
Journal of AI and Data Mining  

Vol. 2, No. 2, 2014, 149-158. 

High impedance fault detection: Discrete wavelet transform and fuzzy 

function approximation

M. Banejad* and H. Ijadi

Electrical Engineering Department, Shahrood University of Technology, Shahrood, Iran.

Received 12 November 2013; accepted 20 January 2014 
*Corresponding author: m.banejad@shahroodut.ac.ir (M. Banejad). 

Abstract 
This paper presents a method including a combination of the wavelet transform and fuzzy function 

approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete 

wavelet transform (DWT) is used in this paper as a tool for a signal analysis and after studying different 

types of mother signals, detailed types and feeder signal, the best case is selected. In the next step, the DWT 

is used to extract the features. The extracted features are used as the FFA Systems inputs. The FFA system 

uses the input-output pairs to create a function approximation of the features. The FFA system is able to 

classify the new features. The combined model is used to model the HIF. This combined model has the high 

ability to model different types of HIF. In the proposed method, different kind of loads including nonlinear 

and asymmetric loads and HIF types are studied. The results show that the proposed method has high 

capability to distinguish between no fault and HIF states accurately. 

Keywords: High Impedance Fault, Fuzzy Function Approximation, Wavelet Transform, Distribution 

Network, Arc Fault. 

1. Introduction 

Safety is one of the important issues in 

distribution electricity networks. Lack of security 

in the power network may lead to damage to 

humans and equipment. The prevention is the best 

solution to avoid the harmful events. The HIF is 

one of the issues that results in death and financial 

damages. The HIF occurs when a conductor 

contacts with the ground or high impedance 

object. As the impedance of the current path is 

high, the current value in this type of fault is low 

and usually ranges from 0A to 100A [1]. Hence, 

by the conventional over current relay, it is not 

possible to detect this kind of fault; it is treated as 

a normal load current raise. 

The HIF can occur in two forms. In the first form, 

a conductor breaks and falls to the ground. In the 

second form, an electrical conductor is not 

disconnected but only is to be connected to a high 

impedance object (such as tree branches and 

leaves). The HIFs are usually associated with an 

electric arc, which may cause a fire. Due to  the 

nonlinearity nature of the fault, the HIF current 

contains various frequency harmonic components 

including low and high frequency components. It 

should be noted that other network components 

have also broad frequency harmonics. Therefore, 

the HIF should be studied precisely. The 

researchers have performed several HIF 

experiments and have studied the associated 

voltage and current to obtain models that are to be 

used in the simulations. As the HIF has a random 

nature and the fault current is influenced by many 

parameters, developing a model that covers all 

conditions is difficult. However, since the 

developed model is based on practical 

experiments, the researchers considered some 

aspects of the HIF characteristics. 

The first model of HIF was introduced in1985. In 

this model, the HIF was modeled by a single 

resistor in the fault location [2]. After five years, 

with respect to the presence of ARC in the HIF, 

an arc based model is presented [3]. In this model, 

the HIF is presented in anti-parallel two diodes, 

each one is in series with a DC voltage source and 
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3- How to create the  discriminating features 

using the wavelet output? 

4- How does FFA the classify the HIF? 

In response to the first question, it should be noted 

that, in this paper, phase voltage, phase current 

and summation of all phases voltage have 

separately been examined and simulated. From 

the results, the signal that creates the highest 

detection accuracy, is selected as an appropriate 

signal. 

In response to the second question, it should be 

noted that in this paper, 17 types of mother 

wavelet ('db2','db4', 'db5', 'db8','db14','db20', 

'sym5', 'sym8', 'coif4', 'bior2.6', 'bior5.5', 'bior6.8', 

'rbio2.2', 'rbio3.1', 'rbio3.3', 'rbio4.4') and seven 

levels of details for all types of measured signal 

have been separately investigate. Among them, 

each one that has the highest detection accuracy, 

is selected as an appropriate mother wavelet and 

details. 

The response to the third question is given in the 

following. As, the output of the wavelet is not the 

number and it is a function discrete of variables. 

Thus, this cannot be considered as the input of an 

intelligent algorithm or classification algorithm. 

Therefore, the appropriate input signal should 

extract features from the output of the wavelet, 

which expresses the desired behavior of the 

signal. In this paper, firstly, summation absolute 

detail (SAD) is taken from the output wavelet. 

The SAD calculated as follows [24]: 
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In (3), Djx is the detail of the wavelet output at 

Level j for Signal X, k and N are real numbers. 

Next, two features of output wavelet are extracted. 

These two features for signal X at level j are the 

mean and variance denoted by F1jx and F2jx. The 

two features used as inputs of the classification 

system. These two features calculated as: 
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In response to the fourth questions is that as FFA 

needs input-output pairs as the training data for 

the FFA. These pairs are the mean and variance of 

SAD output for no fault and HIF cases, 

respectively. The value of output pairs the HIF 

case is one, and value of output pairs for no fault 

and normal load situations is zero. Expanding (2) 

for the two inputs (n=2) yields. 
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Where FHIF is the FFA of HIF, n is the number of 

training data, F1& F2 are input features, F1i& F2i

are input training data, yi is output training data 

and parameter σ is the standard deviation. 

In (6), yi is also equal to one for HIF training data 

and equal to zero for no fault. Thus, if the function 

F (F1, F2) is equal to one for the new data of 

features, this represents the occurrence of HIF in 

the network. Alternatively, if the function F (F1, 

F2) is equal to zero, for it means that the network 

is working normally. 

5. Component modeling and system under 

study 

The study system in this paper is a radial 

distribution network as shown in figure 3. The 

parallel feeders are connected to a 63 kV slack 

bus via a63/20 kV substation transformer and the 

system frequency is 50 Hz. The parallel feeders 

(lines) have different lengths. Lines lengthare10, 

20 and 30km.To have a better accuracy, the π

model is used for the lines. 

Figure 3. Single line diagram of the MV network under 
study. 

Different loads for consumers in the buses are also 

used. The different loads are: 

- Constant power (with different Power rating 

and different Power Factor) 

- Induction machine (with constant and 

random torque) 

- Electric arc furnace 

- Load switching 
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- Thyristor load (3-Phase, 1-Phase, fixed 

angle, random angle, R&L load) 

- Asymmetric loads (R & L & C ) 

In addition to different electrical loads, normal 

operating states are simulated such as capacitor 

bank switching, saturation transformer and change 

the situation the tap changer. 

In this paper, a combined HIF model is employed 

in the simulation. This model combines the 

dynamical relationship arc and electrical model. 

In this model, the HIF is represented by anti-

parallel two diodes, each one is in series with a 

DC voltage source and series dynamic resistors. 

The dynamic model of a dynamic resistor depends 

on the HIF currents. This model is shown in figure 

4. 

Figure 4.The combined model of HIF. 

In figure 4, the dynamic resistance of arc model is 

calculated from the following equations [25]: 
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Where, g is the time-varying arc conductance, G 

is the stationary arc conductance, τ is time 

constant, i is the arc current, u0 is constant voltage 

parameter per arc length, r is resistive component 

per arc length and l is the arc length [25]. 

The used model in this paper can satisfy several 

features of the behavior of HIF. For example, to 

create an asymmetry in the positive and negative 

half-cycle the two routes diodes are modeled 

differently. In order to create the random behavior 

for the HIF, the randomness in the resistance 

value or in the value of source voltage or even 

dynamic parameters such as the length of the arc 

are modeled. With the available parameters of the 

combined HIF model, many HIF  models can be 

simulated. In this paper, some of the discrepancies 

in the used model are: 

- Path resistance 

- Dynamic parameters (l, r, u0) 

- Random variation of the dynamic parameter 

around their nominal values  

- Resistor and voltage source in parallel 

branches.( Rn,Rp,Vn, Vp) 

- Random variation resistor and voltage 

source around their nominal values  

- Location and phase of the HIF fault 

The reason of using of different changes in model 

parameters, is to create various features of HIF 

that are to be justified by the real situations. 

6. Simulation and data analysis 

In this section, the simulations and data analysis 

are given based on the proposed method. The 

simulation has two distinct parts. In the first part, 

the simulation of the HIF is performed based on 

the proposed method and models of the 

component introduced in Sections 4 and 5, 

respectively. The schematic diagram of the 

process of the application of the proposed 

algorithm is given in figure 5. 

Figure 5.The schematic diagram of the execution of the 
proposed algorithm. 

The number of systems running in PSCAD is 100. 

Among the total runs of 100, 50% is devoted for 

the no fault and 50% for the HIF case. 

6.1. HIF simulation 

In this section, some typical currents of the HIF 

model simulation in this paper, have been 

investigated.  Figures 6 to 8 show typical current 

of HIF model for different cases. Also, figure 9 

shows the voltage-current characteristic of one 

type of the HIF models. 

In figure 6, constant amplitude of current HIF is 

seen. This is due to the constant parameters. Also, 

the parameter values routes of the two diodes are 

identical, the positive and negative half cycles are 

symmetric. But, in figure 7, the arc length 

parameter randomly is randomly changed. Hence, 

the random behavior in amplitude of current HIF 

System Study  
&  

The HIF Simulation 

(in PSCAD 
Environment) 

Wavelet Analysis 
& 

Classify by the FFA 

(in MATLAB Environment) 
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can be observed and even in the current 

amplitude, it reaches to zero.  

Figure 6. A typical current of HIF with constant 
amplitude. 

Figure 7. A typical current of HIF with random behavior. 

Figure 8. A typical current of HIF with randomness and 
asymmetry behavior. 

In figure 8, the value of DC voltage parameters in 

the two diodes route change randomly and 

asymmetrically. Hence, in the current of the HIF 

model, the random behavior and asymmetry in the 

two half cycles can be seen easily. These figures 

demonstrate some are capabilities of the combined 

model. 

Figure 9. A typical voltage current characteristic of HIF 
with random behavior. 

6.2. Wavelet analysis of the proposed method 

At the beginning of this section, the 

discrimination between normal situation and HIF 

case is investigated. Then, the features are 

constructed using DWT output. Finally, the results 

of the algorithm analyzed. 

6.2.1. Output of DWT 

For different electrical network events and 

different measured signals or mother wavelet, the 

wavelet output can vary dramatically. For 

example, several wavelet outputs for no fault 

work and HIF event for phase voltage with mother 

wavelet db14 are examined.  

Figure 9 shows the detail parts of the wavelet 

output for the case of switching load. As can be 

seen in this figure, the detailed output wavelet has 

a non-zero value for a short time period and for 

the rest of the time, its value is equal to zero. 

Wavelet detailed outputs in figure 10, belongs to 

the case of the saturation transformer. Comparing 

with the previous figure shows that the details in 

figure 9 output are smaller and have a repetitive 

jumps and smaller value and for Detail 4. The 

value is nearly zero (except in the beginning of 

the time).  

Figure 9. DWT details for switching load. 
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Figure 10. DWT details for saturation Transformer. 

 
Figure 11. DWT details for electric Arc furnace. 

 
Figure 12. DWT details for thyristorload. 

Also, figure 11 shows the wavelet detailed outputs 

for the case of electric arc furnace. The details 

behavior seen in figure is similar to the 

transformer saturation case. However, the case of 

the thyristor load (shown in Figure 12) has a 

different behavior. 

The wavelet detailed outputs for the case of the 

diode load is illustrated figure 13. As this figure 

indicates there is an asymmetry in the first three 

details and small value in Detail 4. For the case of 

HIF, the wavelet Detail outputs are given in figure 

14. In this figure, the amplitude of Detail 4 is 

greater than the corresponding detail in the 

previous cases. This issue helps us to find a 

discriminative feature to distinguish between no 

fault work and HIF case. 

 
Figure 13. DWT details for Diode load. 

 
Figure 14. DWT details for HIF case. 

6.2.2. Feature extraction from the output of 

DWT 

As stated previously, the output of DWT is not an 

integer number. Hence, at first, the value of SAD 

is computed from the output wavelet. If for 

example in (3), let X to be Va (voltage of Phase a), 

j to be 4 and mother wavelet to be, db14, then 

SAD4Vais computed and the result is shown in 

figure 15. The values of SAD4Va in figure show 

several of no fault work and several HIF cases. 

The values of SAD are the difference between no 

fault and several HIF cases. But, it should be 

noted that this visual interpretation of the extract 

feature needs to be converted a mathematical 

form. According to figure 15, that amount SAD of 

HIF case is larger than amount SAD for no fault. 

But, it is not always true. Also, for the HIF case, 

that abrupt change SAD of HIF is more than the 

no fault, and again it is not always the case. The 

two main differences in the outputs of SAD, mean 

and variance have chosen as the extracted feature 

for distinguishing between the normal working 

situations and HIF cases. Generally, these two 

features are can be different which depends on the 

type of mother wavelet, detail and measurement 

signals.  

To select the best of two features, they are drawn 

in two-dimensional coordinates for normal 
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working and HIF cases as shown. For example, if 

two features (F1,F2) extracted from the output 

wavelet of the sum of three voltage phase by 

mother wavelet Demy and Detail 6, then figure 16 

shows two features relative to each other.  

 
Figure 15. SAD for several cases. 

 
Figure 16. F1 versus F2 using (Vabc) with Mother WT 

demy and detail 6. 

 
Figure 17. F1 versus F2 using Va with Mother WT db14 

and detail 7. 

Also, figure 17 shows two features from the 

output wavelet of Va by db14 mother wavelet and 

Detail 7. In figure 16 for most of the cases, the 

features corresponding to the normal working 

cases are closer to the coordinates.  By changing 

the mother wavelet and the signal type, this 

closeness can be varied. In general, as a better 

discriminative criterion is made, the better is 

feature will be selected. 

6.3.1. Result analysis and discussion 

In order to find the best features as the different 

features, the two factors of F1jx and F2jx are 

determined and classified from 17 mother 

wavelets, 7 detailed levels including voltage, 

current and sum of the voltage feeder for three  

phases were performed and classified. The 

accuracy of results is different for each type. In 

the FFA system, 80 input-output pairs for training 

and 20 input-output pairs for testing were 

considered. Some of the results of the simulation 

for 833 cases are given in table 1. 

Table 1.The best detection using WT &FFA. 

Accuracy 
( %) Detail Mother 

WT 
Feeder 
Signal

Row 

94.19 D6 Demy Vabc 1 

93.93 D4 Rbio3.3 Vabc 2 
93.16 D5 Sym5 Vabc 3 

92.97 D5 Bior5.5 Vabc 4 

92.85 D5 Coif4 Vabc 5 
92.83 D5 Bior6.8 Vabc 6 

92.80 D5 Sym8 Vabc 7 

92.73 D5 Demy Vabc 8 
92.64 D4 Bior2.6 Vabc 9 

92.40 D5 Db14 Vabc 10 

……
 

……
 

…
 

89.83 D7 Rbio2.2 Vx 39 

……
 

……
 

…
 

83.51 D5 Db5 Ix 103 

……
 

……
 

…
 

52.79 D1 Db8 Vx 833 

According to these results, it can be seen that the 

best classification accuracy is 94.19%, which is a 

correct diagnosis. In the best classification for the 

case of the sum of three-phase voltage, the used 

mother wavelet is 'Demy' with Detail 6.  

This means that to have better accuracy in the 

proposed algorithm, firstly the three phase 

voltages should be measured. Then, some of the 

measured voltages are used as the inputs for the 

wavelet transform. In the next step, the wavelet 

transform with Demy mother wavelet is 

employed. After that, the value of SAD is 

computed according to (3) to compute Detail 6. 

Then, the features of F1 and F2 are computed 

using (4) and (5). Finally, the two features are 

applied to the FFA as the inputs.  

With choosing a suitable mother wavelet, detailed 

level in the result shows the proposed method is 

able to discriminate between no fault and HIF 

cases with high accuracy. 
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6.3.2. Implication issues 

Implication issues for the proposed algorithm 

show that the findings based on the phase voltage 

has less accuracy compared with the findings 

based on three-phase voltage. Nevertheless, still 

the phase voltage based results has high accuracy 

as much as 89.83%, which is acceptable. The use 

of phase current does not yield an accuracy as 

high as the previous ones and the use of the phase 

current is not recommended for detection the HIF. 

7. Conclusion 

In this paper, a new HIF detection method based 

on the combination of FFA and DWT, is 

proposed. This method is an alternative method 

for diagnosing of HIF from no fault case. In this 

method, the feature is extracted using wavelet 

output. By investigating different mother 

wavelets, feeder signals and detail types, the base 

case is selected. 

In the proposed method, the FFA system is used 

for classification. The FFA system uses training 

data to perform classification. The 80 training data 

used in this paper. The FFA system is able to 

perform classification accuracy. 

In addition, an accurate combined model used to 

model the HIF. This combined model has the high 

ability to model different types of HIF. In order to 

study the performance of the proposed method for 

different types of HIF case and different normal 

working conditions such as thyristor load and arc 

furnace were examined. The obtained results have 

a very good accuracy as high as 94.19%. This 

indicates that the proposed algorithm has correct 

performance under different operating conditions 

in the electricity distribution networks. 
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