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Abstract 

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators 

using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, 

which covers many industrial applications of robotic manipulators. This kind of control law is in the class of 

torque-based control in which the joint torques are generated by permanent magnet dc motors in the current 

mode. The motor current is regulated using a proportional-integral controller. The novelty of this paper is a 

modification in using the discrete-time linear quadratic control for the robot manipulator, which is a 

nonlinear uncertain system. For this purpose, a novel discrete linear time-variant model is introduced for the 

robotic system. Then, a time-delay uncertainty estimator is added to the discrete-time linear quadratic control 

to compensate the nonlinearity and uncertainty associated with the model. The proposed control approach is 

verified by stability analysis. Simulation results show the superiority of the proposed discrete-time repetitive 

optimal control over the discrete-time linear quadratic control.  

 

Keywords: Discrete-Time Linear Quadratic Control, Optimal Control, Repetitive Control, Electrically 
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1. Introduction 

Discrete-time control is a favorite approach since 

the digital processors and computers have been 

used as common controllers. Digital control 

systems have more capabilities over the traditional 

control systems such as flexibility to changes, 

immunity to noises, and less number of 

computations [1]. The digital control was 

originally developed for linear systems using the 

famous z transform. Considering literature 

confirms that the discrete-time control has been 

developed to cover the nonlinear systems, as well. 

The discrete-time control of robotic manipulators 

was presented in various types such as sliding 

mode control [2], learning control [3], adaptive 

control [4] and [5]. In this paper, a discrete-time 

repetitive optimal control (DROC) is developed. 

A promising control approach to track periodic 

signals is repetitive control.  This type of control 

method can be used for performing repetitive 

motion, which covers many industrial applications 

of robotic manipulators. Repetitive control has 

gained a great deal of research interest in various 

forms of control approaches applied on the robot 

manipulators. The control performance is related 

to how well the uncertainty is compensated. A 

discrete-time repetitive control scheme was 

presented using the computed-torque control link 

to overcome a part of uncertainty model [5]. The 

repetitive model reference adaptive control [6] 

and the adaptive repetitive learning control [7] can 

overcome the parametric uncertainty and the 

periodic external disturbance. A Lyapunov-based 

repetitive learning control was presented to have a 

good tracking performance in the presence of 

unknown nonlinear dynamics with a known 

period [8]. A robust repetitive control was 

developed and can compensate uncertainties 

including the structured uncertainty and 

unstructured uncertainty [9]. Time delay method 

[10] and uncertainty estimation [11] can be used 

to control the robot manipulator by estimating the 

unknown dynamics and disturbances. Uncertainty 

can be well estimated by a time-delay estimator 

[12] or an adaptive fuzzy system [13]. The time-
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delay method was effectively applied to 

compensate uncertainty in the robust impedance 

control of a suspension system [12], robust 

repetitive control of rigid robots [9] and robust 

control of flexible-joint robots [14]. 

The repetitive adaptive control and repetitive 

robust control are appreciated to overcome the 

structured uncertainties and unstructured 

uncertainties, respectively. However, they may not 

provide an optimal control performance. The 

optimal control performance is a desired control 

goal for repetitive control, which can be achieved 

by Discrete-time Linear Quadratic Control 

(DLQC) in linear systems with no uncertainties. 

However, a model of robotic system is nonlinear 

and uncertain. Therefore, the nonlinearity and 

uncertainty should be compensated.  

This paper introduces a novel discrete-time linear 

time-variant model for the robotic system to apply 

the DLQC. The difference between the model and 

actual system is considered as a lumped 

uncertainty. A two-term control law is proposed in 

which the first term is a DLQC. The second term 

is a robust time-delay estimator to compensate the 

uncertainty and nonlinearity. The obtained control 

is called as the discrete-time repetitive optimal 

control.  The permanent magnet dc motor in the 

current mode generates the control command as 

the joint torque. The motor current is regulated 

using a proportional-integral controller.  

The rest of the paper is organized as follows: 

Section 2 presents the discrete-time linear time-

variant model for the robot manipulator. Section 3 

develops the discrete-time linear quadratic 

control. Section 4 presents stability analysis. 

Section 5 illustrates simulation results. Finally, 

Section 6 concludes the paper. 

 

2. Discrete-time linear time-variant model 

In order to define a model-based control, some 

discrete-time models were presented for the robot 

manipulators. However, some models such as [15] 

are too complex and some models such as [16] are 

too simple.  In order to apply the DLQC, a novel 

discrete-time linear time-variant model is 

introduced as follows. 

Dynamics of a robotic manipulator [17] is given 

by 

( ) ( , ) ( )D q q +C q q q +g q = T 

where, nRq  is the vector of generalized joint 

positions, ( )D q is the complete inertia matrix, 

( , )C q q q is the centrifugal and Coriolis torque 

vector, ( )g q is the gravitational torque vector.  

In the proposed approach, a permanent magnet dc 

motor drives each joint of the manipulator in the 

control system. The inserted torque on the joint to 

drive the manipulator is the load torque of motor, 

which is considered as 

   m m m m mT J θ B θ rT rξ 

where, nRmθ  is the vector of motor velocities, 

nRT  is the load torque,  nRmT  is the motors 

torque. The n n  positive diagonal coefficient 

matrices mJ , mB  and r  are the inertia, damping 

and reduction gear ratio, respectively. nRξ  

presents the external disturbances. 

Substituting (1) into (2) and using 1mθ r q  

yields 

 

1 1

( ) ( , ) ( )

  

 

m m mT J r q B r q

r D q q + C q q q + g q rξ 

Equation (3) can be written as 

( ) ( , ) ( )   mT M q q N q q q W q rξ 

Where 

 1( ) ( ) mM q J r rD q 

 1( , ) ( , ) mN q q B r rC q q 

( ) ( )W q rg q 

 
Then, it is easy to show that 

1 1 1

1

( ) ( , ) ( ) ( ) ( )

( ) ( )t

  



   

 m

q M q N q q q M q W q M q rξ

M q T




 
Using nominal terms in (8) obtains that 

1 1

1

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( )

ˆ ( ) ( )t

 



   

m

q M q N q q q M q W q

M q T φ



where, ˆ ( )M q , ˆ ( , )N q q  and ˆ ( )W q  are the nominal 

terms for the real terms ( )M q , ( , )N q q  and ( )W q , 

respectively, and φ  is the  uncertainty.  

The nominal terms have the same dynamics as the 

real terms with parametric errors. The uncertainty 

φ  is expressed by substituting (8) into (9) as 

1 1

1 1

1 1 1

ˆ ˆ( ( ) ( , ) ( ) ( , ))

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) ( ( ) ( )) ( )t

 

 

  

 

 

   m

φ M q N q q M q N q q q

M q W q M q W q

M q rξ M q M q T



Assume that there exists a ( ) ( )t tm mdT T  that 

satisfies 
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1

1 1

ˆ ˆ( ) ( , )

ˆ ˆ ˆ( ) ( ) ( ) ( )t



 

 

 

d d d d d

d d d md

q M q N q q q

M q W q M q T


where, dq  is the desired trajectory. Subtracting 

(9) from (11) yields 

1 1

1 1

1 1

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , )

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

t t

 

 

 

  

  

 

d d d d d

d md m

d d

q q M q N q q q M q N q q q

φ M q T M q T

M q W q M q W q



Or, writing it out, 

1

1 1

ˆ ˆ( ) ( , )( )

ˆ ˆ( )( ( ) ( )) ( )t t



 

    

 

d d d d d

d md m d

q q M q N q q q q

M q T T M q ψ



where, the uncertainty ψ  is expressed as 

1

1

1

ˆ ˆ ˆ ˆ( ( ) ( ) ( , ) ( )

ˆ ˆ ˆ( , )) ( ( ) ( ) )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )







 

  

 

d d

d d d m

d d

ψ M q M q N q q W q

N q q q M q M q I T

M q φ M q M q W q



where, I  is the identify matrix. The lumped 

uncertainty ψ  includes the parametric 

uncertainty, unmodelled dynamics and external 

disturbances. The state space form of (13) is given 

by 

( , ) ( ) ( )  d d d dE A q q E B q U B q ψ                    (15)   

where, E  is the state vector, U  the input vector, 

( , )d dA q q  the state matrix and ( )dB q  a gain 

matrix. The details are 

1
( , )

ˆ ˆ( ) ( , )

 
  

  
d d

d d d

0 I
A q q

0 M q N q q

 
  

 

d

d

q q
E

q q


1
( )

ˆ ( )

 
  
  

d

d

0
B q

M q



( ) ( )t t md mU T T 

The proposed model (15) has an advantage that 

( , )d dA q q  and ( )dB q  are known in advance, 

however, this model includes the uncertaintyψ . 

The proposed model is an uncertain linear time-

variant system with periodical coefficients. I 

obtain from (15) a linear discrete-time time-

variant system using a sampling period   that is a 

small positive constant. Substituting k  into t   

for 1,2,...k   and then approximating E  as 

( ( ) ( )) /t t   E E E  provides a discrete-time 

model in the form of 

1k k k k k k k   E A E B U B ψ 

where, ( )k kE E , ( )k k  A I A , 

( )k k B B , ( )k kU U  and kψ  denotes the 

uncertainty. Since kA  and kB  are available, they 

can be computed in advance. 

 

3. Discrete-time repetitive optimal control  

A two-term control law is proposed to track the 

desired trajectory. The first term is DLQC and the 

second term is a robust time-delay controller. 

Thus, system (17) is presented as 

1 1, 2,k k k k k k k k k    E A E B U B U B ψ 

where, 1,kU  and 2,kU  are the first and second 

terms of control input. The control performance is 

improved if the lumped uncertainty kψ  is 

compensated. The uncertainty is perfectly 

compensated if 

2,k k BU Bψ 

Since kψ  is not known, control law (19) cannot 

be defined. To estimate the uncertainty, I obtain 

from (18) 

1 1, 2,k k k k k   Bψ E AE BU BU 

Since 1kE  is not available in the kth step, kBψ  

cannot be calculated. Instead, the previous value 

of kBψ  is used as 

1 1 1, 1 2, 1k k k k k      Bψ E AE BU BU 

The term 1kBψ  can be calculated since all terms 

in the RHS of (21) are known and available. Thus, 

a robust control law is proposed as 

2, 1k k BU Bψ 

The second term in the control law is expressed 

by substituting (21) into (22) to yield the robust 

time-delay controller [9] 

2, 1 1, 1 2, 1k k k k k      BU E AE BU BU 

Substituting (22) into (18) yields 

 1 1, 1k k k k k    E AE BU B ψ ψ 

In order to apply the DLQC, a nominal model in 

the form of discrete-time linear system is 

suggested from (24) as 

1 1,k k k  E AE BU 

Then, the DLQC is given by 

1,k k k U K E 
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The gain matrix kK  is calculated by minimizing a 

cost function of [1] 

   

 

*

* * *
1 1, 1, 1 1, 1

*
0

1, 1 1

0.5

1

2

N N

N k k k k k k k k k k

k
k k k k k k

L

  


 

 

    
 
 
   
 



E SE

E QE U RU λ A E B U E

A E B U E λ



With respect to kE , 1,kU  and kλ , where  kλ  is the 

Lagrange multiplier, Q , R and S  are symmetric 

positive definite matrices.  As a result, 

* 1 *[ ]k k k k k k k
 K R B p B B p A 

Where kp  is calculated as 

* * * 1 *
1 1 1 1[ ]k k k k k k k k k k k k k


      p Q A p A A p B R B p B B p A



The algorithm starts from 0k   in (29), where 

1 p 0 . Then, kK  is calculated as (28). Next,  

1,kU  is computed from (26). 

The discrete-time repetitive optimal control 

(DROC) is formed using (23) and (26) as 

 
    

1

1 1, 1 2, 1

.T T
k

k k k k k



  



    

U B B B

I BK E AE B U U



In which from (16)  
1

2ˆ ( )T


 dB B M q and 

*
k k k md mU T T 

Calculating kmdT  from (11), *
kmT  is obtained from 

(31) as 

* ˆ ˆ ˆ( ) ( , ) ( )k k k k k k k k   m d d d d d dT M q q N q q q W q U



where, kU  is computed by (30). 

The vector of motor torques kmT  is proportional 

to the vector of motor currents kI  as 

k km mT K I 

where, mK  is the torque coefficient matrix.  Thus 

*
,k km m dT K I 

Then, it is easy to show 

1 *
,k k

d m mI K T 

where, ,kdI  is the desired armature current. 

A proportional integral controller is proposed to 

control the electric motors for generating the 

desired torque (34) as 

 1 1k k k k k    p IV K e e K e V 

where, ,k d k k e I I , nRV  represents a vector 

of motor voltages as the input of robotic system. 

 

4. Stability analysis  

To make the dynamics of tracking error well-

defined in such a way that the robot can track the 

desired trajectory, the following assumptions are 

made: 

Assumption 1: The desired trajectory dq  must be 

smooth in the sense that dq  and its derivatives up 

to a necessary order are available and all 

uniformly bounded. 

Smoothness of the desired trajectory can be 

guaranteed by proper trajectory planning. 

As a necessary condition to design a robust 

controller, the matching condition must be 

satisfied:  

Matching condition: the uncertainty must be 

entered into the system the same channel as the 

control input. Then, the uncertainty is said to 

satisfy the matching condition [18] or equivalently 

it is said to be matched. I ensure the matching 

condition since in the system (15), the lumped 

uncertainty ψ  enters the system the same channel 

as the control input U . 

As a necessary condition to design a robust 

control, the external disturbance ξ  in (2) must be 

bounded. 

Assumption 2: The external disturbance ξ  is 

bounded as 

maxξ 

where, max  is a positive constant. 

The voltage of every motor should be limited to 

protect the motor against over voltages. For this 

purpose, every motor is equipped with a voltage 

limiter. Therefore, the following assumption is 

made: 

Assumption 3: The voltages of motors are 

constrained as 

maxVV 

where, maxV  is the template value of motor 

voltage. 

The robust discrete-time linear quadratic is 

formed using (23) and (26) as 

 

 
1

1, 1 2, 1

k k k k k k k

k k k



 

   

 

B U I B K E A E

B U U

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Applying the control law (39) on the system (17) 

and using (21) results in the closed-loop system 

   1 1k k k k k k k k    E A B K E B ψ ψ 

The lumped uncertainty ψ  is bounded as  

maxψ 

where, max  is a positive scalar.  

Proof: Under assumptions 1-3 and the matching 

condition, it is proven in [14] that for electrically 

driven robot manipulators, the vector of motor 

velocities mθ  and the vector of motor currents aI  

are bounded. Since  mq rθ , the vector of joint 

velocities q  is bounded. Since m m aT K I , The 

vector of motor torques mT  is bounded. For t ,  

0 t T   where T  is the operating time of the 

desired trajectory dq , it can be written that 

0
(0)

t
dt q q q . Since q  is bounded, the vector of 

joint positions q  is bounded. 

According to the properties of robot manipulator 

[19], ( )D q , ( , )C q q q  and ( )g q  in (1) are bounded 

as 1 2( ) ( )m m I D q q I , 3( , ) ( )mC q q q q q  and 

4( ) ( )mg q q . The matrix ( )D q  is a positive 

definite symmetric matrix which is invertible, 1m  

is a positive constant, 2( )m q , 3( )m q , 4( )m q  are 

positive definite functions of q , and I  is an 

identity matrix. Since r , mJ  and mB  are constant 

diagonal matrices and ( )D q , ( , )C q q q  and ( )g q  

are bounded, thus ( )M q , ( , )N q q  and ( )W q  

expressed in (5), (6), and (7) are bounded. The 
ˆ ( )M q , ˆ ( , )N q q  and ˆ ( )W q  are the nominal terms 

with the same structure with ( )M q , ( , )N q q  and 

( )W q . Thus, they are bounded as well. It was 

implied that q , q  and mT  are bounded. The 

external disturbance ξ  is bounded in assumption 

2. Therefore, the boundedness of all terms in (10) 

implies that φ  is bounded. Thus, the boundedness 

of all terms in the right hand side of (14) proves 

that ψ  is bounded.  

Since the DLQC provides kK  such that 

k k kA B K  is Hurwitz, thus system (40) is stable. 

In addition, the term  1k k kB ψ ψ  is a bounded 

input to system (40) because the lumped 

uncertainty ψ  is bounded in (41) and kB  is a gain 

matrix. Therefore, the discrete-time linear system 

(40) provides a bounded output 1kE  under the 

bounded input  1k k kB ψ ψ . 

The robust time-delay control law (23) plays a 

main role in compensating the uncertainty. If there 

exists a much difference between the nominal 

model (25) and the actual system (24), the closed-

loop system (40) is subject to a large uncertainty. 

The residual uncertainty in the closed-loop system 

(40) is reduced from a large value of k kB ψ to a 

small value of  1k k kB ψ ψ  due to using the 

robust time-delay control law (23). As a result, the 

performance of control system is improved by 

reducing the residual uncertainty. The residual 

uncertainty  1k k kB ψ ψ  will be very small 

when the uncertainty is smooth and sampling time 

is very short. 

 

5. Simulation results  

The proposed control algorithms, namely DROC 

in (30) are applied on an articulated robot 

manipulator given by [14]. The motor parameters 

are given in table 1, while the three motors are the 

same. 

Table 1. Parameters of dc servomotors. 

mK  
mJ  mB  r/1  aR  aL  

0.26 0.002 0.001 100 1.26 0.001 

The desired repetitive trajectory is given by 

 cos(0.1 ) cos(0.1 ) cos(0.1 )
T

t t t  dq 

where, dq  is a vector of desired joint angles with 

a period of 20sec . 

Simulations are presented to show the 

performance of proposed control laws DROC in 

(39) and DLQC in (26).  

The desired trajectory is sufficiently smooth and 

the motors are sufficiently strong such that the 

robot can track the desired trajectory. I run the 

simulations for two periods to illustrate the 

repetitive motion. 

The uncertainty may include the external 

disturbances, unmodelled dynamics, and 

parametric uncertainty. To consider the parametric 

uncertainty, all parameters of the nominal model 

used in the control law are given as 95%  of the 

real one. The external disturbance is given to load 

torque of the third joint by 100 .N m . The 

uncertainty is unknown; however, I have to use an 

example of a bounded uncertainty to check the 

performance of the control system. The matrices 
Q  and R  in (28) and (29) are given by trial and 

error method to have a good performance through 

using 8
6 610 Q I and 3 310 R I  where n nI  is the 
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n n  identity matrix. The matrices pK  and IK  in 

(36) are given by  

0.1 0 0 1 0 0

0 1 0 , 0 10 0

0 0 1 0 0 10

   
   

 
   
      

p IK K 

Simulation 1: The DROC in (30) for tracking 

control with the zero initial error is simulated. 

Using the sampling time of 0.001s , the tracking 

performance is very well such that the tracking 

error is under 59 10 rad  shown in figure 1. The 

sampling time of 0.001s  may be too short in real-

time control. Thus, the sampling time is set to 

0.01s . As a result, the tracking error is under 
47 10 rad  shown in figure 2. Compared with 

figure 1, the tracking error is increased if used 

longer sampling time. The real-time control needs 

a sufficient time for computation and 

implementation. The control efforts behave well 

under the permitted values shown in figure 3.   

To see the effect of initial error, it is set to

 (0) (0) (0) 0.5 1.5 2
T

rad  de q q .  

The tracking error is reduced well from initial 

value to be under 52.7 10 rad  at the end shown in 

figure 4.  

 
Figure 1. Tracking performance of DROC in the 

sampling time of 0.001s . 

 
Figure 2. Tracking performance of DROC in the 

sampling time of 0.01s . 

 
Figure 3. Control efforts of DROC. 

  

 
Figure 4. Tracking performance of DROC with initial 

error. 

 
Figure 5. Control efforts of DROC with Initial error. 

 

The control efforts behave well under the 

permitted values shown in figure 5. 
Simulation 2: I apply the DROC in (30) for the 

set point control in the sampling time of 0.01s . 

The initial positions of the joint angles are set to 

 (0) 0 0.5 2
T

radq  while the position of the 

desired trajectory is given by  1 1 1
T

raddq . 

The initial error is calculated as 

 (0) (0) (0) 1 0.5 1
T

rad   de q q . 

The motor voltages are practically limited to the 

maximum value of 40V  to protect the motors 

from over voltages. The set point performance is 

very well such that the norm of errors is vanished 
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well after 10s  and comes under the 72.2 10 rad  

in the end shown in figure 6. The motor voltages 

are under the permitted value of 40V and behave 

well without any problems shown in figure 7.  

The control efforts behave well under the 

permitted values. As a result, the uncertainties are 

compensated well.  

Simulation 3: I apply the DLQC in (23) for 

tracking control with zero initial error and the 

sampling time of 0.01s .  

The tracking errors are under the 0.085rad  shown 

in figure 8 and the control efforts behave well 

under the permitted value of 40V  shown in figure 

9. The maximum value of errors for the DLQC is 

about 121  times larger than one for the DROC.   

Simulation 4: The set point performance of the 

DLQC is simulated with the sampling time of 

0.01s . The initial errors and desired trajectories 

are given the same as the DROC for comparing 

the results.  The tracking errors are vanished after 

10s  and come under 0.033rad  in the end shown 

in figure 10.  

The motor voltages are under the permitted value 

of 40V and behave well without any problems 

shown in figure 11. The maximum value of errors 

for the DLQC is about 51.5 10  times larger than 

one for the DROC at the end. 

 

 
Figure 6. Set point  performance of DROC. 

  

 
Figure 7. Control efforts of Set point DROC. 

 
Figure 8. Tracking performance of DLQC. 

 

 
Figure 9. Control efforts of DLQC. 

  

 
Figure 10. Set point  performance of DLQC. 

  

 
Figure 11. Control efforts of DLQC. 
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6. Conclusion 

A novel discrete-time repetitive optimal control of 

electrically driven robot manipulators has been 

developed by a modification on the discrete linear 

quadratic control. The proposed control law 

includes two terms: The discrete linear quadratic 

controller and the robust time-delay controller. In 

order to apply the discrete linear quadratic control, 

a control-oriented discrete-time linear time-variant 

model has been proposed for the robotic system. 

The control-oriented model highly differs from 

the actual system. To compensate the model 

imprecision, I have used the time-delay controller. 

The proposed control approach has been verified 

by stability analysis. Simulation results have 

shown the superiority of the proposed control 

method over the discrete linear quadratic control. 

The time-delay controller efficiently compensates 

the uncertainty and nonlinearity. 
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 چکیده:

نهادی دهد. روش کنترل پیشگر عدم قطعیت را پیشنهاد میزمان بازوهای رباتیک الکتریکی با بکارگیری تخمین-کنترل بهینه تکراری گسسته ،این مقاله

مبنای گشتاور در گروه کنترل بر  ،این نوع کنترل گیرد.بر میدهای صنعتی بازوهای رباتیک را دررود که بسیاری از کاربرکار میبرای اجرای حرکت تکراری به

انتگرالی تنظیم -کننده تناسبیشود. جریان موتور توسط کنترلمستقیم در مود جریان تولید می-گشتاور مفاصل توسط موتورهای جریان قرار دارد که در آن

باشد. برای این که سیستمی نامعین و غیرخطی می زمان برای بازوی رباتیک است-شود. نوآوری مقاله، بهبود بکارگیری کنترل درجه دوم خطی گسستهمی

گر عدم قطعیت تاخیر زمانی به کنترل درجه ، تخمینسپسشود. زمان جدید برای سیستم رباتیک معرفی می-منظور، مدل تغییر پذیر با زمان خطی گسسته

گردد. روش کنترل پیشنهادی توسط تحلیل پایداری تایید میشود تا عدم قطعیت و بخش غیرخطی مدل را جبران نماید. زمان اضافه می-دوم خطی گسسته

 دهد.زمان نشان می-زمان پیشنهادی را بر کنترل درجه دوم خطی گسسته-سازی، برتری کنترل بهینه تکراری گسستهنتایج شبیه

  .گر عدم قطعیتتخمینکنترل بهینه، کنترل تکراری، بازوهای رباتیک الکتریکی، ، زمان-گسسته درجه دوم خطی کنترل :کلمات کلیدی


