
1 

 

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 12, No. 1, 2024, 67-81. 

 
Shahrood University of 

Technology 

 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir 

 

 

Research paper 

Application of Stacked Ensemble Techniques in Head and Neck 

Squamous Cell Carcinoma Prognostic Feature Subsets 

D. K. OWUSU1*, Ch. C. Nyarko2, J. Acquah2 and J. Yarney3 
1. University of Mines and Technology, Ghana. 

                  2. Department of Mathematical Sciences, Faculty of Engineering, University of Mines and Technology, Tarkwa, Ghana. 
3. Department of Radiotherapy and Oncology, National Centre for Radiotherapy & Nuclear Medicine, Korle Bu, Accra, Ghana. 

Article  Info  Abstract 

 

Article History: 
Received 20 October 2022 
Revised 19 January 2023 

Accepted 10 July 2023 

 
DOI:10.22044/jadm.2023.12420.2388 

 Head and neck cancer (HNC) recurrence is ever increasing among 

Ghanaian men and women. Because not all machine learning 

classifiers are equally created, even if multiple of them suite very well 

for a given task, it may be very difficult to find one which performs 

optimally given different distributions. The stacking learns how to 

best combine weak classifier models to form a strong model. As a 

prognostic model for classifying HNSCC recurrence patterns, this 

study tried to identify the best stacked ensemble classifier model 

when the same ML classifiers for feature selection and stacked 

ensemble learning are used. Four stacked ensemble models; in which 

first one uses two base classifiers: gradient boosting machine (GBM) 

and distributed random forest (DRF); second one uses three base 

classifiers: GBM, DRF, and deep neural network (DNN); third one 

uses four base classifiers: GBM, DRF, DNN, and generalized linear 

model (GLM); and fourth one uses five base classifiers: GBM, DRF, 

DNN, GLM, and Naïve bayes (NB) were developed, using GBM 

meta-classifier in each case. The results show that implementing 

stacked ensemble technique consisting of five base classifiers on 

gradient boosted features achieves better performance than achieves 

on other feature subsets, and implementing this stacked ensemble 

technique on gradient boosted features achieves better performance 

compared to other stacked ensemble techniques implemented on 

gradient boosted features and other feature subsets used. Learning 

stacked ensemble technique having five base classifiers on GBM 

features is clinically appropriate as a prognostic model for classifying 

and predicting HNSCC patients’ recurrence data. 
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1. Introduction 

Treatment of recurrent Head and Neck Cancer 

(HNC) requires accurate prognosis associated with 

it in order to determine the type and extent of 

therapy for effective and to fully destroy cancerous 

cells in the human body. The recurrence rate of 

HNSCC is ever increasing, which decreases the 

survival rate, and yet there are few studies on the 

applications of Machine Learning (ML) techniques 

in the prognosis of recurrent Head and Neck 

Squamous Cell Carcinoma (HNSCC). Previous 

studies have shown that there is an increase in 

survival rates of patients with HNSCC as a result 

of advances in treatments as well as modification 

of lifestyle [9,21]. The increase in survival rates 

might be associated with secondary aftermaths: 

recurrent HNSCC (local recurrence, regional 

recurrence, and distant recurrence) or second 

primary tumor [10,46]. In spite of the significant 

improvement in treatment modalities to increase 

overall survival (OS) of patients with HNSCC, they 

still experience relapse which affects their survival 

rates [6,22,43]. The 5-year OS rate was 83% and 

48% for patients with HNSCC relapse in the 

primary stage and advanced stage respectively 
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[20]. With treatment options like chemotherapy, 

radiotherapy, surgery, or a combination of these for 

patients with HNSCC, 40%-50% of them 

experience recurrences; and presently, the majority 

of HNCs diagnosed are regionally advanced with 

lymph node metastases [21,42]. Even with the 

advances in the treatment modalities of HNSCCs, 

nearly 650,000 patients with new cases of the 

disease are diagnosed each year globally, and one 

third of these patients experience relapse or 

recurrence [2,4,34,45]. A recently published global 

cancer statistics also reported that each year, new 

HNSCC cases of more than 800,000 are diagnosed 

[6]. Also, during the follow-up tests, 10% to 20% 

of patients with early-stage cancer experience 

recurrent HNSCC, while a recurrence rate of 

approximately 50% was experienced by those with 

locally advanced stage of the disease, particularly 

in locoregional pattern [1]. These HNCs have 

annual incidence worldwide of more than 550,000 

cases accounting for 300,000 deaths each year [22]. 

It is the sixth most common cancer worldwide, and 

more than half a million of new cases emerge 

[17,43]. Approximately 375,000 number of deaths 

from HNC worldwide was recorded in 2012, of 

which 4.6% was total cancer mortality [17]. The 

major cause of morbidity is recurrent HNSCC, and 

is reducing long-term survival of patients with 

HNSCC. HNC–related death is mostly contributed 

by locoregional recurrences, which is 15% - 50% 

of patients with HNSCC [5,7,34]. Over the 

decades, various ML techniques have been applied 

in the cancer diagnosis and prognosis. Medically, 

the disease is identified in a patient by its signs and 

symptoms (called diagnosis) and the prediction of 

its outcome on the patient is studied (called 

prognosis). Different subtypes of cancer have been 

identified and categorized as a heterogeneous 

disease. The application of ML techniques has been 

the aim to define a model for the progression and 

treatment of cancer subtypes. Various standalone 

ML techniques, including but not limited to 

Artificial Neural Network (ANNs), Naïve Bayes 

(NB), Support Vector Machines (SVMs), and 

Decision Trees (DTs); and homogeneous ensemble 

ML techniques including Gradient Boosting 

Machine (GBM) and Random Forest (RF), have 

been applied in a wide range of various cancer 

research to build prognostic models from complex 

datasets, known to offer effective and high 

accuracy in decision making; thus, revealing their 

importance [26]. Based on the latest PubMed 

statistics, over 1,500 published articles on cancer 

with ML techniques application have been 

recorded. Nonetheless, majority of these papers 

focused on the applications of ML techniques to 

identify, classify, detect, and/or distinguish tumors 

and other malignancies. Primarily, ML techniques 

have been applied to cancer diagnosis and 

detection [32]. According to [12,26], the 

applications of ML techniques for cancer 

prediction and prognosis have only been relatively 

recently used by cancer researchers. As a result, the 

number of published papers in this field is 

relatively less studied; thus, less than 120 papers 

published. Studies by [3,13-15,19,25,29,30,35] had 

proved that ML techniques are powerful to 

generate more accurate diagnosis or prognosis 

outcomes that conventional statistical methods 

could not otherwise generate. Given less published 

papers on application of ML techniques in HNSCC 

prognosis, most researchers focused on HNSCC 

susceptibility and/or survivability, with very few of 

them focusing on HNSCC recurrence. Examples of 

published articles on ML applications in recurrent 

HNSCC subtypes are; [3,8,11,16,23,31,37,39-

41,48]. 

[3] applied a feed-forward ANN, where LR was the 

benchmark, to identify the prognosis of 

locoregional recurrences in early-stage oral tongue 

squamous cell carcinoma (OTSCC), and concluded 

that ANN with accuracy of 92.7% outperformed 

LR with accuracy of 86.5%. [8] identified the 

prognostic factors for locally advanced 

nasopharyngeal carcinoma relapse, and concluded 

that DT classifiers showed high prediction in the 

prognosis of individual recurrence pattern with 

overall accuracy of 84.5% – 95.2% compared to the 

Kaplan-Meier analysis. [40,41,48] applied SVM in 

the prediction of laryngeal cancer recurrence and 

concluded that the said prognostic model had high 

accuracy, and thus a good classifier for tumor 

progression. [37] applied SVM in the prognosis of 

oral cancer recurrence. [36] used SVM with 

accuracy of 87.0% to identify the prognosis of 

patients with recurrence and metastasis of HNSCC 

and concluded to be a good model for HNSCC 

recurrence/metastasis. A study on nasopharyngeal 

carcinoma for local recurrence was conducted by 

[11], with 7 classification techniques; DT, KNN, 

LDA, LR, NB, RF and RBF-SVM, and 6 feature 

selection techniques; MIM, FSCR, RELF-F, 

CMIM, MRMR, and JMI. They achieved optimal 

integration methods of outperforming classifiers 

for prognosis with accuracies of (FSCR+RF: 

89.2%, FSCR+KNN: 88.3%, FSCR+RBF-SVM: 

86.7%, and MRMR+RBF-SVM: 88.3%). A similar 

study conducted by [31] identified the prognosis of 

patients with nasopharyngeal carcinoma who were 

treated with intensity-modulated radiotherapy 

(IMRT) and experienced recurrence, using ANN, 

KNN, and SVM, and concluded that the 
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classification models considered exhibited 

potential and high prediction accuracies; ANN: 

81.2%, KNN: 77.5%, and SVM: 73.2%. Again, 

[16] identified the most prognostic features that are 

associated with oral squamous cell carcinoma 

(OSCC) relapses using Dynamic Bayesian 

Network (DBN), NB, ANN, SVM, DT, and RF 

with accuracies obtained on clinical data as (BN: 

73.7%, NB: 74.6%, ANN: 74.6%, SVM: 74.6%, 

DT: 81.6%, RF: 74.6%), on imaging data (BN: 

86.4%, NB: 87.5%, ANN: 83%, SVM: 84.1%, DT: 

77.3%, RF: 83%), on tissue genomic data (BN: 

75.8%, NB: 74.2%, ANN: 74.2%, SVM: 74.2%, 

DT: 69.2%, RF: 80%), and on blood genomic data 

(BN: 87.5%, NB: 91.7%, ANN: 95.8%, SVM: 

95.8%, DT: 87.5%, RF: 87.5%). They concluded 

that, with all the three-input (clinical, imaging, and 

genomic) data fed into DBN, the model revealed a 

high accuracy of 100%. 

Though these previous studies produced some 

useful results, each using one or several ML 

techniques on individually basis for recurrent 

HNSCC subtypes prognosis, it is possible that their 

prognostic models would have been outperformed 

by an ensemble ML technique if they had been 

combined to the training data in a stacking 

ensemble; given now that, there is a rapid 

significant development of ensemble ML 

techniques in cancer prediction and prognosis. 

According to [12], not all ML techniques are 

equally created; while some perform better given 

problems of certain kinds, others do better given 

problems of other kinds. For instance, given the 

size of biological domain, some ML techniques 

may scale nicely to meet such size, while others 

will not. Similarly, some techniques might have 

assumptions regarding the kind of data that might 

render them incapable for a given problem at hand. 

It is this that makes it more important to consider 

stacked generalization of ML techniques on any 

given set of training data in cancer prognosis. 

Many well-known modern ML techniques are 

mostly ensembles; including bagging (random 

forest) and boosting (gradient boosting machine) 

and have been applied in most studies, particularly 

in medical fields to obtain better performance 

[18,23,38]. Whereas random forest minimizes the 

variance and solves over-fitting issues in the 

model, boosting minimizes the bias and solves 

under-fitting issues in the model during the training 

process. Stacking combines multiple of different 

base classifiers into a strong one in their 

combination using a meta learning algorithm. The 

benefit of stacking is that it can harness the 

capabilities of a range of well-performing models 

on a classification task and make predictions that 

have better performance than any single model in 

the ensemble [47]. It worthwhile to combined these 

techniques in an ensemble learning so as to achieve 

a well optimally ensemble classification model for 

HNSCC recurrence among HNSCC patients using 

stacked ensemble learning of ML classifiers. 

 

2. Materials and Methods 

2.1. Dataset  
To evaluate the performance of the classification 

models, the HNSCC subtypes dataset including 

laryngeal cancer, hypopharyngeal cancer, 

nasopharyngeal cancer, and oropharyngeal cancer 

was obtained from the registry of radiotherapy and 

oncology department at Korle Bu, Accra. It has a 

total of 125 instances, 18 attributes (features), and 

a class label with binary outcome coded 1 (as 

recurrence) or 0 (as nonrecurrence). There are 33 

and 92 female and male records respectively. The 

data was preprocessed using model imputation to 

avoid the deletion of instances with missing 

examples. In order to normalize the training 

examples, one-hot encoding was used on attributes 

with more than two levels. The summary of this 

dataset is shown table 1. To generate stacked 

ensemble model, [23] proposed a stacked ensemble 

algorithm, a technique that found the optimal 

weighted average of diverse base learners for 

classification of various healthcare datasets 

(Wisconsin Breast Cancer, Pima Indian Diabetes 

Dataset, and Indian Liver Patient Dataset using 

GBM, DRF, and DNN as base learners, and GLM 

as a meta learner to stack GBM and DRF in one 

case; then stack GBM, DRF, and DNN in another 

case. [27] likewise proposed a stacked ensemble 

algorithm, a technique that found the best meta-

learner in a stacking ensemble for classifying 

breast cancer, using GBM, DRF, DNN, and GLM 

as base learners, and each of which was used as a 

meta-learner to determine the best meta-learner in 

a stacking ensemble. Base on the ML algorithms 

considered by [23,27] as the most effective 

algorithms to providing the most effective 

ensemble classification model for HNSCC 

prognosis, all have been employed under this study 

with the inclusion of NB to experiment a stacked 

ensemble consisting of five (5), at least one more 

that of the state-of-the-art stacked ensemble model 

consisting of a maximum of four (4) base 

classifiers in HNC prognosis. Thus, NB was 

chosen from among the most effective single base 

classifiers (DT, KNN, NB, and SVM) considered 

by the previous studies, based on its performance 

on the experimental data. Data augmentation was 

generally used to improve a model’s performance. 

It is a technique that comprises a set of methods 
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used to artificially increase the number of data 

samples present in the dataset. This was done as 

deep learning models generalize well when the 

number of data samples available to train on is 

large. In this way, state-of-the-art models can be 

created with fewer data samples available. The data 

augmentation technique is usually applied to 

computer vision applications where domain-

specific data, such as medical data, is not 

abundantly available. Thus, data augmentation 

technique was used. In medical research, it takes 

time to collect sufficient samples as most patients 

are usually lost to follow-up to check whether or 

not they had a recurrence and thus, the sample size 

is usually small. HNSCC is considered recurrence 

if the patient was treated with curative intent and 

after the cancer reaches its remission, they 

redeveloped HNSCC termed as recurrence. 

Patients that received palliative treatment intent 

and still had cancer are not considered cancer 

recurrent patients. Unfortunately, most patients 

received palliative intent treatment and only a few 

could receive curative intent due to financial 

difficulties, causing small instances. Hence, there 

is a need to implement feature selection methods to 

identify significant variables that are important to 

the clinical outcomes and to avoid the over-fitting 

problem. In this research, implementing the feature 

selection method aims to find an optimal number 

of features for the small sample of oral cancer 

prognosis data. The number of features in the 

dataset was considered too many (18 attributes) if 

compared to the sample size (125 instances). Thus, 

the feature selection method is needed to reduce the 

number of features and select only those significant 

to HNSCC prognosis. Thus, the original dataset 

was subjected to five feature selection techniques, 

namely GBM, DRF, DNN, GLM, and NB, each 

provided feature subset of the data as shown table 

2. Training data (75%) and test data (25%) were 

constructed for each data subset. The evaluation 

metrics; accuracy, recall, specificity, logarithmic 

loss (logloss), and AUC of Receiver Operating 

Characteristic Curve were used to measure the 

performance of the classification models. The H2o 

package for machine learning library in R 

programming language was used. 

 

3. Description of Proposed Stacked Ensemble 

Techniques 

This paper presented four different techniques of 

stacked ensemble learning. The first one used two 

base classifiers, namely gradient boosting machine 

(GBM) and distributed random forest (DRF); the 

second one used three base classifiers, namely 

GBM, DRF, and deep neural network (DNN); the 

third one used four base classifiers, namely GBM, 

DRF, DNN, and generalized linear model (GLM); 

and the fourth one used five base classifiers, 

namely GBM, DRF, DNN, GLM, and Naïve bayes 

(NB); and in each case, a meta-classifier called 

GBM was used [27]. 

Various cancer data subsets related to HNSCC 

provided by various feature selection techniques 

used in this study were used, and compare the 

performance of stacked ensemble models on these 

various data subsets.  
The evaluation results confirmed that stacked 

ensemble techniques built on Gradient Boosted 

feature subset (GBM-FS) has the ability to perform 

better compared to stacked ensemble techniques 

built on feature subsets provided by other feature 

selection techniques. Similarly, the evaluation 

results confirmed that stacked ensemble techniques 

consisting of five base classifiers has the ability to 

perform better compared to other stacked ensemble 

techniques considered on five feature subsets of 

HNSCC dataset.

Table 1. Dataset description. 
Dataset  No. of instances No. of attributes  Class label with No. of instances 

HNSCC  125 18 Class 1: recurrence (61); class 0: nonrecurrence (60) 

 

Table 2. Optimal Feature Subset Selected. 

Feature Selection 

Technique 

Feature Subset Selected 

GBM-FS Nodes, Age, Smoke, StageIV, p63, TreatCCRT, PaTT4, Size 

DRF-FS  TreatCCRT, Age, Smoke, Invasion, PlNN2, HPV, PaTT2, TreatRT, Nodes, PaTT4, StageIV, SiteNPC, p16, 

Size, Drink, 

DNN-FS TreatCCRT, TreatRT, p63, Nodes, p16, Size, Smoke, HPV 

GLM-FS p63, TreatCCRT, StageII, paTT3, Smoke, StageIII, Nodes, PlNN3 

NB-FS TreatCCRT, p63, Smoke, Nodes, paTT3, TreatRT, Invasion, Age 
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Figure 1. Rank plots for features by feature selection techniques.    

Algorithm 1. Stacking with k-fold (k=10) cross validation 

Input: Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛 ; learning rate 𝛼 > 0 

 𝐶 = {ℎ1, ℎ2, … , ℎ𝐿} – classifiers set which constitute the ensemble. 

Output: An ensemble classifier H 

Step 1: Adopt cross validation approach in preparing a training set for meta-classifier 

Randomly split 𝐷𝑠 into V equal-size subsets: 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝐾} 

for 𝑣 ← 1 to K do 

         Step 1.1: Learn first-level classifiers  {ℎ1, ℎ2, … , ℎ𝐿}         

         for 𝑙 ← 1 to L do 

               Learn a classifier ℎ𝑘𝑙 from 𝐷 𝐷𝑘⁄  

         end for 
         Step 1.2: Construct a training set for second-level classifiers 

         for 𝐱𝑖 ∈ 𝐷𝑘 do 

               Get a record {𝐱𝑖 
′ , y𝑖}, where 𝐱𝑖 

′ = {ℎ𝑘1(𝐱𝑖), ℎ𝑘2(𝐱𝑖), … , ℎ𝑘𝐿(𝐱𝑖)} 

         end for 

end for 

Step 2: Learn second-level classifier  

      Re-learn first-level classifier ℎ𝑙
′ from the collection of 𝑍 = {𝐱𝑖 

′ ,  𝑦𝑖}𝑖=1
𝑛  

 

end for 

Return  𝐻(𝐱) = ℎ′ (ℎ1(𝐱), ℎ2(𝐱), … , ℎ𝐿(𝐱)) 

Step 3: Predict unseen example (testing set) 
 

for each 𝐱 ∈ 𝐷𝑡 do 

              Apply an ensemble classifier 𝐻(𝐱) on 𝐱. 

end for 



Owusu et al./ Journal of AI and Data Mining, Vol. 12, No. 1, 2024 
 

72 
 

To achieve better performance using these base 

classifiers from H2o, GBM, DRF, DNN, GLM, and 

NB were selected [44]. For the meta-classifier, 

GBM model was used [27] as it was the best 

performing base classifier among the base 

classifiers considered in this study as shown in 

Figure 2. To obtain data subsets for learning 

stacked ensemble techniques, each base classifier 

was used to perform feature selection, each of 

which ranked the features according to their 

importance; and using 60% threshold, feature 

subsets were obtained as shown in Figure 1 and 

table 2 respectively. The algorithm 1 shows the 

learning of stacked ensemble models with 10-fold 

cross-validation based on the hyperparameters 

obtained by random grid search as shown in Table 

3.

 
 

 
 

       

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

    
 

 

Figure 2. Flowchart of a proposed stacked ensemble technique. 
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Table 3. Classifiers with their corresponding hyper-parameter values. 

Classifiers  Hyper-parameters in grid search with the corresponding 

range of values 

hyperparameters fixed values 

GBM max_depth = c(7, 9), 
learn_rate = c(0.01, 0.1), 

learn_rate_annealing=c(0.99, 1), 

sample_rate=c(0.5, 0.7, 1), 
col_sample_rate=c(0.8, 0.9, 1) 

ntrees = 3000 
nfolds = 10 

Fold_assignment = "Modulo" 

keep_cross_validation_predictions = True 
stopping_rounds = 50 

   

DRF max_depth = c(9, 30),  
mtries = 3, 

sample_rate = c(0.5, 0.75, 1), 

col_sample_rate_per_tree= (0.8, 0.9, 1) 

ntrees = 3000 
nfolds = 10 

Fold_assignment = "Modulo" 

keep_cross_validation_predictions = True 
stopping_rounds = 50 

   

DNN activation=c("Rectifier", "Tanh"), 
hidden = c(5, 10, 50), 

l1 = c(0, 1e-3, 1e-5), 

l2 = c(0, 1e-3, 1e-5), 

 

epochs = 20 
nfolds = 10 

Fold_assignment = "Modulo" 

keep_cross_validation_predictions = True 

stopping_rounds = 50 

   

NB Laplace=c(0, 5, by 0.5) nfolds = 10 

Fold_assignment = "Modulo" 
keep_cross_validation_predictions = True 

   

GLM alpha=c(0.1) nfolds = 10 
remove_collinear_columns = True 

Fold_assignment = "Modulo" 

keep_cross_validation_predictions = True 

      

4. Results 

This study compared the performance of the 

stacked ensemble techniques implemented on 

various feature subsets of the HNSCC dataset 

provided by various feature selection techniques 

used in this study. The stacked ensemble 

techniques were trained on the training set, and 

were evaluated on the test set for each data subset.  

Table 4. Performance of stacked ensemble model (model-

GBM2) consisting of two base classifiers (GBM AND 

DRF) on test data. 

Feature selectors 

Metrics GBM-

FS 

DRF-

FS 

DNN-

FS 

GLM-

FS 

NB-

FS 

Accuracy  0.8172 0.7813 0.6667 0.7419 0.6875 

Logloss  0.3379 0.5879 0.7379 0.5959 0.7889 

Recall  0.8939 0.8636 0.9130 0.9245 0.8421 

Specificity  0.6296 0.6000 0.4255 0.5000 0.4615 

AUC  0.8018 0.7391 0.7289 0.7684 0.7198 
 

Table 4 shows the performance of the proposed the 

stacked ensemble technique having two base 

classifiers (GBM and DRF) on the test set of 

different feature subsets of the data; table 5 shows 

the performance of the proposed stacked ensemble 

technique having three base classifiers (GBM, 

DRF, and DNN) on the test set for all the data 

subsets used in this study; Table 6 shows the 

performance of the proposed stacked ensemble 

technique having four base classifiers (GBM, DRF, 

DNN, and GLM) on the test set for all the data 

subsets used in this study; and Table 7 shows the 

performance of the proposed stacked ensemble 

technique having five base classifiers (GBM, DRF, 

DNN, GLM, and NB) on the test set for all the data 

subsets used in this study. 
 

Table 5. Performance of stacked ensemble model (model-

GBM3) consisting of three base classifiers (GBM, DRF, 

AND DNN) on test data. 

Feature selectors 

Metrics GBM-

FS 

DRF-

FS 

DNN-

FS 

GLM-

FS 

NB-

FS 

Accuracy  0.8278 0.7813 0.7527 0.7312 0.7813 

Logloss  0.3267 0.4167 0.4257 0.4267 0.4269 

Recall  0.9206 0.8333 1.0000 0.8793 0.8333 

Specificity  0.6333 0.6250 0.9855 0.4857 0.6250 

AUC  0.8625 0.8623 0.7023 0.7322 0.7319 
 

Table 6. Performance of stacked ensemble model (model-

GBM4) consisting of four base classifiers (GBM, DRF, 

DNN, and GLM) on test data. 

Feature selectors 

Metrics GBM-

FS 

DRF-

FS 

DNN-

FS 

GLM-

FS 

NB-

FS 

Accuracy  0.8817 0.8438 0.8280 0.7742 0.7500 

Logloss  0.3042 0.4141 0.4111 0.4241 0.4441 

Recall  0.9143 0.6667 0.8630 0.9138 0.8571 

Specificity  0.7826 0.9500 0.7000 0.5429 0.5455 

AUC  0.8809 0.8179 0.7597 0.7908 0.7536 
 

Considering the Tables 4, 5, 6, and 7, for the data 

subsets used in this study, best results were 

obtained using stacked ensemble learning. For the 

stacked ensemble having two base classifiers on 

test data in table 4, best accuracy (81.72%), log loss 

(0.3379), specificity (62.96%), and AUC (0.8018) 

were obtained for data subset provided by GBM 

feature selection technique. For stacked ensemble 

model having three base classifiers on test data in 
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table 5, best accuracy (82.78%), log loss (0.3267), 

and AUC (0.8625) for data subset provided by 

GBM feature selection technique. Interestingly, 

best recall (100%) and specificity (98.55%) were 

obtained for DNN data subset.  
 

Table 7. Performance of stacked ensemble model (model-

GBM5) consisting of five base classifiers (GBM, DRF, 

DNN, GLM, AND NB) on test data. 

Feature selectors 

Metrics GBM-

FS 

DRF-

FS 

DNN-

FS 

GLM-

FS 

NB-

FS 

Accuracy  0.9063 0.8817 0.8172 0.8280 0.8438 

Logloss  0.2959 0.3041 0.3679 0.3659 0.3359 

Recall  0.7500 0.9265 0.8714 0.8533 0.9091 

Specificity  1.0000 0.7600 0.6522 0.7222 0.7000 

AUC  0.9251 0.8321 0.7947 0.8010 0.8333 

For stacked ensemble model having four base 

classifiers on test data in Table 6, best accuracy 

(88.17%), log loss (0.3042), recall (91.43%), and 

AUC (0.8809) was obtained for GBM data subset. 

Best specificity (95.00%) was obtained for DRF 

data subset. For stacked ensemble model having 

five base classifiers on test data in Table 7, best 

accuracy (90.63%), log loss (0.2959), specificity 

(100%), and AUC (0.9251) was obtained for GBM 

data subset. Best recall (92.65%) was obtained for 

DRF feature subset. The graphs of the information 

in tables 4, 5, 6, and 7 are represented in Figure 3. 

 

 

   

  

  

Figure 3. Performance plots of feature selection techniques based on stacked ensemble techniques. 

In addition, Tables 8, 9, 10, 11, and 12 show the 

performance comparison of various stacked 

ensemble techniques implemented on each feature 

subset of the data used in this study. For data 

subsets provided by each feature selection 

technique, best results were obtained using stacked 

ensemble learning. Table 8 shows the performance 

comparison of various stacked ensemble 

techniques implemented on the test set of features 

subset provided by GBM feature selection. 
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Table 8. Performance comparison of stacked ensemble models on GBM-FS test set. 

Metrics 

Stacked ensemble 

model-GBM2 

Stacked ensemble model-

GBM3 

Stacked ensemble model-

GBM4 

Stacked ensemble model-

GBM5 

Accuracy 0.8172 0.8278 0.8817 0.9063 

Logloss 0.3379 0.3267 0.3042 0.2959 

Recall 0.8939 0.9206 0.9143 0.7500 

Specificity 0.6296 0.6333 0.7826 1.0000 

AUC 0.8018 0.8625 0.8809 0.9251 

           

    Table 9. Performance comparison of stacked ensemble models on DRF-FS test set. 

Metrics 

Stacked ensemble 

model-GBM2 

Stacked ensemble model-

GBM3 

Stacked ensemble model-

GBM4 

Stacked ensemble model-

GBM5 

Accuracy 0.7813 0.7813 0.8438 0.8817 

Logloss 0.5879 0.4167 0.4141 0.3041 

Recall 0.8636 0.8333 0.6667 0.9265 

Specificity 0.6000 0.6250 0.9500 0.7600 

AUC 0.7391 0.8623 0.8179 0.8321 

 

Table 10. Performance comparison of stacked ensemble models on DNN-FS test set. 

Metrics 

Stacked ensemble 

model-GBM2 

Stacked ensemble model-

GBM3 

Stacked ensemble model-

GBM4 

Stacked ensemble model-

GBM5 

Accuracy 0.6667 0.7527 0.8280 0.8172 

Logloss 0.7379 0.4257 0.4111 0.3679 

Recall 0.9130 1.0000 0.8630 0.8714 

Specificity 0.4255 0.9855 0.7000 0.6522 

AUC 0.7289 0.7023 0.7597 0.7947 

 

Table 11. Performance comparison of stacked ensemble models on GLM-FS test set. 

Metrics 

Stacked ensemble 

model-GBM2 

Stacked ensemble model-

GBM3 

Stacked ensemble model-

GBM4 

Stacked ensemble model-

GBM5 

Accuracy 0.7419 0.7312 0.7742 0.8280 

Logloss 0.5959 0.4267 0.4241 0.3659 

Recall 0.9245 0.8793 0.9138 0.8533 

Specificity 0.5000 0.4857 0.5429 0.7222 

AUC 0.7684 0.7322 0.7908 0.8010 

 

Table 12. Performance comparison of stacked ensemble models on NB-FS test set. 

Metrics 

Stacked ensemble 

model-GBM2 

Stacked ensemble model-

GBM3 

Stacked ensemble model-

GBM4 

Stacked ensemble model-

GBM5 

Accuracy 0.6875 0.7813 0.7500 0.8438 

Logloss 0.7889 0.4269 0.4441 0.3359 

Recall 0.8421 0.8333 0.8571 0.9091 

Specificity 0.4615 0.6250 0.5455 0.7000 

AUC 0.7198 0.7319 0.7536 0.8333 

 

It can be observed that the stacked ensemble 

technique having five base classifiers performed 

better than other techniques implemented on GBM 

feature subset of the data used in this study. For this 

data subset, best accuracy (90.63%), log- loss 

(0.2959), specificity (100%), and AUC (0.9251) 

were obtained using stacked ensemble technique 

having five base classifiers followed by stacked 

ensemble technique having four base classifiers 

with accuracy (88.17%), logloss (0.3042), and 

AUC (0.8809). Best recall (92.06%) was obtained 

using stacked ensemble technique having three 

base classifiers. In table 9, best accuracy (88.17%), 

log loss (0.3041), recall (92.65%), and AUC 

(0.8321) were obtained using the stacked ensemble 

technique having five base classifiers followed by 

stacked ensemble technique having four base 

classifiers with accuracy (84.38%) and log loss 

(0.4141) for DRF feature subset of the data. For 

DNN feature subset data, best accuracy (82.80%) 

with higher log loss (0.4111) were obtained using 

stacked ensemble technique consisting of four base 

classifiers followed by stacked ensemble technique 

having five base classifiers; accuracy (81.72%) 

with best log loss (0.3679) and AUC (0.7947). For 

GLM data subset, best accuracy (82.80%), log loss 
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(0.3659), specificity (72.22%), and AUC (0.8010) 

were obtained using stacked ensemble technique 

having five base classifiers followed by stacked 

ensemble technique having four base classifiers 

with accuracy (77.43%). For NB data subset, best 

accuracy (84.38%), log loss (0.3359), recall 

(90.91%), specificity (70.00%), and AUC (0.8333) 

were obtained using stacked ensemble technique 

having five base classifiers followed by stacked 

ensemble technique having three base classifiers 

with accuracy (78.13%), log loss (0.4269), and 

specificity (62.50%). The graphs of the information 

in Tables 8, 9, 10, 11, and 12 are represented in 

Figure 4. 

 

 

 

Figure 4. Performance plots of stacked ensemble techniques on various feature subsets.

Partial Dependence Plot (PDP) and Individual 

Conditional Expectations (ICE) were used to make 

prognostications of recurrence patterns on HNSCC 

patients. The PDP is similar to ICE, and shows the 
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marginal effect a feature has on the predicted class 

label (binary classification in this case) of a 

machine learning model. A PDP or ICE can show 

whether the relationship that exists  

between the target and a feature is linear, 

monotonic or more complex. The yellow curves in 

figure 5 indicate the PDP while the black curves 

represent the ICE. The PDP shows how the average 

prediction of all instances are associated with a 

feature while the ICE shows how the prediction of 

each instance is associated with the feature.

 

 

 

 

 

                          Figure 5. PDP and ICE on features.   
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For feature Nodes on the class label, PDP shows 

that, the probability of recurrence increases with a 

greater number of neck nodes exceeding about 

50% compared to that with a smaller number of 

neck nodes. The prediction of recurrence is centred 

at “0” until the number of lymph nodes exceeds 

50%. The probability of recurrent increases around 

50% of the presence of lymph nodes, but is this true 

for every patient (instance) in the dataset? The ICE 

plot reveals that for most patients, the lymph nodes 

effect follows the average pattern of an increase of 

lymph nodes around 50%, but there are some 

exceptions: For some patients that have a high 

predicted probability at few of lymph nodes, the 

predicted recurrence does not change with much 

presence of lymph nodes. 

Similarly, for the feature Size on the class label, the 

PDP explains that with low tumor size of 2 cm or 

less, the possibility of experiencing recurrence is 

zero while it is around 0.09 for larger tumor size 

greater than 2 cm. Interestingly, the predicted 

probability of experiencing recurrence does not fall 

when the size of tumor is greater than 2 cm. PDP 

shows that the recurrent probability increases at 

around 0.55 (around 2 cm) of the tumor size, but is 

this true for every instance in the dataset? The ICE 

plot reveals that for most patients the tumor size 

effect follows the average pattern of an increase at 

around 2 cm, but there are some exceptions: For 

some patients that have a high predicted probability 

at a smaller tumor size (2 cm), the predicted 

recurrent HNSCC probability does not change with 

size (tumor size 2 cm or greater). This feature has 

a positive marginal effect on the target binary class. 

For feature TreatCCRT on class label, PDP 

explains that as more of Concurrent 

Chemoradiotherapy (CCRT) treatment is 

administered on patients on regular basis, less 

recurrences are experienced and vice versa. The 

PDP explains that the probability of recurrence 

decreases around when the treatment process is 

half-way (55%) to its completion, but is this true 

for every patient in the dataset? The ICE plot 

reveals that for most patients, the TreatCCRT 

effect follows the average pattern of decrease at 

around 55% to its completion, but there are some 

exceptions: For some patients that have low 

predicted probability at the half-way of treatment 

with CCRT, the predicted recurrence does not 

change with TreatCCRT completion. This feature 

has a positive marginal effect on the target binary 

class. Similar interpretation can be made for other 

PDP and ICE plots. 

In summary, the results of various stacked 

ensemble techniques implemented on feature 

subsets of the data provided by various feature 

selection techniques used in this study showed that, 

all the stacked ensemble techniques used in this 

study achieved higher performance on data subset 

provided by GBM feature selection technique 

compared to their performance results on data 

subsets provided by other feature selection 

techniques. It was also observed that for each 

stacked ensemble technique implemented on each 

feature subset of the data provided by each feature 

selection technique with the exception of DNN 

feature subset data, the stacked ensemble technique 

consisting of five base classifiers achieved the 

highest accuracy compared to other stacked 

ensemble techniques used in this study. The 

stacked ensemble technique having four base 

classifiers achieved the highest accuracy on data 

subset provided by DNN feature selection 

technique. In terms of log loss, it was observed that 

for each stacked ensemble technique implemented 

on each feature subset of the data provided by each 

feature selection technique, the stacked ensemble 

technique consisting of five base classifiers 

achieved the least logloss compared to other 

stacked ensemble techniques used in this study. In 

terms of AUC, it was also observed that for each 

stacked ensemble technique implemented on each 

feature subset of the data provided by each feature 

selection technique with the exception of DRF 

feature subset data, the stacked ensemble technique 

consisting of five base classifiers achieves the 

highest AUC compared to other stacked ensemble 

techniques used in this study. The stacked 

ensemble technique having three base classifiers 

achieves the highest AUC on data subset provided 

by DRF feature selection technique. The stacked 

ensemble model having five base classifiers 

implemented on GBM feature subset data was used 

to make predictions using PDP and ICE. 

 

5. Conclusion and Future Work 

This paper focused on the improvement of the 

ensemble classification performance through 

stacked generalization towards the prediction of 

HNSCC recurrence patterns using data subsets 

provided by various feature selection techniques 

considered in this study. To achieve this, the 

stacked ensemble technique that finds the optimal 

weighted average of diverse machine learning base 

models using meta learning algorithm was used. 

For base classifiers, GBM and DRF were used and 

another base classifier DNN along with the 

previous two (GBM and DRF) was integrated. 

Next, another base classifier GLM along with the 

previous three (GBM, DRF, and DNN) was 

integrated. Then, another base classifier NB along 

with the previous four (GBM, DRF, DNN, and 
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GLM) was integrated. To achieve the optimal 

combination of these diverse of base classifiers 

models considered in this study, the GBM was used 

as meta-classifier based on its high performance 

when trained as base classifier on various data 

subsets compared to other base classifiers 

considered in this study. The experimental results 

showed that using stacked ensemble technique 

having five base classifiers had better performance 

compared to other stacked ensemble techniques 

considered in this study, and using GBM feature 

selection technique is better as a supporting tool for 

generating the most accurate prognostic features 

for HNSCC dataset.  

In our future study, we will extend each stacked 

ensemble learning technique to a multi-level 

stacked ensemble learning, with multiple layers of 

stacking at each layer by considering more than a 

maximum of five base classifiers. 
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 چکیده:

های یادگیری ماشین به طور کنندهبندیاز آنجایی که همه طبقه .در میان مردان و زنان غنا در حال افزایش است (HNC) عود سرطان سر و گردن

ای که کنندهبندیبندی از آنها برای یک کار معین بسیار مناسب باشند، ممکن است یافتن طبقهشوند، حتی اگر چندین طبقهیکسان ایجاد نمی

بندی کننده ضعیف را به بهترین د می گیرد که چگونه مدل های طبقهانباشته یا .دهد بسیار دشوار باشدطور بهینه انجام میهای مختلف را بهوزیعت

ه ، این مطالعه سعی کردHNSCC  بندی الگوهای عودآگهی برای طبقهبه عنوان یک مدل پیش .شکل ترکیب کند تا یک مدل قوی را تشکیل دهد

مشابه برای انتخاب ویژگی و یادگیری گروه انباشته استفاده  ML هایکنندهبندیای را زمانی که از طبقهبندی گروه پشتهبهترین مدل طبقه است

و  (GBM) کند: ماشین تقویت گرادیانکننده پایه استفاده میبندیاز دو طبقه یکه در آن اول ;چهار مدل مجموعه انباشته. شود، شناسایی کندمی

سومی از . (DNN)شبکه عصبی عمیق ، و GBM ،DRF : کندبندی کننده پایه استفاده میدومی از سه طبقه (.DRF)توزیع شده  جنگل تصادفی

 کننده پایه استفادهبندیو چهارم از پنج طبقه. (GLM)خطی تعمیم یافته ، و مدل GBM ،DRF ،DNN : کندبندی کننده پایه استفاده میطبقهچهار 

سازی دهد که پیادهنشان می نتایج در هر مورد.  GBM کنندهبندیبا استفاده از متا طبقه (NB) ساده بیزین، و GBM ،DRF ،DNN ،GLM  کندمی

های شده گرادیان، عملکرد بهتری نسبت به سایر زیرمجموعههای تقویتبندی کننده پایه بر روی ویژگیتکنیک مجموعه انباشته متشکل از پنج طبقه

رد بهتری را در مقایسه با سایر شده گرادیان، عملکهای تقویتای انباشته بر روی ویژگیآورد، و اجرای این تکنیک مجموعهویژگی به دست می

بندی کننده پایه بر مجموعه انباشته دارای پنج طبقهیادگیری تکنیک . آوردشده به دست میای اجرا شده بر روی شیب تقویتهای گروه پشتهتکنیک

 .مناسب است HNSCC د بیمارانهای عوبینی دادهبندی و پیشاز نظر بالینی به عنوان یک مدل پیش آگهی برای طبقه GBM هایروی ویژگی

 .بندیبندی، انتخاب ویژگی، طبقه، یادگیری ماشینی، پشتهHNSCC  تکرار :کلمات کلیدی

 


