel and full-pixel 

(or multi-pixel) targets. As a result, this image 

seems to be a perfect data for testing AD and TD 

algorithms.  



Zare-Baghbidi et al./ Journal of AI and Data Mining, Vol 3, No 1, 2015 

15 
 

The truth location of the targets that are either sub-pixel or full-pixel is shown in figure 4(b). 

 

Figure 4. A natural color composite of the HyMap data cube, (a) selected sub-image with implanted targets (Img-I), (b) truth 

location of targets [26]. 

 

4.2. AVIRIS data 

Two other sub-images have been extracted from a 

hyperspectral image of a naval air station in San 

Diego, California, collected by the AVIRIS sensor 

[27, 28]. This data cube has 189 useful spectral 

bands with wavelengths from 400 to 2500 nm and 

a GSD of 3.5 meters (see Figure 5).  

 

 

Figure 5. A natural color composite of the AVIRIS data 

cube, (a) sub-image with real targets (Img-II), (b) truth 

locations of targets in Img-II and (c) sub-image with real 

targets (Img-III) [14]. 

 

The first sub-image, named Img-II, is an 80×80 

pixel data cube that contains some military targets 

as anomalies and is used to evaluate the exact 

detection performance of algorithms using 

Receiver Operation Characteristic (ROC) curve 

(Figure 5(a)). The truth location of targets in this 

sub-image is shown in figure 5(b). The second 

sub-image, named Img-III, is an image window 

with 100×100 pixels. This sub-image contains 38 

anomalous targets, which may be either 

helicopters or helipads, as shown in figure 5(c).  

 

This sub-image is used in some TD works [29]; it 

is also used to evaluate the runtime of anomaly 

detectors. 

 

4.3. Implementation 

To evaluate the performance of the AD and DR 

methods, three AD algorithms, namely, the RX, 

Kernel-RX, and DWEST, have been implemented 

in the standard mode (without a pre-processing 

DR step) and with the three mentioned DR 

methods. Algorithms have been addressed 

according to table 1. 

Table 1. Addressing AD algorithms. 

Main 

Algorithms 

Algorithms 

using PCA 

DR method 

Algorithms 

using DWT 

DR method 

Algorithms 

using FFT DR 

method 

RX PCA-RX DWT-RX FFT-RX 

Kernel-

RX(KRX) 
PCA-KRX DWT-KRX FFT-KRX 

DWEST PCA-DWEST DWT-DWEST FFT-DWEST 

 
 

One of the most important decisions for AD 

algorithms is the detection window size [4]. 

Although there is no specific method for choosing 

these windows [4], the size of the inner window 

should be almost as large as the biggest target in 

the scene. In addition, the size of the outer 

window should be large enough to provide a 

sufficient number of background samples for 

simulating the local background [30]. According 

to the both above-mentioned rules and the results 

of the experiment, the inner and outer window 

size for Img-I are selected 3×3 and 11×11 pixels, 

respectively. The inner and outer windows for 

Img-II are selected 5×5 and 13×13 pixels and 

these values for Img-III are selected 5×5 and 

11×11 pixels, respectively. 

An important decision for the DR methods is the 

amount of reduction that determines the number 
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of image/feature bands after the DR step. This 

parameter should be selected according to two 

metrics: performance and runtime. In this study, 

according to the experiments the band number of 

output images is assumed to be 8. Therefore, at 

the pre-processing step, the spectral bands of the 

main image are reduced to 8 useful bands. 

 

4.4. Detection performance evaluation 

The ROC curve is the best way to evaluate the 

detection performance of AD algorithms. The 

ROC is a curve that shows the true detection rate 

(TDR) versus the false alarm rate (FAR) in a 

particular scenario. The TDR and FAR can be 

computed by varying the detection threshold and 

counting both the number of true detection targets 

and the corresponding number of false alarms in 

every threshold value [1]. To evaluate the 

detection of algorithms more accurately, the AUC 

is used. This value is an exact criterion; it is 

widely used to evaluate the detection performance 

of target detection algorithms [7]. Another way to 

evaluate the performance of algorithms is the 

visual investigation. This evaluation can be a 

good criterion using the post-processing threshold 

step. In this study, the evaluation of algorithms for 

Img-I and Img-II datasets is done using the ROC 

curve and the AUC value; in addition, the Img-III 

data is used to evaluate algorithms visually. 

 

4.4.1. AD results of Img-I 

Figure 6 shows the ROC curves of the RX 

detector family for Img-I. The ROC curves of the 

Kernel-RX and DWEST families shown in figures 

7 and 8, respectively. The AUC values of all 

algorithms are presented in table 2. According to 

these criteria, the following results can be 

inferred. 

The detection performance of the RX method in 

the standard mode is very weak in general; 

however, the use of the per-processing DR 

methods increases its performance significantly. 

According to the AUC values, although the DWT-

RX and FFT-RX methods exhibit the best 

performance among the RX family, the 

performance of all the methods that use DR as a 

pre-processing step are almost superior. 

The performance of Kernel-RX method does not 

change using PCA or FFT DR methods as a pre-

processing step and DWT does not noticeably 

reduce its performance. For the DWEST family, 

DWT-DWEST performs best and the performance 

of other methods is almost the same. Of all the 

methods that are applied to Img-I, the DWT-

DWEST performs best and the RX method 

performs worst.  The performance of other 

methods is acceptable for detection of anomalies. 

 

Figure 6. ROC curves of the RX AD family for Img-I. 

 

Figure 7. ROC curves of the Kernel-RX AD family for 

Img-I. 

 

Figure 8. ROC curves of the DWEST AD family for Img-

I. 

 

Table 2. AUC values of the AD methods applied to Img-I. 

AD Algorithm 
Without 

DR 

PCA 

DR 

DWT 

DR 

FFT 

DR 

AUC (RX) 0.427 0.895 0.934 0.933 

AUC (KRX) 0.940 0.940 0.904 0.942 

AUC 

(DWEST) 
0.949 0.944 0.962 0.950 

 

 

4.4.2. AD results of Img-II 

The ROC curves of the RX, Kernel-RX and 

DWEST families, applied to Img-II, are shown in 



Zare-Baghbidi et al./ Journal of AI and Data Mining, Vol 3, No 1, 2015 

17 
 

figures 9, 10, and 11, respectively; the AUC 

values of these methods are shown in table 3. 

According to these criteria, the following results 

can be inferred. 

The performance of RX method used without DR 

step is very weak; using DR pre-processing step 

increases its performance significantly. The 

performances of RX family using the DR step are 

almost the same. In the Kernel-RX family the 

Kernel-RX and PCA-KRX have the best 

performance and the performance of DWT-KRX 

and FFT-KRX are same. According to the results, 

the performance of all methods of this family is 

almost the same. The performance of DWEST 

family in all cases is almost the same and this 

mean DR step does not change the performance of 

it. Among all AD algorithms applied to Img-II, 

the DWT-DWEST and FFT-DWEST methods 

exhibit the best performance; the RX method 

performs worst.  The performance of the other 

methods is good. These results are almost the 

same as the results inferred from the evaluation of 

the algorithms on Img-I. 

 

 

Figure 9. ROC curves of the RX AD family for Img-II. 

 

 

Figure 10. ROC curves of the Kernel-RX AD family for 

Img-II. 

 

Figure 11. ROC curves of DWEST AD family for Img-II. 

 

Table 3. AUC values of the AD methods applied to Img-

II. 

AD Algorithm 
Without 

DR 

PCA 

DR 

DWT 

DR 

FFT 

DR 

AUC (RX) 0.511 0.967 0.968 0.976 

AUC (KRX) 0.972 0.972 0.967 0.966 

AUC 
(DWEST) 

0.990 0.989 0.991 0.991 

 
 

4.4.3. AD results of Img-III 

Img-III is used to evaluate the performance of 

anomaly detectors in a real scene. Because the 

truth location of the targets in this image is not 

available, the detection performance of AD 

algorithms is investigated visually. To achieve a 

better visual investigation, a threshold step is 

added at the end of the AD procedure. To execute 

this post-processing step, a cut-off threshold is 

needed; this value can be calculated adaptively 

using (11) [31]: 

d dZ        (11) 

Where   is the cut-off threshold that declares 

whether a pixel is a target or not, d  and d  are 

the mean and standard deviation of the output of 

the AD algorithm, respectively, and Z  is the z 

statistic at the significant level of α, which 

controls the number of pixels declared to be 

anomalies. Figure 12 shows the output of the 

threshold step using the adaptive cut-off threshold 

of (11). 

According to these results, the performance of RX 

is very weak. In addition, DR step increases its 

performance significantly. The performance of 

Kernel RX family is almost the same. This family 

suffers from False Alarm Rate (FAR) that reduces 

their performance. The performance of the 

DWEST family algorithms is almost the same.  

 

4.5. Runtime evaluation 

To evaluate the speed of the AD methods, a 

computer system with an “Intel Core i5-2410M, 
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2.3GHz” processor and four GB of Random 

Access Memory (RAM) is used to measure the 

runtime of algorithms on Img-III, in equal 

conditions. 

 

Figure 12. Detection results of algorithms applied to Img-

III. 

The runtime of the DR methods is shown in table 

4 and the runtime of the AD methods, which 

includes the runtime of related DR pre-processing 

methods, is shown in table 5. In addition, figure 

13 compares the runtime of the methods using a 

column chart. 

Table 4. Runtime of DR methods applied to Img-III. 

DR method PCA DWT FFT 

Runtime (s) 0.4530 5.062 0.125 

 

Table 5. Runtime of AD methods applied to Img-III. 

AD Algorithm 
Without 

DR 

PCA 

DR 

DWT 

DR 

FFT 

DR 

Runtime (RX) 102.52 2.78 7.44 2.44 

Runtime (KRX) 303.36 187.05 192.02 187.13 

Runtime 

(DWEST) 
295.20 3.44 8.02 3.14 

 

 

According to these results, with using the 

dimension reduction techniques, the FFT DR 

method has the best runtime. Among the AD 

families, the RX family has best runtime; 

nevertheless the Kernel RX family has the worst 

runtime.  

The runtime of the RX and DWEST families that 

use the DR step is acceptable; these methods can 

be used in real-time applications by using parallel 

processing or hardware implementation of 

algorithms using field programmable gate array 

(FPGA) [32,33]. Of all the methods, the FFT-RX 

has the best runtime: its runtime is about 124 

times better than the slowest method, the Kernel-

RX. 

 

Figure 13. Runtime comparison of various anomaly 

detectors applied to Img-III. 

 

5. Conclusion 

This paper evaluated the impact of linear 

dimensionality reduction methods on the 

performance of anomaly detection algorithms. By 

reducing the dimensions of the hyperspectral 

image as a pre-processing step, the detection 

performance and runtime of AD algorithms are 

improved. PCA, DWT and FFT as the main DR 

methods have been used to evaluate the 

performance of RX, Kernel-RX and DWEST AD 

algorithms. The results of the experiment on the 

AVIRIS and HyMap datasets were assessed using 

the ROC curve, the AUC values, and a visual 

investigation. According to these results, these 

DR methods increase the detection performance 

of RX method significantly and do not diminish 

the performance of Kernel-RX and DWEST 

methods. In addition, DR methods improve the 

runtime of RX and DWEST detectors 

significantly but this improvement about Kernel-

RX is not much. FFT has the best runtime among 

DR methods and FFT-RX has the best runtime 

among AD methods. Based on these results, the 

DR methods, as a pre-processing step, can 

improve the performance of some AD algorithms 

and runtime of all algorithms. This runtime 

improvement makes the algorithms suitable for 

real-time application of TD in hyperspectral 

remotely sensed data. 
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