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These models have the ability to operate on large
quantities of data and learn complex model
functions from examples, i.e., by training on sets
of input and output data.

The greatest advantage of Al techniques over
traditional modeling techniques is their ability to
capture non-linear and complex interaction
between variables of the system without having to
assume the form of the relationship between input
and output variables.

In the context of determination of liquefaction
occurrence, this method can be trained to measure
the relationship between the soil and earthquake
characteristics with the liquefaction potential,
requiring no prior knowledge of the form of the
relationship.

Even though most of the introduced Al techniques
have been successfully applied to CPT data, they
do have shortcomings. For example, in the ANN
approach, the optimum structure (e.g., number of
inputs, hidden layers, and transfer functions) must
be identified as a priori. This is usually done
through a trial and error procedure.

The other major shortcoming is the black box
nature of ANN model and the fact that the
relationship between input and output parameters
of the system is described in terms of a weight
matrix and biases that are not accessible to the
user [11].

Decision trees algorithms are quite transparent
and also do not need optimization of model and
internal parameters. Either a decision tree
partitions or the input space of data set into
mutually exclusive regions is assigned a label
(classification tree) or a value to characterize its
data points (regression tree). The decision tree has
a structure consisting of internal and external
nodes connected by branches. Each internal node
is associated with a decision function to determine
which node to visit next. Meanwhile, each
external node, known as a terminal node or leaf
node, indicates the output of a given input vector.
Figure 1 shows partitions of the input space into
four non-overlapping rectangular regions, and
each of which is assigned a labeled class ‘Ci’.
C4.5 introduced by Quinlan [12] is a known
algorithm widely used to design decision trees.
This paper investigates the capability of C4.5
decision tree for the prediction of liquefaction
potential of soil based on CPT data.

2. Materials and methods

2.1. Decision trees

Decision trees are fast and easy to use. The rules
generated by decision trees are simple and
accurate for most problems. Therefore, decision
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trees are very popular and powerful tools in data
mining [14].
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Figure 1. An example of a decision tree for classification
(a) binary decision tree (b) feature space partitioning [13].

In general, a decision tree is a tree in which each
branch node represents a choice between a
number of alternatives and each leaf node
represents a classification or decision [15]. An
unknown (or test) instance is routed down the tree
according to the values of the attributes in the
successive nodes. When the instance reaches a
leaf, it is classified according to the label assigned
to the corresponded leaf.

In the first stage of model construction, a
decision-tree induction algorithm is used to build
the tree. Many algorithms for decision tree
induction exist. Interactive Dichotomizer version
3 (ID3) and Commercial version 4.5 (C4.5)
[13,16] are the most widely used with the
classification and regression tree (CART)
algorithm [17]. C4.5 algorithm is an extension of
ID3 algorithm and the divide-and-conquer
approach [12] whose main improvements
included the pruning methodology and the
processing of numeric attributes, missing values
and noisy data.

The construction phase is begun at the root node
where each attribute is evaluated using a statistical
test to determine how well it can classify the
training samples. The best attribute is chosen as
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the test at the root node of the tree. A descendant
of the root node is then created for each either
possible value of this attribute if it is a discrete-
valued attribute or possible discretized interval of
this attribute if it is a continuous-valued attribute.
Next, the training samples are sorted to the
appropriate descendant node.

The process is repeated using the training samples
associated with each descendant node to select the
best attribute for testing at that point in the tree.
This forms a greedy search for a decision tree, in
which the algorithm never backtracks to
reconsider earlier node choices. Although it is
possible to add a new node to the tree until all
samples assigned to one node belong to the same
class, the tree is not allowed to grow to its
maximum depth. A node is only introduced to the
tree only when there are a sufficient number of
samples left from sorting. After the complete tree
is constructed, a tree pruning is usually carried out
to avoid data over-fitting.

A statistical test used in C4.5 for assigning an
attribute to each node in the tree also employs an
entropy-based measure. The assigned attribute is
the one with the highest information gain ratio
among attributes available at that tree construction
point. The information gain ratio Gain Ratio(4, S)
of an attribute ‘A’ relative to the sample set S is
defined as

. . Gain(4,S
Gain Rath(A'S) = Split Inforn(iati)on(A,S) (1)
Where
Gain(4,S) = Ent(S) — %Ent(é‘a) (2)
a€A
and
. . |Sal |Sq]
Split Information(4,S) = — Wlog2 G} 3
a€cA

S, is the subset of S for which the attribute A has
the value a. Obviously, the information gain ratio
can be calculated straightaway for discrete-valued
attributes.  In contrast,  continuous-valued
attributes are needed to be discretised prior to the
information gain ratio calculation.

2.2. Database

The database [5] used in this study consists of
total 109 cases, 74 of them are liquefied cases and
35 of them are non-liquefied cases. The database
contains: cone resistance (q.), total vertical stress
(oy), effective vertical stress (o), mean grain size
(Dsp), normalized peak horizontal acceleration at
ground surface (apax), cyclic stress ratio (t/og)
and earthquake magnitude (M,,). The range of

values associated with each input variable is
shown in table 1.

Generally in pattern recognition procedures (e.g.,
ANN, SVM or GP) it is common that the model
construction is based on adaptive learning over a
number of cases and the performance of the
constructed model is then evaluated using an
independent validation data set. Therefore, in the
present study, a total of 74 datasets are considered
for the training dataset, and other datasets are
considered for the testing dataset. The training and
testing datasets are the same as the ones used by
Goh [5] and Samui [9].

Table 1. Range of values associated with the input
variables used in liguefaction analysis.

Input variable Range
Cone tip resistance, q. (MPa) 1.0-31.4
Total vertical stress, g, (kPa) 17-122

Effective vertical stress, o (kPa) 17-249

Mean grain size, Ds, (mm) 0.06-0.67
Maximum horizontal ground surface 0.1-0.8

acceleration, a,,,, (9)

Cyclic stress ratio, 7/a; 0.06-0.72
Earthquake moment magnitude, M,, 6.6-7.8
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3. Result and discussion

For building the model based on training data set,
C4.5 algorithm implemented in WEKA software
[18] was used. WEKA is written in Java and is
freely available from Waikato University website
[19].

The Decision tree generated by C4.5 algorithm is
shown in figure 2, table 2 and table 3 illustrate the
performance of C4.5 decision tree for training
and testing dataset respectively. For the training
patterns, three cases of liquefaction were wrongly
classified. For the testing patterns, one case of
liquefaction was wrongly classified.

Training and testing performance have been
determined by using (4).

Training= Testing performance (%) =
(No of data predicted accurately by C4.5) % 100 (4)
Total data

As the results presented in table 2, the
performances of C4.5 decision tree for training
and testing data are comparable.

The successful prediction values are 95.9% for
training and 97.1% for testing data whereas the
overall success rate in predicting liquefaction in
all cases is 96.3%. The overall classification
success rate for the entire data set is slightly lower
than the overal
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rate of ANN and RVM models reported by Goh [5] and Samui [9], respectively (see Table 4).
<9.7 >9.7
(o)
<0.1 >0.1

<2.48 >2.48 <

0.2 >0.2
( Yes (4.0) ]  (No (10.0° /1.0")]
<7.2 >7.2

(Yes (14.0] (No (4.0/2.0)]
Figure 2. Decision tree generated by C4.5 algorithm.

@ Number of cases in this partition.

b Number of cases misclassified.

Table 2. Performance of C4.5 for training dataset.

M, o, (kPa) o, (kPa) q. (MPa) Apax (9) t/oy  Dgo (Mm) Actual liquefied Predicted liquefied?
75 53 36 3.20 0.16 0.15 0.331 Yes Yes
75 87 52 1.60 0.16 0.16 0.331 Yes Yes
75 99 58 7.20 0.16 0.17 0.331 Yes Yes
75 152 83 5.60 0.16 0.17 0.331 Yes Yes
75 91 63 5.45 0.16 0.14 0.331 Yes Yes
7.5 127 80 8.84 0.16 0.15 0.331 Yes No
75 211 120 9.70 0.16 0.15 0.331 Yes No
7.5 86 46 8.00 0.16 0.19 0.30 No No
75 95 50 14.55 0.16 0.18 0.30 No No
7.7 58 48 10.00 0.23 0.18 0.32 No No
7.7 73 54 16.00 0.23 0.20 0.32 No No
7.7 96 65 15.38 0.23 0.21 0.32 No No
7.7 54 46 1.79 0.23 0.17 0.32 Yes Yes
7.7 64 52 4.10 0.23 0.19 0.32 Yes Yes
7.7 96 67 7.96 0.23 0.21 0.32 Yes Yes
7.7 114 75 8.97 0.23 0.22 0.32 Yes Yes
7.8 57 42 1.70 0.40 0.35 0.06 Yes Yes
7.8 114 69 9.40 0.40 041 0.25 Yes Yes
7.8 148 85 5.70 0.40 0.42 0.25 Yes Yes
7.8 162 92 7.60 0.40 0.42 0.30 Yes Yes
7.8 17 17 1.50 0.40 0.27 0.17 Yes Yes
7.8 25 21 1.00 0.40 0.32 0.17 Yes Yes
7.8 34 25 5.00 0.40 0.36 0.17 Yes Yes
7.8 38 34 2.50 0.40 0.29 0.14 Yes Yes
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M, o, (kPa) o, (kPa) q. (MPa) Apax (9) t/oy  Dgo (Mm) Actual liquefied Predicted liquefied?
7.8 57 43 2.60 0.40 0.34 0.14 Yes Yes
7.8 76 52 3.20 0.40 0.37 0.16 Yes Yes
7.8 89 58 5.80 0.40 0.39 0.16 Yes Yes
7.8 122 74 3.50 0.40 0.40 0.16 Yes Yes
7.8 181 102 8.40 0.40 0.41 0.16 Yes Yes
7.8 38 29 1.70 0.40 0.35 0.12 Yes Yes
7.8 40 29 3.50 0.40 0.36 0.12 Yes Yes
7.8 51 35 4.10 0.40 0.38 0.12 Yes Yes
7.8 29 27 5.50 0.40 0.29 0.17 Yes Yes
7.8 57 40 9.00 0.40 0.37 0.32 Yes Yes
7.8 23 21 7.00 0.40 0.29 0.48 Yes Yes
7.8 34 26 1.18 0.40 0.35 0.48 Yes Yes
7.8 48 33 4.24 0.40 0.38 0.48 Yes Yes
7.8 76 71 11.47 0.40 0.27 0.16 No No
7.8 160 111 15.76 0.40 0.34 0.20 No No
7.8 59 56 11.39 0.20 0.14 0.21 No No
7.8 78 65 12.12 0.20 0.15 0.21 No No
7.8 99 75 17.76 0.20 0.17 0.14 No No
7.8 74 49 2.65 0.20 0.19 0.14 Yes Yes
7.8 53 35 4.40 0.20 0.20 0.16 Yes Yes
7.8 61 39 3.00 0.20 0.20 0.16 Yes Yes
7.8 156 81 9.00 0.20 0.23 0.08 Yes No
7.8 99 55 2.00 0.10 0.11 0.14 Yes Yes
7.8 95 52 1.10 0.20 0.23 0.07 Yes Yes
7.8 209 106 15.50 0.10 0.11 0.08 No No
7.8 217 110 6.50 0.10 0.11 0.08 No No
7.8 91 53 9.00 0.10 0.11 0.10 No No
7.8 101 58 2.50 0.10 0.11 0.10 No No
7.8 112 63 16.50 0.10 0.11 0.10 No No
7.8 91 68 13.65 0.10 0.06 0.25 No No
7.8 114 58 8.47 0.20 0.24 0.062 No No
7.8 228 112 4.55 0.20 0.23 0.067 No No
7.8 249 122 5.79 0.20 0.22 0.067 No No
7.8 121 55 248 0.20 0.25 0.062 Yes Yes
7.8 114 56 157 0.20 0.25 0.062 Yes Yes
7.8 213 103 1.45 0.20 0.23 0.67 Yes Yes
7.8 220 106 2.15 0.20 0.23 0.67 Yes Yes
7.8 230 111 2.60 0.20 0.23 0.67 Yes Yes
7.8 213 103 2.73 0.20 0.23 0.67 Yes Yes
7.8 219 106 1.78 0.20 0.23 0.67 Yes Yes
7.8 211 108 7.64 0.20 0.22 0.67 No No
6.6 29 29 25.60 0.80 0.44 0.11 No No
6.6 48 36 24.70 0.80 0.57 0.11 No No
6.6 64 42 31.40 0.80 0.64 0.11 No No
6.6 29 29 1.43 0.80 0.44 0.11 Yes Yes
6.6 64 42 2.48 0.80 0.64 0.11 Yes Yes
6.6 96 54 4.03 0.80 0.72 0.11 Yes Yes
6.6 29 29 3.30 0.80 0.44 0.06 No No
6.6 48 36 8.80 0.80 0.57 0.06 No No
6.6 64 42 6.70 0.80 0.64 0.06 No No
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Table 3. Performance of C4.5 for testing dataset.

M,  op(kPa) oo (kP2)  q.(MPa)  @mec(@) T/0h  Dgo (mm) Actual liquefied ﬁgﬁ‘g}‘l’gg‘i
78 89 78 165 020 041 017 Yes Yes
78 99 83 365 020 015 017 Yes Yes
78 29 25 103 020 015 0.19 Yes Yes
78 55 37 5.00 020 019 031 Yes Yes
78 76 47 291 020 021 0.8 Yes Yes
78 105 61 6.06 020 021 0.8 Yes Yes
78 23 2 1324 020 014 017 No No
78 32 26 1306 020 016 017 No No
78 40 30 16559 020 018 017 No No
78 59 59 1059 020 013 026 No No
78 63 61 9.12 020 013 0.26 No No
78 76 67 1129 020 015 026 No No
78 70 a1 194 020 022 0.16 Yes Yes
78 76 44 5.00 020 022 0.16 Yes Yes
78 70 47 2.24 020 019 0.14 Yes Yes
78 114 79 1412 020 009 025 No No
78 162 102 18.94 020 009 0.28 No No
7.8 44 44 3.52 0.20 0.13 0.16 Yes Yes
78 59 51 273 020 015 0.16 Yes Yes
78 57 50 329 020 015 021 Yes Yes
78 61 52 412 020 015 021 Yes Yes
78 72 57 294 020 016 021 Yes Yes
78 61 52 3.00 020 015 015 Yes Yes
78 %5 68 5.85 020 018 032 Yes Yes
78 106 73 9.00 020 018 032 Yes No
78 49 48 188 020 013 013 Yes Yes
78 74 64 255 020 015 017 Yes Yes
78 76 65 450 020 015 017 Yes Yes
78 106 79 424 020 047 017 Yes Yes
78 114 77 8.00 020 018 022 No No
72 80 48 5.22 022 021 0.20 Yes Yes
72 %5 55 373 022 022 0.20 Yes Yes
72 114 64 311 022 022 0.20 Yes Yes
72 133 73 132 022 022 0.20 Yes Yes
72 152 82 5.22 022 022 0.20 Yes Yes

Table 4. Comparison of results of developed C4.5 decision
tree with available ANN [5] and RVM models [9].

Performance in terms of successful prediction

Method (%)
Training Testing Overall
ANN [5] 98.6 94.3 97.2
RVM [9] 100 100 100
C4.5 decision 95.9 97.1 96.3

tree

The ANN uses many parameters, such as the
number of hidden layers, number of hidden nodes,
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learning rate, momentum term, number of training
epochs, transfer  functions, and  weight
initialization methods. Though the RVM has
lower parameters compared with ANN, but RVM
requires a selection of a suitable kernel function
first and then setting of the specific parameters
and these processes are time consuming.
Moreover, these techniques will not produce an
explicit relationship in the variables and thus, the
developed model provides very little insight into
the basic mechanism of the problem. Decision
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trees algorithms are quite transparent and also do
not need optimization of model and internal
parameters. The developed C4.5 decision tree,
figure 2, can be used by geotechnical engineering
professionals with the help of a spreadsheet to
evaluate the liquefaction potential of soil for a
future seismic event without going into
complexities of model development whereas the
available ANN and RVM models do not provide
any explicit equations for professionals. Also in
the C4.5 approach normalization or scaling of the
data is not required, but is an advantage over
ANN and RVM approach.

The limitations of the C4.5 decision trees need to
be mentioned as well. Similar to other artificial
intelligence techniques, decision trees have a
limited domain of applicability and are mostly
case dependent. Therefore, their generalization is
limited and they are only applicable in the range
of training data. However, the C4.5 model can
always be updated to yield better results, as new
data becomes available.

4. Conclusions

Liquefaction in soil is one of the major causes of
concern in geotechnical engineering. The cone
penetration test has proven to be an effective tool
in characterization of subsurface conditions and
analysis of different aspects of soil behavior,
comprising  estimating the potential  for
liquefaction on a specific site. In this paper, the
C4.5 decision tree is used to predict the
liquefaction potential of soil based on CPT data.
The C4.5 model was trained and validated using a
database of 109 liguefaction and non-liquefaction
field case histories for sandy soils based on CPT
results. The overall classification success rate for
the entire data set is 96.3% and is comparable
with those calculated using ANN and RVM
models which were taken in the literature. Unlike
available ANN and RVM models, the proposed
model provide easily interpretable tree structure
that can be used by geotechnical engineering
professionals with the help of a spreadsheet to
predict the liquefaction potential of soil for future
seismic event without going into the complexities
of model development using C4.5 decision tree.
This model can be adopted for modeling different
problems in geosciences.
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