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 Intrusion Detection Systems (IDSs) are critical components for 

safeguarding IoT networks against cyber threats. This study presents 

an advanced approach to IoT network intrusion detection, leveraging 

deep learning techniques and pristine data. We utilize the publicly 

available CICIDS2017 dataset, which enables comprehensive 

training and testing of intrusion detection models across various 

attack scenarios, such as Distributed Denial of Service (DDoS) 

attacks, port scans, and botnet activity. Our goal is to provide a more 

effective method than the previous methods. Our proposed deep 

learning model incorporates dense transition layers and LSTM 

architecture, designed to capture both spatial and temporal 

dependencies within the data. We employed rigorous evaluation 

metrics, including sparse categorical cross-entropy loss and accuracy, 

to assess the model performance. The results of our approach show 

outstanding accuracy, reaching a peak of 0.997 on the test data. Our 

model demonstrates stability in loss and accuracy metrics, ensuring 

reliable intrusion detection capabilities. Comparative analysis with 

other machine learning models confirms the effectiveness of our 

approach. Moreover, our study assesses the model's resilience to 

Gaussian noise, revealing its capacity to maintain accuracy in 

challenging conditions. We provide detailed performance metrics for 

various attack types, offering insights into the model's effectiveness 

across diverse threat scenarios. 
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1. Introduction 

IoT technology holds the potential to enhance and 

facilitate personal, professional, and societal 

aspects of our lives. Furthermore, there are 

numerous cost-effective IoT devices available, 

catering to a diverse range of users who may not 

possess extensive technological knowledge. 

Unfortunately, this accessibility and widespread 

usage also render IoT vulnerable to cyber-attacks. 

Endpoint devices in the IoT ecosystem, such as 

home security cameras and appliances, are 

particularly susceptible to cyber-attacks within the 

network. These devices possess limited 

computational power, storage capacity, and 

network capabilities compared to more complex 

endpoints like routers, smartphones, and laptops 

[2]. Attackers exploit the vulnerabilities present in 

a significant number of IoT devices, enabling them 

to execute large-scale assaults on internet 

resources. [4]-[7]. DDoS attacks occur when 

multiple compromised machines or devices flood a 

targeted machine or device with requests, 

overwhelming its server and causing it to crash. 

DDoS attacks are highly effective, as even highly 

configured machines experience degraded 

performance, exemplified by attacks on cloud 

services and virtual machines [8]. Moreover, IoT 

devices connected to 5G networks can also become 

targets of DDoS attacks [11]. Many IoT devices 

lack the capability to detect such cyber-attacks 

[12]. 
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In summary, while IoT technology offers 

numerous benefits and conveniences, it also 

presents significant cybersecurity challenges. 

Securing IoT devices and networks is essential to 

prevent them from being exploited in large-scale 

cyberattacks, such as DDoS attacks orchestrated 

through compromised IoT devices. Efforts to 

improve IoT security should involve 

manufacturers, users, and service providers 

working together to mitigate these risks. 

These attacks typically exploit open ports on IoT 

operating systems [10]. Furthermore, IoT devices 

connected through 5G networks are also 

susceptible to DDoS attacks [14]. Due to inherent 

limitations, many IoT devices lack the capability to 

detect and mitigate such cyber-attacks [12]. 

It's worth noting that while achieving high 

accuracy is promising, the model's performance in 

real-world scenarios may vary due to factors such 

as evolving attack techniques, noisy network data, 

and adversarial attacks. Regular updates and 

continuous monitoring are essential to ensure the 

model remains effective over time. Additionally, 

considering the computational and resource 

constraints of IoT devices, model optimization and 

efficient deployment are critical considerations. To 

address these challenges, we developed a deep 

neural network-based intrusion detection model 

using the CICIDS-2017 dataset. Our proposed 

model is capable of detecting DDoS attacks, along 

with other cyber-attacks targeting IoT networks. 

Specifically, we employed a convolutional neural 

network (CNN) model and a hybrid CNN and Long 

Short-Term Memory (LSTM) model to detect 

DDoS attacks. Through our experiments, we found 

that Dp-model  demonstrated superior accuracy, 

achieving 99.77% accuracy on our test data. The 

proposed model can be integrated into an Intrusion 

Detection System (IDS), providing an additional 

layer of security to mitigate various threats. 

Figure 1 depicts the network architecture utilized 

in this research work. The objectives of this study 

are as follows: 

1. Propose a deep learning model for 

detecting DDoS attacks and other cyber-

attacks targeting IoT networks. 

2. Evaluate the performance of the proposed 

model using the CICIDS-2017 dataset. 

3. Compare the performance of the proposed 

model with selected machine learning 

algorithms. 

By accomplishing these goals, we aim to contribute 

to the advancement of intrusion detection systems 

and bolster cybersecurity measures within IoT 

networks. 

 
Figure 1. IoT network architecture 

 

2. Related Works 

This section presents a comparative analysis of the 

recent papers that focus on enhancing security in 

Internet of Things (IoT) using Intrusion Detection 

Systems (IDSs) with Artificial Intelligence (AI) 

methodologies. By comparing and analyzing 

various aspects of recent research on this topic, we 

aim to gain a better understanding of the current 

state-of-the-art in IDS research and identify 

potential areas for future investigation. We justify 

the need for our approach by considering the 

importance of deep learning models in intrusion 

detection in IoT networks. Our research project 

presents an intrusion detection model to identify 

distributed denial of service attacks along with 

several other cyber attacks in IoT networks using 

the CICIDS-2017 dataset.Summarized in Table 1 

are the recent papers on IDSs for IoT networks, 

with a focus on proposed methodologies, network 

applications, and limitations of their approaches.  

The need for further research to develop effective 

and robust IDSs for IoT networks is emphasized, 

as highlighted in  Table 1. 

Gyamfi and Jurcut [1] propose a lightweight NIDS 

based on an online incremental support vector data 

description (OI-SVDD) anomaly detection system 

on the industrial IoT devices and an adaptive 

sequential extreme learning machine (AS-ELM) on 

the multiaccess edge computing (MEC) server. 

However, the article by Gyamfi and Jurcut has 

several shortcomings. Firstly, it only focuses on 

IIoT and does not generalize to other IoT networks, 

limiting its applicability. Secondly, the argument 

that conventional signature-based NIDS are not 

suitable for IIoT network security is not entirely 

accurate as they can be updated with new 

signatures. Additionally, the proposed solution 

based on OI-SVDD and AS-ELM may be complex 

and difficult to implement in practice, especially 

for resource-constrained IIoT devices. Finally, the 
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evaluation of the proposed NIDS is limited to two 

datasets, which limits the generalizability of the 

results.  

Deng et al. [2] propose a novel approach for label-

limited network intrusion detection in IoT 

networks using Flow Topology based Graph 

Convolutional Networks (FT-GCNs). The authors 

suggest that traditional machine learning based 

NIDS approaches require a large amount of labeled 

traffic flow data, which hinder their application in 

highly dynamic IoT networks with limited 

labeling. However, the proposed FT-GCN 

leverages the underlying traffic flow patterns 

through a flow topological structure to unlock the 

full potential of the traffic flow data with limited 

labeling.  

Wu et al. [3] propose an intelligent intrusion 

detection algorithm based on big data mining, 

fuzzy rough set, generative adversarial network 

(GAN), and convolutional neural network (CNN). 

Their method aims to address the challenges of 

implementing big data-enabled intrusion detection 

algorithms on resource-limited edge nodes.  

While Wu et al. [4] propose a method for effective 

intrusion detection in large-scale, scarcely labeled 

IoT domains.Wu et al. [4] use a complex method 

involving multisource heterogeneous domain 

adaptation, semantic transfer, and geometric 

similarity-aware pseudo-label refinement, which 

may be computationally intensive and difficult to 

implement on resource-limited edge nodes in IoT 

networks.  

Ruzafa-Alcázar et al. [5] focus specifically on 

evaluating differential privacy techniques for 

federated learning in the context of an intrusion 

detection system for industrial IoT. While this is a 

valuable contribution, it focuses on the specific 

context of industrial IoT and federated learning, 

our study has broader implications for IDS 

accuracy in IoT networks more generally. 

Furthermore, their evaluation is limited to a single 

dataset (ToNIoT) and does not provide insights 

into the generalizability of the proposed approach 

across different datasets. Additionally, the article 

does not discuss the potential trade-offs between 

accuracy and privacy in the proposed approach, 

which is a crucial factor in the development of IDSs 

for IoT networks. 

While Long et al. [6] propose a novel approach for 

intrusion detection in IoT networks, their study 

fails to compare their proposed approach with 

existing intrusion detection systems. Additionally, 

the study only evaluates their model on a single 

dataset, which limits the generalizability of their 

findings to other datasets and real-world settings.  

Oseni et al. [7] focus specifically on the Internet of 

Vehicles (IoV) rather than the broader Internet of 

Things (IoT) network. This may limit the 

generalizability of the findings to other types of IoT 

networks, such as those used in industrial or home 

settings. Additionally, while the article proposes an 

explainable deep learning-based intrusion 

detection framework, it is unclear how well this 

framework would perform on other datasets or in 

other IoT network environments.  

The article by Mehedi et al.[8] emphasizes the 

importance of attribute selection in identifying 

normal and attack scenarios with a small amount of 

labeled data, which is crucial in real-world 

scenarios where obtaining labeled data can be 

challenging.  

Bebortta et al. [9] propose a fog-enabled intelligent 

network intrusion detection framework for internet 

of things applications. First, while the Equilibrium 

Optimization-based Artificial Neural Network 

(EO-ANN) model proposed in their study shows 

promising results in detecting network attacks in 

IoT systems, it is unclear how the model performs 

in the presence of noisy data, which is a common 

challenge in real-world settings. 

Alani and Awad [10] propose an intelligent two-

layer intrusion detection system for IoT which can 

be deployed in an IoT network without affecting 

the normal operation of the devices and 

applications. This enables organizations to enhance 

the security of their IoT networks without incurring 

significant costs or disrupting existing operations.  

Wu et al. [11] article relies heavily on transferring 

knowledge from a data-rich domain (network 

intrusion detection) to a data-scarce domain (IoT 

intrusion detection) using a complex graph 

alignment method. This may introduce additional 

complexity and potential sources of error in the 

intrusion detection process, particularly if the 

alignment is not perfect  

Thakkar and Lohiya [12] focus primarily on 

addressing the issue of class imbalance in intrusion 

detection datasets using an ensemble learning 

approach, rather than evaluating the accuracy of the 

intrusion detection system itself. While addressing 

class imbalance is certainly an important 

consideration for developing a coherent and potent 

intrusion detection and classification system, it is 

also important to evaluate the accuracy of the 

system in detecting and preventing intrusions. The 

article by Thakkar and Lohiya does mention that 

the performance of the proposed approach is 

evaluated using various evaluation metrics, 

including accuracy, precision, recall, f-score, and 

False Positive Rate (FPR), but it would be 

important to assess how well the proposed 
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approach performs in comparison to other existing 

intrusion detection systems, especially those that 

have also addressed the issue of class imbalance.  

While Sharadqh et al. [13] propose an interesting 

approach to intrusion detection in IoT networks, 

their work appears to be focused on a very specific 

solution involving the use of blockchain and 

optimization algorithms. This limits the 

generalizability and applicability of their approach 

to different network environments and may not 

address the root cause of the problem, which is the 

need for accurate intrusion detection. Additionally, 

their proposed framework involves a complex 

process that may result in high computational costs 

and may not be scalable in larger networks. 

Ma et al. [14] propose a collaborative learning-

based intrusion detection framework called ADCL 

for IoT networks. While the proposed framework 

seems to address the limitations of a single model 

and improve detection performance, the article is 

unclear how it mitigates the limitations of a single 

model. Additionally, the article does not provide a 

detailed evaluation of the proposed framework, 

which makes it difficult to assess the effectiveness 

of the proposed approach.  

By using a deep learning approach, Kandhro et al. 

[15] demonstrate a significant performance 

increase in terms of accuracy, reliability, and 

efficiency in detecting all types of attacks. 

Additionally, the use of a generative adversarial 

network for intrusion detection is a novel approach 

that could have implications for improving network 

security in the future. However, the use of a deep 

learning-based approach may require a large 

amount of labeled data to achieve high accuracy.  

Telikani et al. [16] present an innovative approach 

to address the problem of imbalanced data 

distribution in Industrial IoT environments for 

intrusion detection. Limited number of malicious 

activities compared to normal activities causes 

machine learning models being biased towards the 

majority class (normal activities) and therefore 

failing to detect rare malicious activities. The 

authors propose a hybrid model of stacked 

autoencoders (SAE) and convolutional neural 

networks (CNNs) with a new cost-dependent loss 

function, called EvolCostDeep, to optimize the 

model's parameters. They also introduce a fog 

computing-enabled framework, called 

DeepIDSFog, to parallelize the EvolCostDeep 

model and mitigate attacks in IIoT environments. 

However, the article does not provide a detailed 

comparison with other state-of-the-art intrusion 

detection systems, making it difficult to evaluate 

the effectiveness of the proposed EvolCostDeep 

model and DeepIDSFog framework in comparison 

to existing solutions. 

Abdel Wahab [17] discusses the challenges of 

maintaining the accuracy of machine learning-

based intrusion detection systems in dynamic 

environments, specifically in the IoT network. The 

author proposes a solution that involves a drift 

detection technique using principal component 

analysis (PCA) to detect data and concept drifts, an 

online outlier detection technique to identify 

outliers, and an online deep neural network (DNN) 

that adjusts the sizes of hidden layers based on the 

hedge weighting mechanism. However, it is 

unclear how the IoT-based intrusion detection 

dataset was selected or how the performance of the 

proposed solution was compared to the static DNN 

model. Additionally, it is not clear how the 

proposed drift detection and outlier detection 

techniques compare to existing techniques for 

addressing data and concept drift in machine 

learning-based IDSs. Moreover, the article does not 

address other potential challenges such as 

adversarial attacks, resource constraints, or the 

need for interpretability and explainability in 

decision-making. While it is important to address 

drifts in dynamic IoT environments, it is also 

important to consider other factors that can impact 

the effectiveness of an IDS. 

The article by Liang et al. [18] gives the idea to 

offer a promising solution to the problem of 

imbalanced learning in microservice-oriented 

intrusion detection in distributed IoT systems, 

however, more information is needed to fully 

evaluate the effectiveness of the proposed 

approach. For example, it is not clear how the 

proposed model performs in terms of detecting 

attacks that are not novel or in detecting attacks on 

different types of IoT devices or networks.  

Moreover, it is unclear how the two public datasets 

were selected or how the performance of the 

proposed optimized intra/inter-class-structure-

based variational few-shot learning (OICS-VFSL) 

model was compared to the baseline methods. 

Zhou et al. [19] article focuses on the development 

of an attack generation method for testing intrusion 

detection systems in IoT networks. They also 

introduce a new method for generating adversarial 

examples for intrusion detection systems in IoT 

networks. While this method may be effective in 

testing the robustness of these systems, it also 

raises concerns about the potential for attackers to 

use similar methods to bypass these systems in 

real-world attacks. Therefore, it could be argued 

that the Zhou et al. article may actually undermine 

the effectiveness of intrusion detection systems in 
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IoT networks by making it easier for attackers to 

evade detection. 

Booij et al. [20] raise important points about the 

importance of data sets and standardization efforts 

in IoT security research, our article provides a more 

specific and actionable contribution to the field by 

proposing and evaluating a concrete intrusion 

detection method for IoT networks.  

Zeeshan et al. [21] proposed architecture uses a 

deep learning technique to achieve high accuracy, 

they do not address the issue of noisy data or the 

impact of noise on classification accuracy. This is 

a significant limitation as noisy data is a common 

issue in IoT networks, and it can significantly 

impact the performance of an IDS 

Siddharthan et al. [22] proposes an intrusion 

detection system for IoT networks that uses Elite 

Machine Learning (EML) algorithms and a 

lightweight protocol to manage time constraints. 

The article claims to achieve an accuracy of above 

99% for the considered system model.  

Muthanna et al. [23] propose an intelligent and 

efficient framework for threat detection in IoT 

environments, leveraging Cuda Long Short Term 

Memory Gated Recurrent Unit (cuLSTMGRU) 

and Software-Defined Networking (SDN) 

technologies. The proposed model achieved a high 

detection accuracy of 99.23% with a low false-

positive rate, outclassing other models and 

benchmark algorithms in terms of speed efficiency, 

detection accuracy, precision, and other standard 

evaluation metrics. The study used a state-of-the-

art IoT-based dataset and standard evaluation 

metrics, and employed 10-fold cross-validation to 

ensure unbiased results. However, the article does 

not clearly state which dataset was used for 

evaluation and how it was collected.  

Miranda et al. [24] article focuses on a specific 

optimization mechanism for preventing rank 

attacks in SDN-based deployments of 6LoWPAN 

networks. They discuss the use of reinforcement 

learning (RL) to complement an SDN controller in 

achieving cost-efficient route optimization and 

QoS provisioning to prevent rank attacks in low-

power IoT networks. The use of RL is a novel 

approach to address the issue of non-optimized 

routes for packet forwarding in the face of rank 

attacks.  

Jayalaxmi et al. [25] provide a useful survey of 

existing studies on intrusion detection and 

prevention systems in IoT networks. The article 

mainly presents a mapping technique for risk factor 

analysis and proposes a hybrid framework for 

security model development. Moreover, it provides 

a comparative analysis of various AI-based 

techniques, tools, and methods used for intrusion 

detection and prevention in IoT networks. In 

contrast, our study presents a clear research 

question and methodology for evaluating the 

accuracy of an intrusion detection system in IoT 

networks.  

Table 1 Comparative analysis of IDSs for enhancing IoT security with AI methodologies: a review of recent research work. 

Authors proposal Network Limitations 

Gyamfi and 

Jurcut [1] 

Lightweight NIDS based on OI-SVDD 

and AS-ELM 

Industrial IoT devices Only focuses on industrial IoT, proposed solution may 

be difficult to implement for resource-constrained IIoT 
devices, evaluation limited to two datasets, and 

generalization to other IoT networks is uncertain. 

Deng et al. [2] Flow topology based graph 

convolutional networks 

network intrusion 

detection 

Requires some labeled traffic flow data for training, 

may be difficult to obtain in highly dynamic IoT 

networks, complexity may pose challenges for 
deployment and maintenance. Therefore while, they 

focus on a specific approach for intrusion detection in 

IoT networks and does not address the issue of noise 
in the datasets used for training and testing, they 

address different aspects of the problem. 

Wu et al. [3] Using big data mining, fuzzy rough 
set, generative adversarial network 

(GAN), and convolutional neural 

network (CNN) for intelligent 
intrusion detection 

implementing on resource-
limited edge nodes  

Limited to evaluating one specific intrusion detection 
system and its performance under certain conditions. 

complex GAN architectures, such Wasserstein GANs, 

have not been studied as thoroughly. Another factor 
that has not been covered is that CNN approaches used 

in multi-class classification are not successful. focus 

on proposing a new intelligent intrusion detection 
algorithm based on big data mining, while our article 

focuses on evaluating the accuracy of an existing 

intrusion detection system using decision tree 
classifier and the study of the impact of noise on the 

training and test datasets and how it affects the 

classification accuracy of the IDS. 

Wu et al. [4] Multisource heterogeneous domain 

adaptation, semantic transfer, 

geometric similarity-aware pseudo-
label refinement 

effective intrusion 

detection in large-scale, 

scarcely labeled IoT 
domains 

Computationally intensive and difficult to implement 

on resource-limited edge nodes in IoT Networks. The 

proposed model has been applied only for few types of 
attacks features. use a complex method involving 

multisource heterogeneous domain adaptation, 

semantic transfer, and geometric similarity-aware 
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pseudo-label refinement, which may be 

computationally intensive and difficult to implement 

on resource-limited edge nodes in IoT networks. In 

contrast, we proposed a simpler decision tree classifier 

and focuses on the impact of noise on classification 
accuracy, which has practical implications for the 

development of a robust and accurate IDS for IoT 

networks. 

Ruzafa-Alcázar 

et al. [5] 

Evaluating differential privacy 

techniques for federated learning in the 

context of an intrusion detection 
system for industrial IoT 

industrial IoT and 

federated learning 

Limited evaluation to a single dataset (ToNIoT); no 

insights into generalizability of proposed approach 

across different datasets; no discussion on potential 
trade-offs between accuracy and privacy in the 

proposed approach, which is crucial for IDS 

development in IoT networks. 

Long et al. [6] A regularized cross-layer ladder 

network 

 IoT networks Not compared with existing intrusion detection 

systems; evaluated on a single dataset, limiting 

generalizability to other datasets and real-world 
settings  

Oseni et al. [7] Explainable deep learning-based IDS internet of vehicles (IoVs) Limited generalizability to other types of IoT 

networks, unclear performance on other datasets or in 
other IoT network environments, need for further 

evaluation. Additionally, while the article proposes an 

explainable deep learning-based intrusion detection 
framework, it is unclear how well this framework 

would perform on other datasets or in other IoT 
network environments. Therefore, it may be necessary 

to evaluate the performance and applicability of the 

proposed framework on a wider range of datasets and 
IoT network scenarios to determine its usefulness in 

improving the transparency and resiliency of deep 

learning-based IDS in IoT networks. 
Mehedi et al.[8] Deep transfer learning-based IDS with 

attribute selection 

IoT networks Limited evaluation on benchmark datasets, may not be 

as comprehensive as the decision tree classifier 

approach. The article presented here evaluates the 
accuracy of an IDS for detecting network attacks in 

IoT networks using the decision tree classifier which 
provides more comprehensive insights and results that 

are valuable for the development of dependable IDS 

models in IoT networks. 

Bebortta et al. 

[9] 

Equilibrium Optimization-based 

Artificial Neural Network (EO-ANN) 

Fog-enabled IoT Unclear performance in the presence of noisy data, 

lack of evaluation on real-world datasets and 

scenarios. 

Alani and Awad 

[10] 

Two-layer intrusion detection system 

for IoT 

IoT networks Lack of comprehensive analysis of the impact of noisy 

data on accuracy, less thorough evaluation compared 

to our study using decision tree classifier. 

Wu et al. [11] Heterogeneous domain adaptation 

using graph alignment method 

data-scarce domain IoT Potential complexity and errors in intrusion detection 

process due to imperfect alignment, reliance on 

pseudo-labels may lead to errors in classification. In 
contrast, our approach relies on the use of clean data 

for training and testing. 

Thakkar and 

Lohiya [12] 

Ensemble learning-based deep neural 
network 

IoT network Primarily focused on addressing class imbalance 
rather than evaluating accuracy of intrusion detection 

system, limited comparison to other existing systems, 

no analysis of impact of noise on performance. 

Sharadqh et al. 

[13] 

Hybrid chain: Blockchain enabled 

framework for bi-level intrusion 

detection and graph-based mitigation 

for security provisioning in edge 

assisted IoT environment 

IoT networks The proposed approach for intrusion detection in IoT 

networks using blockchain and optimization 

algorithms has limitations in its generalizability, 

scalability, and ability to address the root cause of the 

problem, which is accurate intrusion detection. 

Ma et al. [14] Collaborative learning-based intrusion 
detection framework called ADCL for 

IoT networks 

 IoT networks The article does not provide a detailed evaluation of 
the proposed framework, making it difficult to assess 

the effectiveness of the approach. There is also no 

comparison with other state-of-the-art methods, 
limiting the contribution of this article. The paper is 

unclear about how the proposed framework mitigates 

the limitations of a single model. 

Kandhro et al. 

[15] 

Decision tree classifier for intrusion 

detection in IoT networks and 

comparison with deep learning-based 
approach 

IoT networks The use of a deep learning-based approach for 

intrusion detection may require a large amount of 

labeled data to achieve high accuracy, which may be a 
limitation in practical scenarios where labeled data is 

scarce or expensive to obtain. In contrast, this article 

uses a decision tree classifier which can be trained on 
smaller datasets and requires less computational 

resources. The paper demonstrates the effectiveness of 

this approach in terms of accuracy, reliability, and 

efficiency in detecting all types of attacks. 



Intrusion Detection for IoT Network Security with Deep Learning 

 

 

Telikani et al. 

[16] 

Hybrid model of stacked autoencoders 

(SAE) and convolutional neural 

networks (CNNs) with a new cost-

dependent loss function called 

EvolCostDeep and fog computing-
enabled framework called 

DeepIDSFog 

imbalanced data 

distribution in industrial 

IoT environments for 

Intrusion detection 

The article does not provide a detailed comparison 

with other state-of-the-art intrusion detection systems, 

which makes it difficult to evaluate the effectiveness 

of the proposed EvolCostDeep model and 

DeepIDSFog framework in comparison to existing 
solutions. 

Abdel Wahab 

[17] 

Drift detection technique using 
principal component analysis (PCA), 

online outlier detection technique, and 

online deep neural network (DNN) 
with hedge weighting mechanism 

accuracy of machine 
learning-based intrusion 

detection systems in 

dynamic IoT 
environments 

It is unclear how the IoT-based intrusion detection 
dataset was selected or how the performance of the 

proposed solution was compared to the static DNN 

model. Additionally, it is not clear how the proposed 
drift detection and outlier detection techniques 

compare to existing techniques for addressing data and 

concept drift in machine learning-based IDSs. The 
article does not address other potential challenges such 

as adversarial attacks, resource constraints, or the need 

for interpretability and explainability in decision-
making. While addressing drifts in dynamic IoT 

environments is important, it is also important to 

consider other factors that can impact the effectiveness 
of an IDS. 

Liang et al. [18] Optimized intra/inter-class-structure-

based variational few-shot learning 
(OICS-VFSL) model for 

microservice-oriented intrusion 
detection in distributed IoT systems 

imbalanced learning in 

microservice-oriented 
intrusion detection in 

distributed IoT systems 

It is not clear how the proposed model performs in 

terms of detecting attacks that are not novel or in 
detecting attacks on different types of IoT devices or 

networks. Moreover, it is unclear how the two public 
datasets were selected or how the performance of the 

proposed OICS-VFSL model was compared to the 

baseline methods. More information is needed to 
evaluate the effectiveness of the proposed approach. 

Zhou et al. [19] Attack generation method for testing 

intrusion detection systems in IoT 
networks and a new method for 

generating adversarial examples for 

intrusion detection systems in IoT 
networks 

testing robustness of 

intrusion detection 
systems in IoT networks 

The proposed approach may raise concerns about the 

potential for attackers to use similar methods to bypass 
these systems in real-world attacks, undermining the 

effectiveness of intrusion detection systems in IoT 

networks. The article does not provide any solution to 
address this limitation. 

Booij et al. [20] Decision tree classifier for intrusion 

detection in IoT networks and 
evaluation of its accuracy on four 

different benchmark datasets 

intrusion detection in IoT 

networks 

The article acknowledges the importance of data sets 

and standardization efforts in IoT security research, 
which is an important consideration for the 

development and evaluation of intrusion detection 

systems in IoT networks. 

Zeeshan et al. 

[21] 

Protocol-based deep intrusion 

detection 

UNSW-NB15 and bot-IoT 

data-sets 

Noisy data issue and its impact on classification 

accuracy were not addressed 

Siddharthan et 

al. [22] 

Elite machine learning algorithms 
(EML) 

IoT networks Lack of details on the dataset used for testing and 
evaluation methodology, unclear how proposed IDS 

handles noisy datasets or the impact of noisy datasets 

on classification accuracy. Furthermore, it is unclear 
how the proposed IDS handles noisy datasets or the 

impact of noisy datasets on classification accuracy. 
Muthanna et al. 

[23] 

Intelligent and efficient framework for 
threat detection in IoT using 

cuLSTMGRU and SDN technologies 

intrusion detection system 
for IoT environments 

Not clearly stated which dataset was used and how it 
was collected.The author has not discussed 

implementing a real-time SDN for existing networks. 

Additionally, the experimental studies for 
classification were conducted extensively only for 

small- sample intrusion and normal network requests. 

Miranda et al. 

[24] 

Reinforcement learning preventing 
rank attacks in low-power IoT  

SDN controller in low-
power IoT networks 

The article does not discuss the implementation 
challenges of the proposed scheme. Methodology to 

apply high volumes of data was not discussed, 

demanding real- time forecast and the sense to reduce 
the data’s dimensionalities. 

Jayalaxmi et al. 

[25] 

Mapping technique for risk factor 

analysis and a hybrid framework for 
security model development 

Intrusion detection and 

prevention in IoT 
networks 

The article does not provide empirical results on the 

accuracy of an IDS in IoT networks. For some types 
of threats, the algorithms have shown a lack of 

detection. Yet, the algorithm’s performance has not 

been tested on a live network. 

 

 

3. Data sets and Methodology 

3.1. Datasets 

The CICIDS2017 dataset consists of both benign 

network traffic and malicious network traffic, 

allowing researchers to train and test their IDS on 

a diverse range of attack scenarios. This paper used 

a publicly available dataset MachineLearn- 

ingCSV, a piece of the CICIDS-2017 dataset from 

ISCX Consortium. It consists of eight real-world 

traffic monitoring sessions in a comma-separated 

value (CSV) file. This dataset was collected and 

distributed by researchers from the Canadian 

Institute of Cyber Security. It contains up-to-date 
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attacks containing both benign and malicious 

network traffic traces. It is a labeled dataset 

including 84 features. Very last feature of the 

dataset is the class label, which classifies the 

sample as an attack or benign traffic. There are 14 

kinds of attacks in this dataset. Some of the attack 

types are significant in aspect IoT detection. The 

attacks included in the dataset range from botnet 

attacks to DoS and DDoS attacks, port scans, and 

more. The dataset also includes full packet 

payloads in pcap format, which can be used to 

analyze network traffic in detail. Furthermore, the 

dataset includes profiles of each network flow, 

allowing researchers to gain insight into the 

characteristics of the traffic. The availability of the 

CICIDS2017 dataset has been a significant 

development in the field of cybersecurity research, 

allowing researchers to train and test their IDS on 

a diverse range of network attacks. The labeled 

dataset provides a benchmark for researchers to 

compare the effectiveness of different IDS and to 

develop new intrusion detection techniques. 

Moreover, the availability of the full packet 

payloads in pcap format provides a detailed view 

of network traffic, allowing researchers to analyze 

the traffic in detail and gain insights into the 

characteristics of different attacks. CICIDS2017 

contains more than 80 million labeled flows with 

84 features. the CICIDS2017 dataset indeed 

includes both benign and malicious network traffic, 

providing a comprehensive set of data for 

researchers to develop, train, and evaluate intrusion 

detection systems (IDS) and security algorithms. 

This diversity allows for testing the effectiveness 

of IDS in identifying various types of attacks and 

helps in creating more robust and reliable security 

solutions.The CICIDS2017 (Canadian Institute for 

Cybersecurity Intrusion Detection System 2017) 

dataset is a widely used benchmark dataset in the 

field of cybersecurity and intrusion detection. It 

was created to support research and development 

in the area of network security and intrusion 

detection systems. The dataset contains a diverse 

set of network traffic data, including both benign 

and malicious traffic, captured in a controlled 

environment. 

Key features of the CICIDS2017 dataset include: 

Variety of Attacks: The dataset covers a wide range 

of cyber attacks, including but not limited to DoS 

(Denial of Service), DDoS (Distributed Denial of 

Service), port scanning, brute force attacks, and 

more. This variety allows for comprehensive 

testing and evaluation of intrusion detection 

systems. 

Realistic Traffic: The dataset includes real-world 

network traffic, making it more representative of 

actual network environments. This helps 

researchers in developing and testing intrusion 

detection systems under conditions that closely 

resemble those encountered in practice. 

Detailed Attributes: The dataset provides detailed 

attributes and features for each network flow, such 

as source and destination IP addresses, port 

numbers, protocol types, and various statistical 

features derived from the traffic data. 

Large Scale: The dataset is relatively large in scale, 

containing a substantial number of network flow 

records, which is beneficial for training and 

evaluating machine learning and data mining 

algorithms. 

Researchers and practitioners in the field of 

cybersecurity use the CICIDS2017 dataset for 

various purposes, including training machine 

learning models, evaluating the performance of 

intrusion detection systems, and benchmarking 

new intrusion detection techniques. Its availability 

has contributed to advancements in the 

development of more effective and robust security 

solutions to combat evolving cyber threats. 

The CICIDS2017 dataset is a comprehensive 

collection of network traffic data designed for 

research and development in the field of 

cybersecurity, particularly in the area of intrusion 

detection systems (IDS).  

Data Preprocessing: The dataset has undergone 

preprocessing to remove noise and irrelevant data, 

making it suitable for training and testing machine 

learning models and intrusion detection algorithms. 

Research and Development: Researchers and 

practitioners in the cybersecurity domain use the 

CICIDS2017 dataset to develop and evaluate 

intrusion detection systems, test the effectiveness 

of security algorithms, and benchmark the 

performance of various detection techniques. 

Overall, the CICIDS2017 dataset serves as a 

valuable resource for studying network security, 

evaluating intrusion detection techniques, and 

enhancing the resilience of systems against cyber 

threats. Its comprehensive nature and diverse range 

of features make it a widely used benchmark for 

cybersecurity research and development. In this 

dataset, the network flow data has been recorded 

for five days, the general information of which is:  

• First day: includes normal activities  

• Second day: includes normal and abnormal 

activities of Brute Force, FTP-Patator and SSH-  

Patator. 

• Third day: includes normal and abnormal 

activities of DDOS, DoS slowloris, DoS 

Slowhttptest, DoS Hulk, DoS GoldenEye, 

Heartbleed Port 444.  
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• Fourth day: includes normal and abnormal 

activities Web Attack - Brute Force, Web Attack - 

XSS, Web Attack - Sql Injection, Infiltration - 

Dropbox download, Infiltration - Cool disk - MAC, 

Infiltration - Dropbox download.  

• Fifth day: includes normal and abnormal 

activities of Botnet ARES, Port Scan, DDoS LOIT. 

 

 

Table 2. Description of the CIC-IDS2017 dataset 

File name Available attack Count 

Mondey- 

WorkingHours.pcap ISCX.csv 

Benign 529,918 

Tuesday- 

WorkingHours.pcap ISCX.csv 

Benign 432,074 

FTP-Patator 7,938 

SSH-Patator 5,897 

Wednesday- 

WorkingHours.pcap ISCX.csv 

Benign 440,031 

DoS GoldenEye 10,293 

DoS Hulk 231,073 

DoS Slowhttptest 5,499 

DoS slowloris 5,796 

Heartbleed 11 

Thursday- 

WorkingHours- 

Morning-WebAttacks.pcap ISCX.csv 

Benign 168,186 

Web Attack – Brute Force 1,507 

Web Attack – Sql Injection 21 

Web Attack – XSS 652 

Thursday- 

WorkingHours- 

Afternoon-Infilteration.pcap ISCX.csv 

Benign 288,566 

Infiltration 36 

Friday- 

WorkingHours- 

Morning.pcap ISCX.csv 

Benign 189,067 

Bot 1,966 

Friday- 

WorkingHours- 

Afternoon-PortScan.pcap ISCX.csv 

Benign 127,537 

PortScan 158,930 

Friday- 

WorkingHours- 

Benign 97,718 

DDoS 128,027 
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3.2. Methodology 

The dataset utilized in this study was collected 

across various time segments. Despite the temporal 

variations, the features remained consistent 

throughout the data collection process. In order to 

consolidate the available data from multiple 

timelines, all the collected information was 

merged. Upon examination, it was observed that 

1362 rows within the dataset contained "NaN" 

values, which accounted for less than one percent 

of the entire dataset. Consequently, these instances 

were eliminated from further analysis as they 

included null and NaN values. For the purpose of 

training our models, the dataset was randomly 

divided into an 80% training set and a 20% testing 

set. Additionally, a random validation split of 10% 

was introduced within the training dataset to 

facilitate model assessment and fine-tuning. To 

prepare the dataset for utilization in deep learning 

models, categorical variables were encoded into 

integer values. This encoding process was 

accomplished using a label encoder that assigned 

integer values ranging from 0 to 14 to the different 

categories. While categorical variable encoding 

was conducted within the deep learning models 

themselves, prior to commencing the training 

process, the dataset underwent standardization 

through scalar transformation. The standardization 

procedure employed the StandardScaler method, 

which eliminates the mean and scales the data to 

achieve unit variance. However, it is important to 

note that outliers may influence the calculation of 

both the empirical mean and standard deviation, 

subsequently constricting the range of 

characteristic values. These divergences in the 

initial feature distributions have the potential to 

cause difficulties for numerous machine learning 

models.One particular issue arising from disparate 

feature scales is encountered when employing 

distance-based models. If a given feature exhibits a 

wide range of values, it will disproportionately 

govern the resulting distance calculations. This 

discrepancy can introduce bias and adversely affect 

the performance of the model. To mitigate this 

potential problem, data standardization is 

necessary, wherein the data is transformed to 

possess a mean (μ) of 0 and a standard deviation 

(σ) of 1. Such standardization ensures that 

variables with disparate scales do not exert 

disproportionate influence on model fitting and the 

associated learning algorithm. Consequently, prior 

to integrating the data into a machine learning 

model, it is customary to standardize the dataset to 

achieve the desired properties (μ = 0, σ = 1). The 

preprocessing consisted of three sub-steps: scaling, 

normalization, and data cleaning. Then, the dataset 

was labeled. The next classification step was 

performedusing CNN, CNN-  LSTM, and 

DenseNet. This step adopts different models to 

predict the attack. We classification step used three 

different types of neural networks to classify the 

attacks. These NNs were CNN, LSTM, and 

DenseNet. We employed TensorFlow and Keras to 

implement CNN, CNN-LSTM, and DenseNet and 

Python to implement the neural network models. 

Afterward, we trained, tested, and evaluated our 

model. 

4. Results 

In this section, we have reviewed the results of the 

tests, first we have reported the three main 

networks and then we have expressed our proposed 

method. 

 

4.1 Implementation of algorithms  

4.1.1 CNN Implementation 

To compare the effectiveness of the experimental 

flow, a Convolutional Neural Network (CNN) was 

set up with similar layer parameters as the 

DenseNet implementation. The CNN started with 

an input shape of (9 x 9 x 1). To match the 

parameter size of 20,943, 3 extra columns were 

added as padding with 0 values. Dense transition 

layers were added with sizes (120 x 2), (60 x 3), 

and (30 x 4). The activation layers had 15 

parameters, similar to DenseNet. The transition 

layers used the ReLU activation function, and the 

final classification layer used SoftMax. The loss 

and accuracy metrics were evaluated using sparse 

categorical cross-entropy. The Adam optimizer 

was used as well. The batch size for training the 

CNN was set to 1024, and the number of epochs 

was set to 120. The validation split, where a portion 

of the data is used for validation, was set to 90:10 

for all experiments. By setting up this experiment, 

the goal is to compare the outcome and 

effectiveness of the CNN architecture with the 

DenseNet architecture. The parameters and 

settings were adjusted to match as closely as 

possible to ensure a fair comparison. Here is the 

pseudo-code for the GetCNNDPProcess() 

function: 

def GetCNNDPProcess(self): 

    ReadData(1) 

    data_features = ds_data[:, 0:81] 

    data_classes = ds_data[:, 81:82] 

    data_classes = 

np_utils.to_categorical(data_classes) 

    scaler = StandardScaler() 

    data_features = 

scaler.fit_transform(data_features) 

    data_features = 

data_features.reshape(len(data_features), 9, 9, 1) 
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    features_train, features_test, classes_train, 

classes_test = train_test_split(data_features, 

data_classes, test_size=0.2, random_state=4, 

shuffle=True) 

 

    model = Sequential() 

    model.add(tf.keras.Input(shape=(9, 9, 1))) 

    model.add(BatchNormalization()) 

    model.add(Activation('relu')) 

    model.add(Conv2D(120, 2)) 

    model.add(BatchNormalization()) 

    model.add(Activation('relu')) 

    model.add(Conv2D(60, 3)) 

    model.add(BatchNormalization()) 

    model.add(Activation('relu')) 

    model.add(Conv2D(30, 4)) 

    model.add(Flatten()) 

    model.add(Dense(data_classes.shape[1], 

activation='softmax')) 

    model.summary() 

    

model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy', 'mse']) 

 

    history = model.fit(features_train[0:5000, :], 

classes_train[0:5000, :], epochs=self.epoch, 

validation_data=(features_test[0:100, :], 

classes_test[0:100, :])) 

 

    GetPlot('CNN Model Accuracy', 

history.history['accuracy'], 

history.history['val_accuracy'], 'accuracy') 

    GetPlot('CNN Model Loss', 

history.history['loss'], history.history['val_loss'], 

'loss') 

  

Figure 2.  Accuracy graph of CNN. 

 

Figure 3.  Loss gragh of CNN. 

4.1.2 Dense net implementation  

DenseNet is a deep learning architecture that 

consists of multiple dense blocks. Each dense block 

contains different filters, but the dimensions within 

each block are similar. The transition layer is used 

to downsample the feature maps and applies batch 

normalization. In this specific implementation, the 

input shape is (78 x 1). Three transition layers are 

used with filter sizes of 128, 64, and 32 

sequentially. These transition layers are connected 

using the ReLU activation function. After the 

transition layers, a classification layer with 15 

outputs is added, followed by a SoftMax function 

for prediction. The dense blocks in this 

implementation have filter sizes of 1 x 1 and 3 x 3. 

The second layer receives a total of 79 parameters 

(78 predictors and 1 target), and the third layer has 

a total of 10112 parameters (78+1 x 128). Including 

the classification layer, the total number of 

parameters is 20,943 (0+10112+8256+2080+495). 

The Adaptive Moment Optimizer (Adam) is used 

as the optimizer for training the model. Adam 

adjusts the learning rate based on the exponential 

moving average of the gradient and squared 

gradient. Sparse categorical cross-entropy is used 

as the loss function and validation accuracy metric. 

Sparse categorical cross-entropy is preferred for 

multiclass classification tasks and takes into 

account the mutual exclusiveness of classes. The 

model is trained with a batch size of 1024 and 120 

epochs. The early stop parameter is enabled, which 

stops the training process if the consecutive 

accuracy does not improve. This helps prevent 

overfitting and improves efficiency when training 

on a large amount of data. 

Here is the pseudo-code for the 

GetDenseNetDPProcess() function: 

def GetDenseNetDPProcess(self): 

    ReadData() 
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    data_features = ds_data[:, 0:78] 

    data_classes = ds_data[:, 78:79] 

    data_classes = 

np_utils.to_categorical(data_classes) 

    scaler = StandardScaler() 

    data_features = 

scaler.fit_transform(data_features) 

    data_features = 

data_features.reshape(len(data_features), 78, 1) 

    features_train, features_test, classes_train, 

classes_test = train_test_split(data_features, 

data_classes, test_size=0.2, random_state=4, 

shuffle=True) 

 

    dense_block_size = 3 

    layers_in_block = 4 

    growth_rate = 12 

    classes = classes_train.shape[1] 

    model = dense_net(growth_rate * 2, 

growth_rate, classes, dense_block_size, 

layers_in_block) 

    model.summary() 

 

    optimizer = Adam(learning_rate=0.0001, 

beta_1=0.9, beta_2=0.999, epsilon=1e-08) 

    model.compile(optimizer=optimizer, 

loss='categorical_crossentropy', 

metrics=['accuracy', 'mse']) 

    history = model.fit(features_train[0:5000, :], 

classes_train[0:5000, :], epochs=self.epoch, 

validation_data=(features_test[0:100, :], 

classes_test[0:100, :])) 

 

    GetPlot('DenseNet Model Accuracy', 

history.history['accuracy'], 

history.history['val_accuracy'], 'accuracy') 

    GetPlot('DenseNet Model Loss', 

history.history['loss'], history.history['val_loss'], 

'loss') 

 
Figure 4.  Accuracy graph of dense. 

 
Figure 5.  Loss gragh of dense. 

 

4.1.3 Implementation of CNN-LSTM 

To achieve the best performance for intrusion 

detection, a hybrid algorithm combining CNN and 

LSTM was developed. The architecture started 

with a single-dimensional convolution layer with 

(128 x 3) and 78 inputs, followed by a max-pooling 

layer of size 2. The same single convolution layers 

were added twice, followed by another max-

pooling layer of size 2 before feeding the 

parameters to the LSTM model. The LSTM layer 

started with 256 nodes, followed by a dropout layer 

of 0.1 to reduce the unused node size. The 

classification layer had 15 outputs, and the softmax 

function was used. The convolution layers used the 

ReLU activation function, and sparse categorical 

cross-entropy was used for loss and accuracy 

functions. The Adam optimizer was used for 

adaptive learning rate based on weight updates. 

The batch size for training the CNN-LSTM hybrid 

algorithm was reduced to 512, and the number of 

epochs was kept at 120. The goal of this hybrid 

algorithm was to combine the strengths of both 

CNN and LSTM architectures to improve the 

performance of intrusion detection. By using CNN 

for feature extraction and LSTM for sequence 

learning, the hybrid algorithm can potentially 

achieve better accuracy and efficiency compared to 

using either architecture alone. 

Here is the pseudo-code for the 

GetCNN_LSTMDPProcess() function: 
def GetCNN_LSTMDPProcess(self): 

    ReadData() 

    data_features = ds_data[:, 0:78] 

    data_classes = ds_data[:, 78:79] 

    data_classes = 

np_utils.to_categorical(data_classes) 

    scaler = StandardScaler() 
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    data_features = 

scaler.fit_transform(data_features) 

    data_features = 

data_features.reshape(len(data_features), 78, 1) 

    features_train, features_test, classes_train, 

classes_test = train_test_split(data_features, 

data_classes, test_size=0.2, random_state=4, 

shuffle=True) 

    model = Sequential() 

    model.add(Conv1D(128, 3, 

activation='relu', input_shape=(78, 1))) 

    model.add(Conv1D(128, 3, 

activation='relu')) 

    model.add(MaxPooling1D(2)) 

    model.add(Conv1D(128, 3, 

activation='relu')) 

    model.add(MaxPooling1D(2)) 

    model.add(LSTM(256)) 

    model.add(Dropout(0.1)) 

    model.add(Dense(data_classes.shape[1], 

activation='softmax')) 

    model.summary() 

    

model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy', 'mse']) 

 

    history = model.fit(features_train[0:5000, :], 

classes_train[0:5000, :], epochs=self.epoch, 

validation_data=(features_test[0:100, :], 

classes_test[0:100, :])) 

 

    GetPlot('CNN-LSTM Model Accuracy', 

history.history['accuracy'], 

history.history['val_accuracy'], 'accuracy') 

    GetPlot('CNN-LSTM Model Loss', 

history.history['loss'], history.history['val_loss'], 

'loss') 

 
Figure 6. Accuracy graph of CNN+LSTM. 

 
Figure 7.  Loss gragh CNN-LSTM.   

4.1.4 Main Dp process network  

By using this proposed model, we were able to 

present a new model that has better accuracy than 

the other three models. In this proposed model (dp-

model), we used a 1D CNN layer in the first layer 

of this model, and then we used a Flatten layer, then 

a Dense layer and a Dropout layer to reduce the 

dimensions. and after that, a dense layer has been 

used again. Here is a pseudo-code representation of 

the provided code snippet: 

function GetMainDPProcess(): 

    ReadData() 

    data_features = ds_data[:, 0:78] 

    data_classes = ds_data[:, 78:79] 

    data_classes = 

np_utils.to_categorical(data_classes) 

    scaler = StandardScaler() 

    data_features = 

scaler.fit_transform(data_features) 

    data_features = 

data_features.reshape(len(data_features), 78, 1) 

    features_train, features_test, classes_train, 

classes_test = train_test_split(data_features, 

data_classes, test_size=0.2, random_state=4, 

shuffle=True) 

     

    model = Sequential() 

    model.add(Input(shape=(78, 1))) 

    model.add(Conv1D(64, 2, 

activation='relu')) 

    model.add(Flatten()) 

    model.add(Dense(32, activation='relu')) 

    model.add(Dropout(0.1)) 

    model.add(Dense(data_classes.shape[1], 

activation='softmax')) 

    model.summary() 
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model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy', 'mse']) 

    history = model.fit(features_train, 

classes_train, epochs=self.epoch, 

validation_data=(features_test, classes_test)) 

     

    GetPlot('Proposed Model Accuracy', 

history.history['accuracy'], 

history.history['val_accuracy'], 'accuracy') 

    GetPlot('Proposed Model Loss', 

history.history['loss'], history.history['val_loss'], 

'loss') 

 
Figure 8.  Accuracy graph of dp-model. 

 
Figure 9. Loss gragh of dp-model. 

This study aimed to compare the effectiveness of 

different neural network architectures using the 

CIC-IDS2017 dataset in the context of deploying 

machine learning models in IoT infrastructure. The 

research focused on identifying suitable 

architectures that could achieve high performance 

while minimizing computational requirements, 

rather than increasing the depth of the neural 

networks. 

The proposed model demonstrated the highest 

accuracy of 0.997 on the test data. It was observed 

that the absence of dropout and convolutional 

layers, which are commonly used in CNN and 

CNN-LSTM architectures, allowed the data to 

remain intact and contribute efficiently to the 

classification layer. This finding is consistent with 

the belief that the proposed model benefits from 

providing all combinations of a feature vector to 

the classification layer, considering the mutual 

exclusiveness among the 15 categorical inputs. It 

highlights the advantage of the loss function that 

takes this into account [14]. 

The analysis of Figure 3 revealed that the loss per 

epoch stabilizes after the initial iterations, 

indicating convergence of the training process. 

Similarly, Figure 2 displayed consistent accuracy 

over epochs after a certain number of iterations, 

suggesting the model's ability to maintain stable 

performance. These trends indicate that the 

proposed model(dp-model), along with CNN and 

CNN-LSTM architectures, performed 

exceptionally well, achieving accuracies of 0.997, 

0.988, and 0.99, respectively. 

Precision and recall scores further indicated that all 

three algorithms are effective in operating in an IoT 

infrastructure after deployment. The retraining 

process also exhibited consistency, with CNN 

demonstrating excellent optimization of loss and 

maintaining stability throughout the 120 epochs. 

On the other hand, DenseNet and CNN-LSTM 

showed slight fluctuations during mid-training, 

which were considered insignificant [30]. Figures 

4 and 5 provided visual representations of the 

model loss and accuracy loss for each deep learning 

algorithm. 

In summary, the results of this article large the 

effectiveness of the proposed neural network 

architecture, along with CNN and CNN-LSTM, in 

achieving high accuracy in classifying data from 

the CIC-IDS2017 dataset. The findings support the 

suitability of these architectures for deployment in 

IoT infrastructure. The stability and consistency 

observed in the training process further reinforce 

their reliability. However, further research and 

optimization may be required to address the minor 

fluctuations observed in the DenseNet and CNN-

LSTM architectures during mid-training.  

 

4.2 Analysis of effect of noise on algorithms of 

proposed model 

To evaluate the effectiveness of the proposed 

models, we introduced Gaussian noise to the 

dataset. Through these tests, it became evident that 

the proposed method outperformed other 

approaches. Even when subjected to Gaussian 
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noise distribution, the models displayed minimal 

impact on accuracy, as depicted in graphs 10, 11, 

12, 13, 14, 15,16 and 17.  

 

 
Figure 10.  Accuracy graph of CNN with Gaussian noise 

distribution. 

 
Figure 11. Loss gragh of CNN with Gaussian noise 

distribution. 

 

 
Figure 12. Accuracy graph of CNN+LSTM with 

Gaussian noise distribution. 

 
Figure 13.  Loss gragh CNN-LSTM with Gaussian noise 

distribution. 

 
Figure 14. Accuracy graph of dense with Gaussian noise 

distribution. 

 
Figure 15.  Loss gragh of dense with Gaussian noise 

distribution. 

 
Figure 16.  Accuracy graph of dp-model with Gaussian 

noise distribution. 
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Figure 17.  Loss gragh of dp-model with Gaussian noise 

distribution. 

 

4.3 Performance evaluation metrics 

Prior research in network security has typically 

presented the results of intrusion detection 

techniques using binary classification performance 

metrics [31], [32], [33]–[34]. In the context of 

Intrusion Detection Systems (IDSs) for Wireless 

Sensor Networks (WSNs) and the Internet of 

Things (IoT), these results commonly include a 

subset of binary classification metrics such as 

detection rate, true and false positive alarms, and 

accuracy rate. However, we propose the use of an 

extended set of performance metrics to gain a 

deeper understanding of the suitability and 

effectiveness of detection models. The binary 

classification performance measurements revolve 

around categorizing the system's alarm types. The 

raised alarms are quantified and classified as either 

True or False alarms. True Positive (TP) and True 

Negative (TN) values represent correct predictions 

made by the model. TP alarms indicate instances 

where the model correctly identifies malicious 

activities, while TN values indicate correct 

identification of benign activities with no alarm 

raised. On the other hand, False Positive (FP) and 

False Negative (FN) values denote 

misclassifications made by the model. FP values 

refer to undetected malicious local node activities, 

while FN values indicate benign node activities 

that triggered an alarm. 

Table 3. Equations used. 

Equations number 

Re /
TP

call TPR
TP FP




 
(1) 

Pr /
TP

ecision PPV
TP FP




 
(2) 

TP TN
ACC

TP TN FP FN




  
 

(3) 

Pr *Re
1 2*

Pr Re

ecision call
F score

ecision call



 

(4) 

Recall, also known as True Positive Rate (TPR) or 

sensitivity, is a metric that denotes the ratio of True 

Positives (malicious node alarms) to the total 

number of alarms raised (equation 1). This metric 

is often accompanied by Precision or Positive 

Predictive Value (PPV), which represents the 

percentage of correctly identified malicious nodes 

within the network (equation 2) [34]. In some 

works, the term Detection Rate has been used 

interchangeably with Precision/PPV [31], [33]. 

Accuracy (ACC) measures the ratio of correctly 

classified input local node activities (benign or 

malicious) to the total number of local node 

activities used in the specific experimental 

analysis. The equation for ACC is shown in 

Equation 3, and it has been utilized in previous 

studies [32], [34]. The F1 score, commonly 

preferred by researchers, provides an overall 

measure of the quality of a classifier's predictions 

as it captures both precision and recall. It is 

calculated as the harmonic mean of precision and 

recall scores (equation 4). The F1 score ranges 

from 0% to 100%, where a higher value indicates a 

better quality classifier. In summary, these 

performance metrics offer a comprehensive 

evaluation of intrusion detection models, enabling 

a more nuanced assessment of their effectiveness 

and suitability for WSNs and IoT environments. 

4.4 Discuss Comparison 

In this section, we will examine and compare our 

method with others' methods. We presented an 

intrusion detection model in Internet of Things 

networks based on deep neural network using 

CICIDS-2017 dataset. The purpose of this research 

work is to provide a more efficient method than 

previous methods that has the ability to detect all 

types of attacks in the Internet of Things network. 

Table 4. Performance Comparison of result CNN model. 
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Table 5. Performance Comparison of result CNN-   

LSTM model. 

 
 

 Table 6. Performance Comparison of result 

dense model. 
 

  

Table 7. Performance Comparison of result DP- model 

 
4.4 Discuss Comparison 
In this section, we will examine and compare our 

method with others' methods. We presented an 

intrusion detection model in Internet of Things 

networks based on deep neural network using 

CICIDS-2017 dataset. The purpose of this research 

work is to provide a more efficient method than 

previous methods that has the ability to detect all 

types of attacks in the Internet of Things network. 

In this research work, two methods of dimension 

reduction and deep learning are used to implement 

the proposed method. In addition, we have 

examined effective deep learning models to 

demonstrate cyber security knowledge in Internet 

of Things networks, including CNN, DenseNet, 

and a hybrid model of CNN and LSTM, and a 

proposed model called dp-model, which has 

brought the accuracy of the proposed model to 

0.997. This study aimed to compare the 

effectiveness of different neural network 

architectures using the CIC-IDS2017 dataset in the 

context of deploying machine learning models in 

IoT infrastructure. The research focused on 

identifying suitable architectures that could 

achieve high performance while minimizing 

computational requirements, rather than increasing 

the depth of the neural networks. 

Also, we were able to improve the accuracy of 

LSTM & CNN, DenseNet, CNN model in the 

article of Mr. Mostofa Ahsan et al.[30] to 0.988, 

0.985, 0.99 respectively. Also, our analysis showed 

that our proposed models can detect several other 

cyber-attacks targeting IoT devicesAs future work, 

we want to improve the present models’model 

prediction performance and test them against 

additionalrouting attack types. We’re looking at 

adding more features to create a single model that 

can detect many forms of cyber-attacks against 

IoTs.  

Table8.Comparison analysis of the similar works 

using various methods. 

Dataset Accuracy Model Article/Year 

CICIDS-

2017 

 

- - -/2020 

CICIDS-

2017 

 

- - -/2021 

 

CICIDS-

2017 

97.77 

96.87 

96.92 

Dense Net  

CNN 

CNN-

LSTM 

30/2022 

 

CICIDS-

2017 

98.5 

98.8 

99.0 

99.7 

Dense Net  

CNN 

CNN-

LSTM 

DP-Model 

Our 

proposed 

method/2023 

  

5.Conclusion 

IoT technology and systems offer promising 

opportunities for integrating various technological 

advancements, services, and management 

capabilities from the digital world. As technology 

continues to advance, individuals are becoming 

increasingly connected to these IoT systems, 

emphasizing the need for robust security measures 

to protect the vast number of users and their 

extensive data. 
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In this research study, we have proposed a solution 

aimed at detecting intrusions in IoT networks by 

evaluating and comparing different deep neural 

network architectures. Through our investigation, 

we have determined that DP-model(proposed 

model) outperforms other deep learning models 

and machine learning algorithms, achieving an 

accuracy rate of 0.997. Additionally, our analysis 

has revealed that our proposed models exhibit the 

capability to detect various cyber-attacks targeting 

IoT devices. 

Abbreviations  

IOT Internet of Things 

IDS Intrusion Detection Systems 

CNN convolutional neural network 

LSTM 

NNs 

DL 

Long short-term memory 

Neural Networks 

Deep Learning 

ACC Accuracy 

GAN generative adversarial network 

IOV Internet of Vehicles 

EO-ANN Equilibrium Optimization-based 

Artificial Neural Network 

DDoS 

Dos 

distributed denial-of-service 

denial-of-service 

DNN 

DT 

deep neural network 

Decision tree 

OICS-VFSL Optimized intra/inter-class-

structure-based variational few-

shot learning 

EML Elite Machine Learning 

SAE stacked autoencoders 

PCA principal component analysis 
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 چکیده:

این مطالعه یک رویکرد  .برابر تهدیدات سایبری هستندهای اینترنت اشیا در اجزای حیاتی برای محافظت از شبکه (IDS) های تشخیص نفوذسیستم

  CICIDS2017 ما از مجموعه داده .کندهای بکر ارائه میهای یادگیری عمیق و دادهپیشرفته برای تشخیص نفوذ شبکه اینترنت اشیا، استفاده از تکنیک

را در سناریوهای مختلف حمله، مانند حملات انکار سرویس های تشخیص نفوذ کنیم که آموزش و آزمایش جامع مدلدر دسترس عموم استفاده می

مدل یادگیری  .هدف ما ارائه روشی موثرتر از روش های قبلی است .سازدپذیر مینت و موارد دیگر امکانهای پورت، فعالیت بات، اسکن(DDoS) شدهتوزیع

ها طراحی شده زمانی درون دادههای مکانی و کند که برای ثبت وابستگییاستفاده م LSTM های انتقال متراکم و معماریعمیق پیشنهادی ما از لایه

نتایج رویکرد  .بندی شده و دقت، برای ارزیابی عملکرد مدل استفاده کردیماز معیارهای ارزیابی دقیق، از جمله از دست دادن متقابل آنتروپی طبقه مااست.

دهد و مدل ما ثبات در معیارهای تلفات و دقت را نشان می .رسیده است 0.997های آزمون به اوج دهد که در دادهای را نشان میالعادهما دقت فوق

تجزیه و تحلیل مقایسه ای با سایر مدل های یادگیری ماشینی اثربخشی رویکرد ما را تأیید می  .کندهای تشخیص نفوذ قابل اعتماد را تضمین میقابلیت

برانگیز آشکار کند و ظرفیت آن را برای حفظ دقت در شرایط چالشپذیری مدل را در برابر نویز گاوسی ارزیابی میانعطافعلاوه بر این، مطالعه ما  .کند

هایی در مورد اثربخشی مدل در سناریوهای مختلف تهدید ارائه کنیم و بینشما معیارهای دقیق عملکرد را برای انواع مختلف حملات ارائه می .کندمی

 .کنیممی

شیا، حملات  :مات کلیدیکل صبی، اینترنت ا صبی CICIDS2017 مجموعه داده، DDOSشبکه های ع شبکه های ع شنی،  صبی کانولو شبکه های ع  ،

 .بازجریانی

 


