
 

 

 

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 3, 2023, 331-341. 

 
Shahrood University of 

Technology 

 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir 

 

  

 Research paper 

On Optimizing Mobile Charger Scheduling in Wireless Sensor Networks  
 

Newsha Nowrozian, Farzad Tashtarian* and Yahya Forghani 
 

Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran. 
 

Article  Info  Abstract 

 

Article History: 
Received 10 February 2023 

Revised 09 May 2023 
Accepted 20 June 2023 

 

DOI:10.22044/jadm.2023.12712.2424 

 Wireless rechargeable sensor networks (WRSNs) find widespread 

applications in numerous fields. However, the limited battery capacity 

of sensor nodes (SNs) hinders their long-term development. To 

address this issue, a potential solution is to charge SNs using a mobile 

charger (MC) equipped with radio frequency-based directional 

wireless power transfer (WPT) technology. In this work, we focus on 

optimizing the stopping points (SPs), orientation charging angles, and 

the traveling path of the MC in an on-demand scenario. We first 

present a mixed integer linear programming (MILP) model with aim 

of minimizing the charging delay. We then utilize k-means algorithm 

and a discretization technique to select the appropriate SPs and 

charging orientations. After that, we employ a heuristic method to 

determine an optimized traveling path of the MC. Finally, we carry 

out extensive simulations and compare the results of the proposed 

method with two baseline methods and the optimal solution. In 

particular, the simulation results indicate that the proposed method 

reduces the traveled distance, charging delay, and energy 

consumption compared to the baseline methods by up to 80.28%, 

54.71%, and 69.78%, respectively. 
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1. Introduction 

In the past few years, the researchers have devoted 

significant efforts to the field of Internet of Things 

(IoT). One particular area of focus has been 

wireless rechargeable sensor networks (WRSNs), 

which play a crucial role in IoT applications such 

as healthcare and smart cities [1-3]. However, the 

implementation of these networks faces a major 

challenge in the form of limited battery power for 

the sensor nodes (SNs) due to their small size and 

limited battery capacity. To tackle this challenge, a 

promising solution lies in the implementation of 

wireless power transfer (WPT) technology [4-5]. 

This technology presents a fresh approach to 

overcome the constraints of previous solutions in 

this field. The fundamental concept revolves 

around equipping a robot with a powerful battery, 

called mobile charger (MC) that roams around the 

network and recharges the SNs wirelessly. 

The majority of research has focused on the 

periodic request-response model, where the MC 

follows a designated path to charge the SNs. 

Periodic charging using an MC ensures continuous 

operation of the WRSNs [6-8]. However, this 

approach's predetermined charging schedule is 

unsuitable for the dynamic nature of WRSNs due 

to the uncertain energy consumption patterns of the 

SNs. Furthermore, the existing periodic charging 

schemes mostly rely on an omnidirectional 

charging model [9, 13]. In this approach, the MC 

equipped with omnidirectional WPT technology 

emits electromagnetic waves uniformly in all 

directions. As a result, to ensure efficient charging 

of the SNs, the MC needs to transmit energy at a 

higher power level, which can be costly due to the 

reduced WPT efficiency with increasing distance 

between the transmitter and the receiver. 

In contrast to periodic charging, the on-demand 

scheme offers a more realistic approach by 

dynamically responding to the energy demands of 

the SNs in real-time. Additionally, directional 
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wireless energy transmission employs an energy 

beam to capture energy radiated in specific 

directions [10]. This ensures that energy receivers 

can only receive energy within the coverage of the 

transmitter. By incorporating directional WPT 

technology in an MC, it becomes possible to 

achieve more precise energy transfer and greater 

efficiency. As a result, energy consumption is 

reduced by minimizing energy wastage [10-15]. 

This paper addresses the issue of on-demand 

charging in WRSNs by employing a directional 

MC. In particular, we develop an optimized on-

demand strategy to schedule an MC for charging 

the energy-critical SNs while minimizing their 

charging delay. In the proposed strategy, the MC 

first accumulates the charging requests of the SNs 

and then prepares an optimized charging tour for 

the MCs. The MC then starts its journey from the 

base station (BS), traverses the candidate charging 

stopping points (SPs), and recharges the SNs at 

these SPs using appropriate charging angles. Upon 

completing the charging tour, the MC returns to the 

BS to recharge its own battery for the subsequent 

tour. In particular, we make the following major 

contributions: 

- We formulate the on-demand charging using 

an MC equipped with directional charger as a 

mixed integer linear programming (MILP) 

problem to minimize the charging delay. 

- We then utilize k-means clustering algorithm 

and a discretization technique to optimize the 

number of SPs with their locations and the 

charging angles at these SPs, respectively. 

- Next, we present a heuristic to determine an 

optimized tour the MC through the selected 

SPs for minimizing the charging.  

- Finally, we conduct simulations and compare 

the results of the proposed method with two 

baseline methods to show its efficacy.  

The remaining sections of this paper are structured 

as what follows. Section 2 provides an overview of 

WRSNs. In Section 3, we present the proposed 

algorithm, along with the network model and 

problem formulation. The performance analysis is 

presented in Section 4. Lastly, the conclusions are 

provided in Section 5.  

2. Related Works 

WPT technology evolved considerably in the 

development of WRSNs in the recent years. In 

addition, various studies have been undertaken on 

the subject of traveling path scheduling of MC in 

WRSNs [15-16]. We classified this issue in greater 

detail in [18]. In this section, the topic of charging 

scheduling is examined in terms of two models, the 

periodic model and the on-demand model. 

Furthermore, these models can be divided into two 

sub-categories according to the charging model of 

MC based on WPT technology including 

omnidirectional and directional. Also, these 

schemes are established on the point-to-point or 

point-to-multi-point charging model. Periodic 

model, MC charges SNs in periodic approaches 

using a pre-determined route [11, 15-20]. It is 

assumed that all SNs are needed to be recharged, 

hence MC will charge all SNs in each cycle along 

the defined path.  

On-demand model, the SNs that require the 

charging per round will be charged by the MC(s). 

The charging schedule adjusts in real time to the 

SNs' activity in each cycle. The network structure 

is dynamic, and the energy consumption rate of 

SNs is not constant. According to the on-demand 

technique, the MC can accept new charge requests 

at any moment and only charge these demands 

during each period. Thus, the construction and 

adjustment of MC's journey path will be an on-

demand process. This method works well for 

networks with varying energy consumption rates in 

SNs, and it improves network efficiency and 

lifespan [21-22]. 

A. Omnidirectional charging model antenna 

In [23], the first-come-first-served (FCFS) method 

was used to process charge requests based on their 

arrival time. To get around the constraint [23], 

nearest-job-next with preemption algorithm in [24] 

was suggested. It was able to respond to service 

requests in both a spatial and temporal manner. 

Their goal was to increase the MC's charging 

throughput while also reducing the SN's charging 

latency. The problem of charging utility 

maximization was formulated in [25] and [26] by 

taking into account the entire traveled distance by 

an MC throughout each tour as well as the charging 

time window for each SN. The authors in [27] 

provided a strategy that outperformed [23] and 

[24].  

Due to the charging time of each SN, the travel time 

between SNs, and the waiting time of each SN to 

be charged, this strategy attempted to reduce the 

charging delay time for SNs. It used a gravitational 

search algorithm (GSA) to figure out the best 

charging order. In [28], the researchers combined 

particle swarm optimization and genetic algorithm 

to optimize the charge duration of SNs. They 

considered factors such as residual energy, distance 

to the MC, neighborhood criticality, and charging 

significance to develop an effective charging 

strategy [29]. They used the entropy weight 

technique [30] to determine the importance of 

different factors and employed a ranking approach 
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[30] to determine the MC's path. Simulation results 

showed their method outperformed previous 

approaches [23] and [24] in terms of charging 

efficiency and SN survival rate. Recent papers [18-

20] have explored MC scheduling strategies using 

reinforcement learning methods. 

B. Directional charging model antenna 

The earliest investigations on the issue of MC 

directional charge by an MC in WRSNs have been 

given by the authors in [10, 13]. Their goal in [10] 

is to maximize charging efficiency. They've 

developed a way for calculating SPs and beam 

direction at each one. Furthermore, each SN can be 

charged in several directions. In [13], we looked 

into minimizing the charging delay time at all SPs. 

Applying the directional charge model, they 

provided a linear model for the charging delay time 

problem. Due to the complexity of the problem 

space, they have used the angle discretization 

method to reduce the computational complexity in 

limiting the search interval to find suitable 

charging angles. In their model, the charging points 

are fixed. Each SP is visited by the MC, and the 

SNs surrounding the SP are charged at various 

angles. The charging delay time is determined by 

the number of times each SP's SNs must be 

charged.  

The issue addressed in article [13] was further 

explored by the authors in [15], focusing on 

deploying MCs to reduce charging delays in large 

spaces. In [19], a one-directional charging model 

with multiple directional antennas was introduced, 

enabling simultaneous charging from multiple 

directions. This approach demonstrated superior 

energy efficiency and reduced charge delay 

compared to methods using directional antennas 

[10, 13]. In [32], an adaptive directional charging 

algorithm was proposed to minimize energy 

consumption. The algorithm determines optimal 

charging stations and beam directions based on SN 

density, employing individual or multiple 

clustering and charging operations. 

 

3. Proposed Work 

In this section, we will first explore the network 

architecture of the proposed method, and then the 

details of the problem model are examined.  

3.1. Network architecture 

We consider a system that involves n rechargeable 

SNs in 2D that is denoted as 1 2 3 nS {s ,s ,s ,...,s }  

that some SNs need to be charged by an MC in 

successive periods. We also assume that there is 

 m m 1  pre-defined SPs denoted as 

1 2 3 mO {o ,o ,o ,...,o } . As shown in Figure 1, when 

some SNs is  send charging request, the MC travel 

and stop in some the SPs jo  to charge some SNs 

which deployed in distance less or equal maxd  and 

an orientation angle 1a  from the MC. The number 

of orientation angles denoted as 

1 2 3 zA {a ,a ,a ,...,a } and z  is between 0  to 2 . 

The MC can change its position at any time, is 

located at one of the selected SPs, and charges 

several selected SNs simultaneously. 

 

Figure 1. Architecture intended for the proposed method. 
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Figure 2. View of the directional charging model. 

3.2. Directional charging model 

We build our charging model based on empirical 

studies [13, 33]. The charging area of a directional 

charger can be modeled as a sector with radius 

maxd . ijd is the Euclidean distance between the SN 

is  and the MC. The SN can only receive energy 

when the orientation angle is within

, , ,
2 2 2 2

   


 
     

 
 and other parameters such 

as , ,c   are constants that are determined by the 

experimental environment and the hardware 

parameters of MCs [34]. The energy transfer model 

can be expressed as: 
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In Figure 2, maxd is the charging range (radius). SNs 

(i.e. 1s  and 2s ) are covered by an effective 

directional area when the orientation angle of MC 

in SP 
jo  is ja . They will receive different energy 

amount under different angles (i.e. 1  and 2 ) 

and distance (i.e. 
1 jd  and 

2 jd ), respectively. 

Nevertheless, when MC rotates to 
ka , these two 

SNs (i.e. 
1s  and 2s ) cannot receive energy 

anymore. 
 

Table 1. Symbols definition. 

S  Number of SNs, defined as 
1 2 3 nS {s ,s ,s ,...,s }  

O  Number of SPs for MC, defined as 
1 2 3 mO {o ,o ,o ,...,o }  

A  
Number of orientation angles for MC in each SP as 

1 2 3 zA {a ,a ,a ,...,a }  

jo  Coordinate of the j-th SP 

is  Coordinate of the i-th SN 

itx  SN i-th is charged in the t-th period  

ijd  The distance between the i-th SN and the j-th SP 

'jj
d  Distance between the j-th SP and the j′-th SP 

maxd  Maximum effective charging distance of the MC 

k

jty  
j-th SP in the t-th period is chosen with the k-th 

orientation angle equal to one. 

  Very large number.  

k

ijP  
Charging power for the i-th SN at the j-th SP with the k-th 

orientation angle.  

1  Number of charged SNs in each period 

  Orientation angle between a MC in a SP and a SN. 

rP  Charging power        

v  Moving speed of MC 

ire  Residual energy of SN 
is  

jtCT  Charging time in the j-th SP in the t-th period  

jtWT  Waiting time in the j-th SP in the t-th period  

jtTT  Traveling time in the j-th SP in the t-th period  

3.3. Problem formulation 

In this section, the MC charging scheduling 

problem with the directional charging model is 

formulated as a mixed integer linear programming 

problem. The proposed model is presented below. 

DelayminT  (2( 
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Condition (2): Minimize the total charging delay 

time as 
DelayT . 

Condition (3): We have assumed that all 

requesting SNs that must be charged by the MC at 

different period. 

Condition (4): Since we have only one MC that 

can be in only one SP in each period, so in the t-th 

period only one of the values k

jty  can take the value 

1. T is the maximum number of times periods, 

T {1,2,3,..., t} . 

Condition (5): The MC has the ability to charge a 

maximum of  1 1 3    SNs in each period. The 

range 
m z

k

jt

j 1 k 1

y
 

  on the right states that if one of the 

SNs is charging during the t-th period, the MC must 

be active. 

Condition (6), (7), and (8): To receive the energy 

emitted by the MC, the SN must be placed at a 

certain distance and orientation angle from it. We 

denote the maximum radial distance from the MC 

by maxd . 
k

ij  shows the orientation charging angle 

in the i-th SN at the j-th SP by the k-th orientation 

angle based on charging model (Eq. (1)). 
ijd  is 

equal to the distance between the i-th SN and the j-
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th SP (the place of MC). This constraint states that 

itx  can take the value 1 if 
ijd is less than maxd and 

k

ij  consider between -90 to 90 degrees. if the MC 

is not in the j-th SP, the relationship will be 

redundant due to the very large  . 

Condition (9), (10): These conditions guarantees 

that if the MC is inactive in one charging period, it 

cannot be active in the next period. The variable 'jj
r  

according to its coefficient in the above constraints 

will have a value of only one if the MC is in the

j th  SP in the (t +1)-th period and the 'j th  SP 

in the t-th period. The variable 'jj
r  is considered as 

positive variable. 

Condition (11): Since the MC is placed in one of 

the SPs in each period. We define the binary 

variable k

jty  as corresponding to the MC at the j-th 

SP. If the MC is in the j-th SP during the t-period 

with k th orientation angle it will take the value 

of one, otherwise the value of zero. 
 

k

jt

if a MC in the t-th period is deployed in
1

y  the j-th SP with k-th orientation angle

0 otherwise




 



 (16) 

 

Also, we consider the binary variable 

corresponding to the charge or non-charge of the i-

th SN in the t th  period that defined by itx . 
 

i

it

if a SN s  in the t-th period is deployed in
1

x  the j-th SP with k-th orientation angle

0 otherwise




 



 (17) 

Condition (12): It is considered as the time taken 

by the MC to move from the current location 'j
o  in 

the 'j th  SP in the (t+1)-th period to the location 

of an SP 
jo  in the j-th SP at the t-th period as 

traveling time. 

Condition (13): It is equal to the maximum charge 

time required for charge one requesting SN among 

the other requesting SNs in the cluster as charging 

time. Denote by ire  residual energy of SN is  in the 

t-th period. It is the time taken by the MC for 

charging SNs is  in a SP as i

k

ij

re

P
. 

k

ijP  k

ij rP P  refers 

to the harvested power of i-the SN and the 

orientation angle 
k

ij  based on Eq.(1).  

Condition (14): It is the time taken by the MC to 

respond all the charging requests before the SP
jo , 

in the charging schedule as waiting time.  

Condition (15): DelayT is considered as the response 

charging delay time of the request, which is equal 

to the sum of charging time, waiting time and 

traveling time plus the time MC travel from the BS 

to the first SP on the number of charged SNs. 
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Figure 3. An example of extracting the candidate 

orientation charging angles at the SPs. 

3.4. Proposed Method  

We have formulated the minimum charging delay 

problem as a mixed integer linear programming 

problem. This is an NP-hard problem, since the use 

of linear programming solver requires heavy 

calculations to find the optimal possible orientation 

charging angles and charging SPs among a wide 

range of them. We propose a heuristic algorithm 

that divides the problem into two sub-steps 

(Algorithms 1 and 2). 
 

Algorithm 1. Finding SP and charging orientation angle. 

  SS ← {}                        Set of selected SNs in each SP                

  SSP ← {}                      Set of selected SPs 

 SA ← {}                         Set of the orientation charging angles 

 TSO ← {}                       Result set for selected SPs, orientation charging 
angles, and associated SNs 

While  SN ≠ 0 𝐝𝐨 

      For 𝑗 ← 1 to length (SP) do 

 Find the best SP for the requests based on section (3.4). 
 Find the appropriate orientation charging angle in based on 

section (3-4).   

 Add to SS={
is }, SSP={

jo }, SA={
k }. 

      End for 

 Add to TSO {SSP,SA,SS}  

     End while  

Output: TSO 

 

Algorithm 2. Finding optimal path. 
Input: TSO 

Output: Find the optimal charging path for MC by minimum 

charging delay. 

For 𝑗 ← 1 to SSP do 

     CALL GAS  j j jCT ,TT ,WT  based on the calculated charging 

delay as the objective goal section (3.3). 

End for  

A. First stage 

In this section, our objective is to minimize the 

number of candidate SPs. Due to the extensive 

search space, we have employed the k-means 

algorithm as a clustering method to narrow down 

the possibilities and identify suitable SPs. 

Subsequently, we aim to determine the optimal 

charging angle at the candidate SPs for charging 

the requested SNs, thereby improving the energy 
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efficiency of the MC. Considering that the search 

space for finding the appropriate charging angle is 

continuous, the MC within a candidate SP has the 

flexibility to select any orientation angle ranging 

from 0  to 2 . To reduce the search space, we have 

adopted a similar approach as described in [35] for 

extracting the suitable orientation charging angle. 

Figure 3 illustrates our method for identifying 

effective orientation charging angle candidates for 

a given SP. The main idea of extracting the 

orientation charging angle is to rotate 

counterclockwise in the charging area so that at 

least one SN strikes the right border of the charging 

area. For example, in Figure 3, suppose we first 

have (in step (a)) SN 1s  at the right border of the 

charge area in SP 
jo . At this point, the charge area 

jo  covers the SNs 1 2s , s   

and 3s , and the orientation angle ( 1 ) is specified 

as the candidate orientation angle jo . In the second 

step (in step (b)), in which we rotate the charge area 

around 
jo  so that the right border of the charge area 

hits the SN 2s  in the orientation angle ( 2 ). At this 

point, the charging area jo  covers SNs 2s  and 3s . 

But we do not consider( 2 ), as an orientation 

angle candidate because SNs 2s  and 3s  can be 

covered by placing jo  in the orientation angle ( 1

) Similarly, we can determine that the two the. 

orientation angles ( 5 ) and ( 3 ) in steps (c) and 

(e) are candidates, respectively. Finally, in Figure 

3, three the orientation angles( 1 ),( 3 ) and ( 5 ) 

are a set of candidates orientation charging angles 

at SP 
jo , denoted by 

jSA  and a set of SNs covered 

by 
jSS . 

j 1 3 5

j 1 2 3 3 4 5 6

1 1 2 3 3 3 4 5 5 6

SA { , , }.

SS {(s ,s ,s ),(s ,s ),(s ,s )}

TSO {( ,(s ,s ,s )),( ,(s ,s )),( ,(s ,s ))}

   



   

 (18) 

 

B. Second stage 

According to the model defined in the section (3-3) 

for calculating the charging delay time, our goal is 

to find the optimal schedule for the movement of 

the MC between the SPs so that it responds to the 

charge requests with the least possible charging 

delay. It is worth noting that the number of selected 

SPs in a large-scale WRSN is very high. Therefore, 

finding the optimal charging order of SPs with a 

comprehensive search method becomes 

impractical. This is an NP-hard issue.  

Hence, we utilize the heuristic search algorithm 

GAS, as proposed in [27], to determine the 

charging path of the MC based on the designated 

SPs. 

 
(a) Initialize network and certain 

SPs by K-means algorithm. 

 
(b) Critical SNs in each SPs (SNs 

are lower that threshold). 

(c) Certain the orientation charging 

angles in each SP according section 

(3-4). 

(d) Finding the optimal path 

based on GAS algorithm in 
section (3-4). 

Figure 4. An example of the performance of the proposed 

method for responding to charging demands. 

The GAS algorithm is able to find an almost 

optimal solution to an optimization problem in a 

reasonable amount of time and memory [36]. 

 

4. Simulation Results 

In this section, we implement and compare the 

proposed method with two baseline methods and 

the optimal solution using Python. In particular, we 

consider three scenarios of WRSNs.  

The first scenario consists of 20 to 100 SNs that are 

randomly deployed in an area of [500 x 500], while 

the second scenario includes 100 to 400 SNs 

located in an area of [500 x 500] 2m . Similarly, the 

third scenario comprises of 200 to 1000 SNs 

deployed in an area of [1000 x 1000] 2m . We 

assume that the BS is located at (0,0). Increasing 

the network area and the number of SNs lead to an 

increase in the number of charging demands and 

subsequently the traveling distance of the MC. 

Besides, we assume that the energy capacity of 

each SN is 
sE 600 J  and its energy consumption 

rate i  is between 0.02 J and 1 J. The speed of the 

MC v  is equal to 5 m/s. The wireless power 

transfer rate and the moving cost of the MC are 6 
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J/s and 20 J/m, respectively. The key simulation 

parameters are summarized in Table 2. 
Table 2. Simulation parameters. 

Parameters Values 

MC battery capacity  10000 kJ 

Battery capacity of SN  600 J 

Energy consumption rate  0.02 J to 1 J 

Threshold  200 J 

Speed of MC  5 m/s 

Charging distance (or range) 100 cm 

We intend to compare the proposed method with a 

one-directional charging-based method, an omni-

directional charging-based method, and the optimal 

solution under various network scenarios. Thus, we 

[11], which uses directional charging. In this 

method, the SPs, orientation charging angles, and 

the traveling path of the MC are randomly selected. 

Next, we simulate an omni-directional charging 

method [27] called GAS-OMNI. The aim of the 

GAS-OMNI method is to minimize the charging 

delay of the SNs, which aligns with the objective 

of the proposed algorithm. In particular, the GAS-

OMNI method employs the GSA algorithm to 

determine the charging order of the SNs. Finally, 

we also solve the presented MILP model using the 

Pulp Python library to obtain the optimal solution. 

We compare the simulation results of the proposed 

method with Random method, GAS-OMNI 

method, and optimal solution using the traveled 

distance, charging delay, and energy consumption 

as the performance metrics.  

Traveled distance: It refers to the total traveled 

distance by the MC to fulfill the energy demands 

of the SNs. 

Charging delay: It is defined as the average time 

required to fulfill the charging requests of the SNs. 

It is important to note that a lower value of the 

charging delay indicates that more SNs are 

successfully charged. 

Energy consumption: Energy consumed by the 

MC during the charging process is defined as the 

sum of the energy used for charging the SNs and 

the energy required for traveling to the SNs. It is 

worth noting that the total energy consumption can 

be minimized by reducing the travel distance and 

selecting appropriate charging angles. 

4.1. Comparison of traveled distance 

In Figure 5(a), we display the average traveled 

distance by the MC in the proposed, Random, and 

GAS-OMNI methods for Scenario #1. Herein, we 

observe that the traveled distance of all the methods 

increases with the number of requesting SNs. This 

is because the MC has to cover a longer distance 

when there are more requesting SNs. On average, 

the proposed method shows a reduction in traveled 

distance by 10.07% and 80.28% than Random and 

GAS-OMNI methods, respectively.  
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Figure 5. Comparison of the traveled distance of 

the proposed method with the Random and 

GAS-OMNI methods for WRSN (a) Scenario#1, 

(b) Scenario #2, and (c) Scenario #3. 
 

In Figure 5(b), we observe that the proposed 

method has about 15.05% lower traveled distance 

than Random method and 77.94% lower traveled 

distance than GAS-OMNI method, for Scenario #2. 

Similarly, in Figure 5(c), we can see that the 

proposed method has 29.16% and 67.92% lower 

traveled distance compared to the Random and 

GAS-OMNI methods, respectively in Scenario #3. 

The reduced traveled distance in the proposed 

method is attributed to the opportunities for further 

improvement in the Random and GAS-OMNI 

methods. In particular, the Random method 
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randomly selects SPs and the traveling path of the 

MC along with the orientation charging angles at 

the selected SPs.  

Likewise, the GAS-OMNI method considers the 

locations of the requesting SNs as the SPs for the 

MC and simply finds MC’s traveling path through 

these SPs. In contrast, the proposed method first 

finds the optimized SPs and charging angles at each 

SP and then determines the MC's traveling path 

with the shortest distance through the optimized 

SPs. As a result, this approach is able to reduce the 

traveled distance of the MC compared to the 

Random and GAS-OMNI methods. In precise, the 

proposed method proves its efficacy by selecting 

optimal SPs, obtaining the proper charging angles, 

and accurately forming an optimized traveling path 

of the MC. 

 

4.2. Comparison of charging delay  

Now, in Figure 6(a), we show the results of the 

proposed, Random, and GAS-OMNI methods in 

terms of charging delay for Scenario #1. On 

average, the proposed method has 21.44% less 

charging delay compared to the Random method 

and 51.71% less charging delay compared to the 

GAS-OMNI method. In Figure 6(b), we next show 

the charging delay of all the methods for Scenario 

#2. On average, the proposed method has about 

9.38% less charging delay compared to the 

Random method, and about 29.63% less charging 

delay compared to the GAS-OMNI method. After 

that, we display the results for the Scenario #3 in 

Figure 6(c). We see that the proposed method has 

about 28.20% and 75.66% lower charging delay 

than the Random and GAS-OMNI methods, 

respectively.  

The rationale behind the lower charging delay is 

that the proposed method is able to adjust the 

locations where the MC stops, the orientation 

charging angles at which it charges the SNs, and 

the route it takes to charge them in the real-time. It 

does this by using a combination of the k-means 

algorithm, a rotation strategy, and the GSA 

technique. This allows the MC to reach and 

recharge more SNs before running out of energy. 

On the other hand, the Random and GAS-OMNI 

methods are not as effective in reviving the energy-

critical SNs because they do not properly optimize 

the SPs, orientation charging angles, and the 

traveling path of the MC. 

 
(a) 

 
(b) 

 

(c) 

Figure 6. Comparison of the charging delay of the 

proposed method with the Random and GAS-

OMNI methods for WRSN (a) Scenario#1, (b) 

Scenario #2, and (c) Scenario #3. 

4.3. Comparison of energy consumption 

We show the energy consumption results of the 

proposed, Random, and GAS-OMNI methods in 

Figure 7.  
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Figure 7. Comparison of the energy consumption 

of the proposed method with the Random and 

GAS-OMNI methods for WRSN (a) Scenario#1, 

(b) Scenario #2, and (c) Scenario #3. 

From these graphs, it is evident that the three 

algorithms exhibit a similar trend, i.e. energy 

consumption increases with the increase in the 

number of requesting SNs. In particular, Figure 

7(a) displays the energy consumption of the three 

methods for Scenario #1. On average, we note that 

the proposed method has 19.07% and 69.78% less 

energy consumption as compared to the Random 

and GAS-OMNI method, respectively. In Figure 

7(b), we reveal the energy consumed by different 

methods for Scenario #2.  

In this case, the proposed method consumes about 

8.35% less energy than the Random method and 

55.76% less energy than the GAS-OMNI method. 

Finally, we show the energy consumption of three 

methods for Scenario #3 in Figure 7(c), Again, the 

proposed method consumes about 27.67% and 

76.8% less energy consumption than that of the 

Random and GAS-OMNI methods, respectively. 

The favorable results achieved by the proposed 

method are due to the following reasons. Firstly, 

the proposed method uses a directional charging 

model that limits the energy transfer to optimized 

orientation charging angles at the SPs. In contrast, 

while the Random method also uses a directional 

charging model, it falls short in optimizing the 

selection of SPs and orientation charging angles 

due to the random selection. selection of SPs and 

orientation charging angles due to the random 

selection. 

Similarly, the GAS-OMNI method uses an omni-

directional charging model that transmits energy in 

all directions without any restriction, leading to 

significant energy wastage of the MC. Secondly, 

the proposed method ensures that the MC travels 

the minimum distance compared to the other two 

methods, as discussed in Section 4.1, resulting in a 

further reduction in the energy consumption of the 

MC. 

 

 
(a) 
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(c) 

Figure 8. Comparison of the proposed method with 

the optimal solution for Scenario#1 in terms of (a) 

traveled distance, (b) charging delay, and (c) energy 

consumption. 

4.4. Comparison with the optimal solution 

In this section, we contrast the results of the 

proposed method with the optimal solution for 

Scenario #1 to highlight the potential of improving 

the charging scheduling of the SNs in future works. 

In Figure 8, we display the comparison in terms of 

traveled distance, charging delay, and energy 

consumption. On average, we notice that the 

optimal solution is 65.18%, 77.50%, and 44.11% 

lower than the proposed method for traveled 

distance, charging delay, and energy consumption, 

respectively. 

Overall, the simulation results indicate that the 

proposed method reduces performance metrics as 

compared to Random and GAS-OMNI methods. 

However, there is still ample scope for further 

optimizing its performance. We intend to do so in 

our future research. It is also worth mentioning that 

we were unable to solve the MILP for Scenario #2 

and Scenario #3 due to computational constraints. 

 

5. Conclusion 

In this paper, we presented a directional mobile 

charging strategy for an MC equipped with a 

directional wireless charger within an on-demand 

scenario in WRSNs. Initially, we formulated the 

said problem as a MILP model with an objective of 

minimizing the charging delay. Subsequently, we 

solved the MILP model using a combination of the 

k-means algorithm, a discretization method, and a 

heuristic algorithm. After that, we simulated and 

compared the performance of the proposed method 

with two baseline methods, namely Random and 

GAS-OMNI. The simulation results demonstrated 

that the proposed method is able to significantly 

reduce the traveled distance, charging delay, and 

energy consumption than the compared methods. 

Specifically, our results indicate reductions of up to 

80.28%, 54.71%, and 69.78%, respectively. 
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 سیمهای حسگر بیبندی شارژر متحرک در شبکهسازی زمانبهینه
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 چکیده:

 مانع حسگر هایگره باتری محدود حال، ظرفیت این با دارند. یاگسترده یهاها استفادهاز حوزه یاریدر بس سیم بی مجدد شارژ قابل حسگر هایشبکه

 فناوری به مجهز متحرک شارژر یک از استفاده با حسگر هایشارژ گرهبالقوه،  حل راه مشکل، یک این رفع ای بر. شودمی آنها مدت طولانی توسعه از

 مسیر و دارجهت شارژ هایتوقف، زاویه نقاط بهینه سازی روی بر ما این مقاله، در .است رادیویی فرکانس بر مبتنی دارجهت سیمانرژی بی انتقال

 حداقل به هدف با مختلط را صحیح عدد خطی ریزیبرنامه مدل یک ابتدا ما .کنیممی تمرکز درخواست بر مبتنی شبکه یک در متحرک شارژر حرکت

-گیریجهت و توقف مناسب نقاط انتخاب ای بر سازیگسسته تکنیک و میانگین-kخوشه بندی  الگوریتم از سپس. کنیمارائه می شارژ تاخیر رساندن

-سازی شبیه نهایت، در. کنیممی استفاده متحرک شارژر بهینه مسیر سفر تعیین برای اکتشافی روش یک از ما آن، از پس .نیمکمی استفاده شارژ های

 دهدنشان می سازیشبیه نتایج خاص، طور به. کنیممی مقایسه بهینه حل راه و پایه روش دو با را روش پیشنهادی نتایج و داده انجام گسترده ای های

-می کاهش درصد 69.78 و 54.71 ، 80.28 تا به ترتیب پایه هایروش به نسبت را انرژی مصرف و شارژ تاخیر شده، طی مسافت پیشنهادی روش که

  دهد.
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