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 Deep convolutional neural networks (CNNs) have attained remarkable 

success in numerous visual recognition tasks. There are two challenges 

when adopting CNNs in real-world applications: a) the existing CNNs 

are computationally expensive and memory intensive, impeding their 

use in edge computing; b) there is no standard methodology for 

designing the CNN architecture for the intended problem. Network 

pruning/compression has emerged as a research direction to address 

the first challenge, and it has proven to moderate CNN computational 

load successfully. For the second challenge, various evolutionary 

algorithms have been proposed thus far. The algorithm proposed in 

this paper can be viewed as a solution to both challenges. Instead of 

using constant predefined criteria to evaluate the filters of CNN layers, 

the proposed algorithm establishes evaluation criteria in online manner 

during network training based on the combination of each filter’s 

profit in its layer and the next layer. In addition, a novel method has 

been suggested that inserts new filters into the CNN layers. The 

proposed algorithm is not simply a pruning strategy but determines the 

optimal number of filters. Training on multiple CNN architectures 

allows us to demonstrate the efficacy of our approach empirically. 

Compared to current pruning algorithms, our algorithm yields a 

network with a remarkable prune ratio and accuracy. Despite the 

relatively high computational cost of an epoch in the proposed 

algorithm in pruning, altogether it achieves the resultant network faster 

than the other algorithms. 
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1. Introduction 

In the recent years, deep learning networks, 

specifically convolutional neural networks 

(CNNs), have achieved unprecedented success in 

challenging problems in vision such as 

classification [1, 2], face detection [3, 4], semantic 

segmentation [5, 6], object detection [7, 8] and all 

other data-rich fields such as natural language 

understanding [9] and speech detection [10]. This 

success is attributed to the hierarchical structure 

of CNN that was inspired by the human brain 

structure [11, 12]. The success of CNNs in a 

variety of applications is accompanied by a 

substantial rise in computation and parameter 

storage costs. A glance at network architectures 

such as AlexNet (8 layers) [13], VGG (18 layers) 

[14], GoogleNet (19 layers) [15], ResNet [16], 

and DenseNet [17] (a few hundred layers) reveals 

that they have gotten wider and deeper over time. 

This strategy results from the well-known rule 

that, in general, CNNs with greater depth and 

breadth are better equipped to handle complex and 

larger problems [16, 18]. With the advent of wider 

and deeper CNNs, however, the hardware 

requirements have elevated in a way that makes it 

difficult to use CNNs in edge computing. Even 

though it is well-known that deep neural networks 

have many redundant parameters that can be 

replaced by a more compact architecture, there is 

no standard method for designing the compact 

deep architecture for new tasks. Consequently, 
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many researchers tend toward network pruning 

and compression [19, 20]. A common practice in 

these studies involves comprehensive training of 

the network, followed by repetitive pruning 

(based on some predefined criterion) and fine-

tuning. The essence of pruning is 

evaluating filters and removing the ones with the 

lowest score that result in minimum accuracy loss 

and maximum acceleration. 

Typically, the input to the pruning algorithm is 

a pre-trained network. This being said, one must 

initially train the network exhaustively in order to 

employ these algorithms. In addition, these 

algorithms typically require remarkable fine-

tuning epochs after pruning. In our proposed 

algorithm, pruning occurs during training, 

eliminating the requirement for a pre-trained 

network. However, our algorithm requires 

approximately n epochs of startup training before 

the pruning process can initiate. In the proposed 

algorithm, the number of fine-tuning epochs is 

approximately 0.1 times that of extant pruning 

algorithms. By eliminating the requirement for an 

entirely pre-trained network and a significant fine-

tuning phase following the pruning phase, the 

proposed algorithm attains the resulting network 

faster than existing pruning algorithms. 

In the current pruning algorithms, if pruning some 

filters and reducing the capacity of corresponding 

layers result in a significant loss in the network 

performance, there is no way to undo the pruning. 

Under such circumstances, irrecoverable 

information loss occurs within the network. 

Several methods such as soft pruning [22], 

dynamic regularization [23], and filter attenuation 

[24] are recommended for mitigating these 

conditions. In order to fully address this problem, 

we have proposed a novel method that measures 

the layer’s capacity and, if necessary, inserts a 

new filter into that layer. Therefore, we refer to 

our algorithm as Adaptive Network pruning 

(AdapNet). Inserting a new filter that has a 

specific correlation with other filters also 

accelerates network training because stochastic 

gradient descent (SGD) is utilized for training the 

network on what it will learn in the future.  

Filter evaluation methods in pruning algorithms 

can be categorized into two main types: (1) 

evaluation based on filter intrinsic property such 

as L1/L2 norm [25, 26], absolute value [27, 28], 

gradient value [29, 30], and entropy [31-33]; and 

(2) evaluation based on filter influence on 

network cost function [34-38]. The first approach 

is based on the outdated but currently contested 

notion that “magnitude equals salience” [39-41]. 

The second method typically has a high 

computational cost and is insufficiently accurate. 

The proposed algorithm’s filter evaluation 

criterion is developed based on the intended task 

during network training. We have considered 

image classification as the intended task. Future 

research may consider the development of 

AdapNet for other tasks. 

Filter evaluation in our algorithm is based on 

intermediate representations that emerge in the 

network layers during training. CNNs’ 

intermediate layer function as semantic detectors, 

and these semantics are extremely sensitive to 

network architecture and training data [42-45]. 

We argue that intermediate-layer generated 

semantics can be used to determine the optimal 

number of filters for each layer. As the network’s 

hierarchical structure is inspired by the human 

brain, it stands to reason that the number of filters 

in each layer may also be [11, 46]. Accordingly, 

we define the Intermediate Concept (IC) as the 

interpretability and information richness of the 

generated Feature Maps (FMs) in intermediate 

layers. Here, interpretability refers to the degree to 

which FMs correspond to the concept trained to 

the network. We introduce a quantitative 

measurement based on the distribution of filter 

activation on IC to quantify the interpretability of 

intermediate layer FMs. By interpretability, we do 

not mean interpretability for humans, as we know 

that in an optimal state, only a small percentage of 

FMs (approximately 40%) that are valuable to 

discriminability is interpretable for humans [40, 

47]. Thus, we can criticize approaches such as 

[45, 48, 49] that rely on human interpretation in 

determining the IC to be learned by the network. 

We propose a novel method for extracting ICs 

from FMs and for quantitatively evaluating the 

extracted ICs’ utility for the intended task.  

In sum, unlike the existing pruning algorithms, 

AdapNet does not require a pretrained network 

and eliminates the substantial fine-tuning phases 

following pruning. In addition, it does not utilize 

the static filter evaluation criterion during 

pruning; and, it inserts a new filter based on the 

layer capacity evaluation. AdapNet enhances the 

prune ratio while maintaining the accuracy of 

pruned networks and is significantly faster than 

the existing pruning algorithms. The proposed 

approach has been evaluated on multiple CNNs 

(VGG11, ResNet50, AlexNet, Net2) over two 

benchmarked datasets (CFAR10/100). The 

simulation results demonstrate the effectiveness of 

AdapNet in terms of prune ratio and acceleration 
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in achievement of resultant network. Our primary 

contributions are as follows: 

1. AdapNet input is not a trained CNN, and unlike 

other methods, the CNN does not require 

exhaustive training prior to pruning. 

2. The evaluation criteria for filters are not 

static and task-independent. Rather, these criteria 

are developed based on the extracted IC during 

network training. 

3. AdapNet inserts new filters into the layers 

based on layer capacity evaluation, as opposed to 

the existing methods that only prune the filters 

and may cause irrecoverable information loss. 

AdapNet is not, therefore, simply a pruning 

algorithm, as it determines the optimal number of 

filters for each layer. 

 

2. Related Works 

CNN pruning and compression is a method of 

finding the optimal CNN architecture in terms of 

network size or complexity. These methods fall 

into two primary categorizes with regard to filter 

evaluation and pruning technique: (1) intrinsic 

properties and (2) performance importance. In the 

first category, the significance of a filter is 

calculated by its intrinsic properties. On the other 

hand, a score is assigned to the filter based on its 

intrinsic properties, and filters with low scores are 

removed from the network. L1/L2 norm [25, 26], 

absolute value [27, 28], gradient value [29, 30], 

and filter entropy [31-33] are examples from 

the first category. Research indicates a weak 

correlation between L1/L2 norm-based 

approaches and network performance [39, 40]. In 

this category, the association between selected 

parameters (for filter evaluation) and network 

performance is typically validated through 

simulation with no formal proof. 

The second group is based on the significance of 

the performance. In these methods, the impact of 

the filter on network performance is evaluated, 

and pruning is performed in accordance with the 

calculated filter importance. For example, [50, 51, 

37] inserted the auxiliary loss function into the 

intermediate layers and pruned based on the 

discrimination power of the FMs. However, 

research indicates that increasing the 

discrimination power of FMs in intermediate 

layers does not necessarily increase the 

discrimination of the FMs in the final layer 

but may even harm generalization [52-54]. The 

Taylor series was used in [34-36] to measure the 

effect of each filter on the loss function or 

network accuracy. Due to the large number of 

filters and the impossibility of calculating the 

Taylor series with reasonable accuracy, however, 

a more compact approximation was calculated 

using the first-order expansion. In general, 

measuring the impact of filters on network 

performance typically entails high computational 

costs and cannot be accomplished accurately.  

Millions of parameters and computations in the 

network’s intermediate layer extend the 

usefulness of the network beyond the task they 

were designed for and reach features that are not 

necessarily useful for the network’s intended 

task [52]. On the other hand, intermediate layers 

of CNN behave like a semantic detector (we refer 

to as IC), which is sensitive to the network 

structure [42, 44, 45, 52]. [45] uses the 

evolutionary method to extract these ICs. In [48], 

the user identified ICs that help the network to 

achieve greater generalization and accuracy 

during training. [55, 56] extracted a single 

prototype for each class, whereas [57] utilized the 

same number of prototypes for each class. We 

argue that based on these ICs, accurate evaluation 

of filters is possible while taking the intended task 

into consideration.  

AdapNet applies incremental clustering to FMs 

for IC extraction. Clustering is commonly used to 

compress CNNs. In [58, 59], filter clustering is 

used as the similarity criterion for pruning; in 

[59], filter pruning was performed online, whereas 

in [58], filter pruning was performed after 

training. Using the trained network as input, [58] 

employed k-means clustering on the kernels, 

utilized cluster centers as new kernels, and 

eliminated the remaining cluster members from 

the network. [59] applied clustering during 

training and, with modifications to the cost 

function, attempted to merge similar kernels into 

the same clusters. 

Nevertheless, online clustering methods receive 

two major criticisms. Firstly, the high 

dimensionality of data not only increases the 

computational time and memory requirements of 

algorithms but also negatively affects their 

performance due to the noise effect and the 

insufficient number of samples with respect to the 

ambient space dimension, commonly referred to 

as the curse of dimensionality. Secondly, one 

cannot decide between filters solely based on their 

similarity, as the information of each filter can be 

used in subsequent layers depending on 

its composition [60, 61]. Instead of being 

uniformly dispersed across the ambient space, 

high-dimensional data frequently lay in low-

dimensional structures. Recovering low-

dimensional structures in the data reduces the 
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computational cost, memory requirements of 

algorithms, and reduces the effect of high-

dimensional noise in the data, leading to improved 

performance of inference, learning, and 

recognition tasks [62, 63]. [62, 64, 65] applied 

CNN to clustering in another sub-space. AdapNet 

utilizes the idea proposed in these papers. Similar 

to [64], a non-linear mapping into another sub-

space was used to extract an adjacency matrix for 

use in spectral clustering. The cluster evaluation 

method is inspired by [44], which presents the 

kernel activity distribution on labels to extract the 

sensitivity of each kernel. It assesses each CNN 

convolutional unit as a solution to a binary 

segmentation task for each visual concept in 

BRODEN (Broadly and Densely Labeled Dataset 

assembled and applied in [44]).  

Another common issue with network compression 

algorithms is the need for a CNN that has been 

pre-trained. In many previous approaches, the 

accepted strategy has been “pruning followed by 

training”, which imposes an additional retraining 

phase to recover the accuracy degradation caused 

by pruning. The simplest algorithm that takes into 

account this issue and eliminates the fine-tuning 

phase is [66]. It randomly applied three 

compression criteria during network training: l1-

norm, random selection, and filter activation. In 

other words, filter pruning was performed without 

a specific metric and based solely on one of the 

aforementioned criteria. In light of the simulation 

results presented in [66], the l1-norm is the 

optimal network compression criterion. In [67], an 

online assessment algorithm was proposed that 

selected a set of criteria before and during training 

based on cost function distribution on a selected 

criteria space, with specific criteria for filter 

pruning being selected in each layer. Online 

network compression was performed in [39, 68] 

with no regard to the network’s cost function. In 

[39], random gates were used to prune the filter 

channels until the intended FLOP was reached. In 

[68], scale factors were introduced and used 

during training to reduce filter values selectively 

and to ultimately eliminate them from the 

network. Two distinct modules were presented in 

[69], and the algorithm alternates between pruning 

and recovery. However, [69] does not eliminate 

the fine-tuning phase; rather, it combines the fine-

tuning phase with pruning. 

 

3. Proposed Algorithm 

As depicted in Figure 1, we divided network 

training into three distinct phases. During the train 

startup phase, network initialization and partial 

convergence of filters to the intended task occur. 

In the second phase, which we refer to as the 

“Structure Evaluation and Change Phase,” 

AdapNet execution commences. Upon the 

termination of the second phase, the third phase 

commences, during which the network’s structure 

is maintained, and fine-tuning occurs. In the first 

and third phases of all simulations, we employ 50 

and 10 epochs, respectively. 

 

 

 

Figure 1. Division of training in AdapNet 

The input to AdapNet is a CNN with n layers and 

with ki filters in layer i. During network training, 

ICs are extracted and filter evaluation is 

performed; decisions are subsequently made 

regarding the removal, merge or insertion of new 

filters in each layer. Only during the “Structure 

Evaluation and Change” phase do layer structure 

modifications and the number of filters increase or 

decrease. We introduce “Layer Structure 

Evaluation and Change Period” (LSEP) as a set of 

α consecutive batches. At each LSEP, evaluation 

and structure change are performed on each layer. 

After each evaluation and potential change in the 

layer structure, training continues with the number 

of LSEP batches without any changes in the 

network structure; this is illustrated in Figure 2. 

 
 

Figure 2. Training process phases in AdapNet 

If fewer than k filters are pruned during n 

consecutive LSEPs, AdapNet terminated and the 

fine-tuning phase initiated. In all simulations, we 

set n=2 and k=3. However, in extreme 

circumstances, we can set k=0. Figure 3 portrays 

the AdapNet filter evaluation phase pipeline that 

will be described in the following sections. 

In each layer l, the activation distribution matrix 

of the filter is represented as         
 , where F 

is the number of filters and C is the number of 

extracted ICs in layer l. The matrix         
  

provides AdapNet with instructions for 

removing/merging/inserting layer l filters. The 

matrix         
  is derived from 

          

  (Raw FMDist). The only difference 

between FMDist and RFMDist is in the number of 

Fine Tune Structure Evaluation and Change Train Startup 

All training epochs 
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columns. FMDist selects several columns from 

RFMDist (in implementation, only RFMDist is 

maintained alongside an array of selected columns 

index, which introduces the FMDist. To keep the 

text straightforward, we refer to these two 

matrixes separately). 

 

Figure 3. AdapNet pipeline of filter evaluation phase. 

Ct is the total number of recognized clusters in 

layer l, while C is the total number of recognized 

ICs in that layer. As illustrated by (1), we define 

Pij as the normalized fire probability of filter i for 

concept j. 

[ , ] [ , ] / [ , ]P FMDist i i FMDist i j FMDist i jij i
  

 

(1) 

Consequently, the row i of         
  

demonstrates the activity distribution of the fitter 

i on the recognized ICs in layer l. FMDists and 

RFMDists receive training updates until the 

second phase concludes. Changes to the filter 

quantity of each layer will cause these two 

matrices to be updated in accordance with the 

layer’s structural changes. If new clusters are 

identified in LSEP, new columns corresponding to 

them will be added to the RFMDist, and if new 

ICs are identified from newly inserted clusters, 

new columns will be added to the FMDist. 

Section 3.1 explains the algorithm used for 

recognizing the IC from RFMDist clusters 

(columns) that are added to the FMDist (selected 

as the FMDist column). If ICs in FMDist columns 

are deemed useless during network training, they 

will be removed at the end of each epoch. In the 

FMDist column, valueless ICs are detected with a 

partially uniform distribution. 

After new filter insertion or pruning/merging, the 

number of rows in FMDist/RFMDist increases or 

decreases in each LSEP. When the two filters Pix 

and Pjx merged, the corresponding rows in 

RMFDist were removed and a new row 

corresponding to the new filter z with the value 

                 was inserted into RMFDist. 

 

3.1. Intermediate concept detection 

We argue that during network training, FMs are 

derived from the union of low-dimensional sub-

spaces, which we refer to as the IC. We must learn 

(in an unsupervised manner) an explicit non-linear 

mapping of the FMs that is well-suited to a sub-

space we refer to as the IC sub-space. We employ 

the method proposed in [64, 65], namely the 

subspace clustering network, to accomplish this. 

Deep autoencoders with a self-expressive layer 

between the encoder and the decoder are proposed 

in [64, 65] to mimic the self-expressiveness 

property of data. We use the self-

expressiveness of FMs to generate an affinity 

matrix and employ it in spectral clustering, which 

leads to the emergence of an IC on the fly during 

network training.  

In (2), the determination of the self-

expressiveness coefficient matrix (C) is 

formalized as an optimization problem [65]. 

1 2
( , ) || || || ||1

2

22
|| ||

2

L C X X C pF

Z Z C Fe e

 



 

   



 
. .( ( ) 0)s t diag c   

(2) 

 

where     represents the data reconstructed by the 

auto-encoder and      
    

    
  is the self-

expressiveness term. Ideally,       only if the 

corresponding data points Xi and Xj are drawn 

from the same sub-space (that we refer to as the 

IC) [62]. As such, we can leverage the self-

expressiveness coefficient matrix C to construct 

the affinity matrix for spectral clustering.  

We employ the network architecture proposed for 

the COIL100 dataset in [65], namely DSC-Net, 

due to its generality and larger capacity. Using 

buffered FMs in the layer, the DSC-Net was 

trained for two epochs during each LSEP. The 

network learns partially non-local representations 

in the interior layers [70]. Hence, we utilize the 

layer output FMs as a training dataset for DSC-

Net. DSC-Net training is conducted in every 

LSEP; therefore, for each DSC-Net training, we 

will have m training samples, as shown in (3).   

 

(3) 

After training DSC-NET, the affinity matrix is 

extracted for use in spectral clustering, as posited 

in [65]. In light of the fact that all training data 

(FMs) are unavailable in each LSEP, we use 

incremental k-means clustering [71] in spectral 

clustering eigenspace to preserve the clustering 

result of previous steps.  

Based on the perturbation theory and spectral 

graph theory, the eigengap heuristic is suggested 

to calculate the optimal number of clusters [72, 

m LSEP number of filters in layer

number of samples ineachbatch
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73]. The optimal number of clusters can be 

determined when the Laplacian (affinity) matrix is 

approximately block-diagonal, which restricts the 

Laplacian’s eigenvalue spectrum. The objective 

is, therefore, to select the number of clusters k in 

each layer such that all eigenvalues λ1, λ2, …, λk 

of the Laplacian matrix are extremely small but 

λk+1 is relatively large. Each cluster center has 

corresponding columns in RFMDist, and 

RMFDist[i,j] represents the frequency with which 

filter i is clustered in cluster j. Each cluster 

resulting from spectral clustering is a candidate 

for the IC. 

AdapNet prevents the overlap of ICs by utilizing 

the IC’s boundary point as its margin during the 

ICs extraction process. To find IC boundary 

points, we employ the method proposed in [74]. 

Boundary points are data points at the margin of 

densely distributed data, such as a cluster. [74] has 

proposed the BORDER (BOundaRy points 

DEtectoR) method for detecting such points. 

BORDER utilizes the advanced database 

technique Gorder kNN join and the unique 

property of the reverse k nearest neighbor (RkNN) 

to find boundary points. 

Algorithm 1 presents the new IC detection 

process.  

Any cluster will be selected as an IC if (1) its 

filter activation distribution is not uniform and (2) 

the distance between its center and the boundary 

points of the nearest IC is greater than 75% (we 

reach empirically to this number) of the distance 

between the center of the nearest IC and its 

boundary points. We utilize chi-square 

distribution to measure the uniformity of filter 

activation in FMDist, and parameter β is defined 

as a threshold for detecting non-uniformity.  

 

3.2. Filter pruning and merging 

The invariance in a deep neural network is 

equivalent to the minimality of the representation 

it computes. Therefore, minimizing the network 

layer by eliminating or merging ineffective filters 

reduces the network’s computational and 

maintenance costs and increases its generalization 

[75]. Our intent in filter pruning and merging is to 

minimize the network layer size while 

maintaining the desired accuracy threshold. 

Two criteria that can be used to evaluate each 

layer’s filters are their relative information and 

diversity. These two criteria align with the 

concept presented in determinantal point 

processes [42, 76]. Consequently, we consider 

redundancy in the following two cases: 1. A filter 

is relatively valueless in its layer and for the 

successive layers, and 2.  Other filters can mimic 

a filter’s functionality in the subsequent layers. 

These two criteria must be evaluated 

independently. To evaluate filter value based on 

the first criterion, we examine the filter activity 

distribution in FMDist. Thus such filters are 

candidates for pruning if there is no statistically 

significant filter activity distribution on ICs based 

on the chi-square test and if the distribution is 

partially uniform. However, individual filters 

within and across layers play different roles in the 

network. Therefore, in addition to activity 

distribution, we measure the importance of the 

candidate filter from the perspective of the 

subsequent layer before pruning it. In order to 

accomplish this, we employ kernel sparsity and 

entropy (KSE) [61], as an indicator that represents 

the sparsity and information richness of FMs in a 

feature-agnostic manner. However, here only the 

information richness of the selected feature map 

from the perspective of the subsequent layer is 

essential; therefore, we set the sparsity parameter 

   in the KSE indicator (  ) to 1 in (4). 

The KSE indicator determines whether a 

particular filter transmits valuable data to the 

subsequent layer. Thus, if the KSE of a pruning 

candidate filter is below a certain threshold (we 

empirically reach a 60% KSE threshold), it will 

continue to be considered a pruning candidate.   

Inspired by [22], we employ soft filter pruning to 

avoid sudden model capacity reduction and 

unrecoverable information loss. Consequently, the 

intended filter will not be updated during the 

subsequent LSEP and will be physically removed 

(hard pruned) at the beginning of the subsequent 

LSEP. Algorithm 2 describes the identification of 

candidate filters for pruning. 

Algorithm 1. Intermediate Concept Detection 
Input: 

//columns of FMDist 
C ={cluster centers currently selected as the IC in layer l} 

//cluster centers that are candidate to be intermediate 

concepts 

S = {Ct} – {C}   

Foreach(Ci in S){ 

   if(chi-square(RMFDist∗Ci
 < β ){ 

      Find Sj ∈ C such that ||Sj Ci|| is min. 

      k= sqrt(|{feature maps clustered in Sj}|) 
      For all feature maps clustered in Sj calculate RkNN set.  

      Border_Point ={ points that have 20% min(|RkNN|) } 

      if(||Ci {Border_Point} || > 0.75 ||Sj {Border_Point}||) 
         {insert Ci to C} } 

 



Adaptive Pruning of Convolutional Neural Network 

59 

 

On the basis of the second criterion, cosine 

similarity and filter activity distribution are 

utilized to select merging candidates. The cosine 

similarity matrix of each layer’s FMs is calculated 

until the end of the second phase of network 

training. This matrix is reset in every LSEP and 

always contains the average cosine similarity of 

each layer’s FMs. As merging candidates, filters 

with a cosine similarity greater than the specified 

threshold and a similar distribution in FMDist will 

be identified. In merging, the cosine similarity 

threshold is set at twice the average cosine 

similarity. Moreover, the Chebyshev distance is 

used to measure the differences in distribution 

between two marked filters. Two merged filters 

are removed from the network, and a new filter 

with the average of their values is added to both 

the network and RFMDist. The merging of filters 

is described in Algorithm 3. 

3.3. New filter insertion 

FMDist must be diagonal in the optimal state. If 

this is the case, its rows are linearly independent 

and span the space of each layer’s IC. If we 

identify a semi-block diagonal matrix similar to 

FMDist, then the block size and the number of 

non-zero items in the off-block diagonal item of 

that matrix can be utilized to determine whether or 

not the existing filters can code ICs in 

corresponding layer. Because of the high 

processing cost, it is not plausible to identify a 

similar semi-block diagonal matrix with an 

unknown number/size of blocks during network 

training. Therefore, we suffice to Algorithm 4 for 

determining whether or not a new filter is required 

in a specific layer. Our intuition suggests that 70% 

of each filter’s activation should be focused on 

30% of detected ICs in each layer; otherwise, the 

deviation value reveals the demand score for a 

new filter.  To accomplish this, we use the largest 

gap in the normalized value of each filter 

activation in FMDist and divide the ICs of each 

filter into active and inactive groups. For each 

filter, two parameters are calculated, the positive 

value of which indicates the demand for a new 

filter. The parameter P1 monitors the number of 

elements in the active set that must be 

smaller than 30% of all ICs, whereas the 

parameter P2 represents the total score in the 

active set that must be greater than 0.7. We 

empirically determine these numbers and 

incorporate them into Algorithm 4. 

New filter initialization builds on the 

results reported in [77]. One filter with P1>0 or 

P2>0 is randomly selected as the master filter. 

Based on a specific correlation with the master 

filter, a new filter is generated. The network is 

divided into four sections to determine 

the correlation type. The position of the intended 

layer determines the correlation type between the 

new filter and the master filter. According to [77], 

the correlation between the new filter and the 

master filter for the first quarter layers (the first 

section) is inverse, whereas a rotary correlation 

holds in the second quarter. Scaling and 

translational correlation are the topics of the next 

two sections. During the next two LSEP, the new 

filter will not become a pruning/merging 

candidate. 

,
( ) ker [61],

; ,

1, 1
1

( ) ( ), ,
log
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Algorithm 2. Filter Pruning 

Input: 

   FMDistl = layer FMDist matrix 

   Г1 = KSE threshold 
Foreach (row i in FMDist) { 

 if(chi-square(FMi) > 𝛽 and KSE(FMi) < Г1){ 
Select FMi as a candidate filter to freeze in the next LSEP 
and hard prune afterward}} 

 

 

Algorithm 3. Filter Merging 
Input: 

   FMj = Candidate filter to merge 

   Г3 = Chebyshev Distance threshold 

   Г  = 2× mean_cosine_similarity//Cosine Similarity threshold 
Foreach (row i in FMDistl) { 

   if(Mean Cosine Similarity(FMi,FMj) > Г  and  

   Chebyshev Distance(FMi,FMj) < Г3) 
{FMi and FMj merged}} 

 

Algorithm 4. Determine the necessity for new filter  

                       insertion to layer l 
Input: 

  FMDistl = FMDist matrix of layer l with normalized rows 

  n=number of intermediate concepts (column count of FMDist) 
  P1t = P2t = 0 

foreach (row i in FMDistl) { 

     Sort row items of FMDist and use the largest gap as the  
     divider to split row items into an Active and Inactive set. 

     𝑃1    𝐀𝐜𝐭𝐢𝐯𝐞  𝑛   .3 

     𝑃   .7   𝐴𝑐𝑡𝑖𝑣𝑒𝑖
𝑖

 

     P1=P1 / ((P1>0)? 0.7: 0.3) //normalize P1 in [-1,0] or [0,1] 

     P2=P2 / ((P2>0)? 0.7: 0.3) //normalize P2 in [-1,0] or [0,1] 
     P1t=P1t+P1 

     P2t=P2t+P2} 

     if(P1t>0 or P2t>0) {insert new filter to layer l} 
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4. Simulation Results 

We evaluate AdapNet using four network 

architectures: VGG11 [14], AlexNet [13], 

ResNet50 [16], and a network architecture 

displayed in Table 1 that inspired by [56,78], 

which we dub as Net2. The Net2 architecture 

adheres to the design philosophy of the VGG 

network. 

Simulations on two benchmark data-sets, the 

mainstream dataset CIFAR-10 [79] and the more 

challenging dataset CIFAR-100 [79] demonstrate 

that our method outperforms the current methods. 

CFAR10 contains 32×32 images from 10 classes, 

50,000 training images, and 10,000 test images, 

whereas CFAR100 is identical to CFAR10 except 

that it contains 100 classes. 

Except for the number of startup epochs, which is 

20 for Net2 (due to the naive architecture of Net2, 

20 epochs were used for it; increasing this 

parameter did not improve the result) and 50 for 

other networks, all simulations were conducted 

with the same hyperparameter settings, as 

summarized in Table 2.  

We employ stochastic gradient descent with the 

following parameters: a batch size of 128, weight 

decay of 0.01, a momentum of 0.8, and LSEP of 

150. Every 15 epochs, the initial learning rate of 

0.025 is divided by 2. Training is performed on an 

Nvidia rtx3090, and gradient accumulation is 

utilized due to GPU memory limitations. Instead 

of updating the network weights after each batch, 

gradient values are saved, the next batch is 

processed, and the new gradients are added. The 

weight update is then performed only after the 

model has processed multiple batches. 

The results of training Net2 with AdapNet are 

displayed in Table 3.  

Figure 4 depicts the architecture of Net2 after 

training with AdapNet. On the basis of the Net2 

architecture after AdapNet pruning (Figure 4), it is 

evident that the pruning ratio decreases as we 

approach the last network layer.  

This indicates the extraction of numerous ICs as 

we progress to the deeper network layers, given 

the initial architecture of Net2 (Table 1), which 

consists of an equal number of filters in all 

network layers. It is known that 

CNNs extract new abstract features based on 

previously extracted ones. Consequently, more 

valuable ICs were extracted by AdapNet in the 

deeper layer as is evident from the simulation 

results of Net2. 

Table 3. Result of training Net2 with AdapNet. 

(Top1: the model answer must be exactly the expected answer, 
Top2: any of your model 2 highest probability answers must 

match the expected answer) 

Dataset CFAR10 CFAR100 

Train Acc (%) 82 79 

Top1 Acc. (%) 69 64 

Top2 Acc. (%) 84 73 

Prune Ratio (%) 88 89 

Num of Epoch (#) 50 41 

 

Table 2. AdapNet Hyperparameters. 

β initialize to 0.9, at each 5 epochs decrease 0.06 until 

Min. value: 0.18  

Γ1 (KSE threshold) 0.6 

Γ3 (Chebyshev distance threshold) 0.8 

 

Table 1. Initial Architecture of Net2. 

Type Kernel Output 

Conv,BatchNorm,ReLU 5×5 256×60×60 

Conv,BatchNorm,ReLU 5×5 256×56×56 

Conv,BatchNorm,ReLU 5×5 256×52×52 

Conv,BatchNorm,ReLU 3×3 256×50×50 

Conv,BatchNorm,ReLU 3×3 256×48×48 

Conv,BatchNorm,ReLU 3×3 256×46×46 

Conv,BatchNorm,ReLU 3×3 256×44×44 

Conv,BatchNorm,ReLU 3×3 512×42×42 

Conv,BatchNorm,ReLU 3×3 512×40×40 

Conv,BatchNorm,ReLU 3×3 512×38×38 

Conv,BatchNorm,ReLU 3×3 512×36×36 

Conv,BatchNorm,ReLU 3×3 512×34×34 

MaxPool 2×2 512×17×17 

Linear,BatchNorm,ReLU - 147968×512 

DropOut,Liner,BatchNor - 512×512 

ReLU,Linear - 512× #class 

 
Type Kernel Output Type Kernel Output 

conv 5*5 64/64/129 conv 5*5 64/64/127 

conv 5*5 64/64/142 conv 5*5 64/64/198 

conv 5*5 64/64/173 conv 5*5 64/64/214 

conv 3*3 32/32/173 conv 3*3 32/32/214 

conv 3*3 32/32/214 conv 3*3 32/32/251 

conv 3*3 32/32/236 conv 3*3 32/32/249 

conv 3*3 32/32/236 conv 3*3 32/32/255 

conv 3*3 32/32/298 conv 3*3 32/32/327 

conv 3*3 32/32/318 conv 3*3 32/32/347 

conv 3*3 32/32/318 conv 3*3 32/32/347 

conv 3*3 32/32/324 conv 3*3 32/32/452 

conv 3*3 32/32/341 conv 3*3 32/32/468 

(a)                                          (b) 

Figure 4. Architecture of Net2 After training with 

AdapNet on CFAR10 (a), CFAR100 (b). 
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Tables 4, 5, and 6 present the results of training 

VGG11, AlexNet, and ResNet50 with AdapNet, 

respectively. The number of epochs in the 

“Structure Evaluation and Change Phase” 

(AdapNet’s second phase) is indicated in column 

“Num of Epoch”. This number must be increased 

by 60 epochs to account for startup and fine-

tuning. 

 

5. Discussion and Analysis 

 It is difficult to compare the results of 

pruning algorithms because there is no 
standard methodology [21]; AdapNet is 

no exception. However, AdapNet’s prune 

ratio falls within an acceptable range. 

Tables 7, 8, and 9 provide a comparison 

of AdapNet results for VGG11, 

ResNet50, and AlexNet on CFAR10 with 

those of other algorithms.  

Based on comparisons summarized in 

tables 7, 8, and 9, AdapNet has a 

remarkable prune ratio and accuracy 

relative to other algorithms. 

 Due to the high computational cost of 

AdapNet’s epoch (during pruning) in 

contrast to other algorithms. Thus, relying 

only on the number of epochs is not a 

proper measure to compare the speed of 

AdapNet with others. However, the 

epoch number of AdapNet is about four 

times less than other algorithms (Table 7). 

Extant pruning algorithms require a 

completely pre-trained network at the 

outset and extensive fine-tuning epochs at 

the conclusion.  AdapNet requires only a 

small number of epochs during startup 

and fine-tuning. In all simulations, we 

used 50 (20 for Net2) epochs at the 

startup phase and only 10 epochs in the 

fine-tuning. So, overall AdapNet achieves 

the resultant network faster than other 

algorithms. 

 Filter evaluation methods in the existing 

pruning algorithms can be categorized 

into two approaches: (1) evaluation based 

on filter value in its layer, and (2) 

evaluation based on the filter’s utility for 

the next layer. Given that both approaches 

are valid, the filter in its layer has a 

particular value according to the 

information it extracts. It also has a 

Table 4. Result of training VGG11 with AdapNet. 

Dataset CFAR10 CFAR100 

Train Acc. (%) 93 87 

Top1 Acc. (%)  88 85 

Top2 Acc. (%)  92 90 

Prune Ratio (%) 87 79 

Num of Epoch (#) 53 49 

 
Table 5. Result of training AlexNet with AdapNet. 

Dataset CFAR10 CFAR100 

Train Acc. (%) 86 82 

Top1 Acc. (%)  84 79 

Top2 Acc. (%)  89 81 

Prune Ratio (%) 81 78 

Num of Epoch (#) 52 32 

 
Table 6. Result of training ResNet50 with AdapNet. 

Dataset CFAR10 CFAR100 

Train Acc. (%) 92 91 

Top1 Acc. (%)  89 87 

Top2 Acc. (%)  94 89 

Prune Ratio (%) 89 59 

Num of Epoch (#) 49 29 

 

Table 7. Comparison of AdapNet and some other 

algorithms for VGG11 on CFAR10. 

Algorithm Epoch 
Batch 
size 

Prune 
ratio(%) 

Acc. 
(%) 

HRank [80] 330 128 82 92 

LDFM [81] 160 128 87 93 

Zaho et al. [82] 300 256 73 93 

SSS [83] 240 64 73 93 

AdapNet 53 128 87 92 

 
Table 8. Comparison of AdapNet and some other 

algorithms for RestNet50 on CFAR10. 

Algorithm Epoch 
Batch 

size 

Prune 
ratio 

(%) 

Acc. 

(%) 

HRank [80] 

for each 
layer, retrain 

for 30 epochs 

after pruning 

128 68 93 

NISP [84] 

50 epochs 
fine tuning 

required after 

pruning 

- 87 93 

He et al. [85] 150 128 - 91 

Li et al. [61] 220 128 65 76 

AdapNet 49 128 89 94 

 
Table 9. Comparison of AdapNet and some other 

algorithms for AlexNet on CFAR10. 

Algorithm Epoch 
Batch 

size 

 Prune 

ratio 
(%) 

Acc. (%) 

NISP [84] 

90 epochs 

fine tuning 

required 
after 

pruning 

- 

 

75 85 

DENNC 
[86] 

40 epochs 
fine tuning 

required 

after 
pruning 

- 

 

40 
12% 

decreased 

AdapNet 52 128  81 89 

 



Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023 
 

62 
 

special value according to the information 

extracted by it that the next layer uses. In 

AdapNet novel method is suggested, 

which is the combination of these two 

approaches. In this way, the filter 

evaluation method of AdapNet is more 

precise than the current pruning 

algorithm. The accuracy of AdapNet in 

filter evaluation led to the remarkable 

prune ratio and high accuracy of the 

resultant network. 

 In addition to filter pruning, AdapNet 

merges similar filters using cosine 

similarity. On the other hand, if two filters 

have similar content and stimulations on 

ICs, regardless of filter evaluation, 

AdapNet merges them and generates a 

single filter. This allows AdapNet to 

achieve a higher pruning ratio than 

competing algorithms. To test the impact 

of the merge module in AdapNet, we 

disabled it and ran AdapNet without 

merging on VGG11. Table 10 presents 

the results of this simulation. A notable 

issue is that the prune ratio decreased by 

approximately 6%. In other words, nearly 

6% of AdapNet’s pruning power can be 

attributed to filter merging. 

 AdapNet does not immediately prune 

filters with a low score that it identified. 

These filters are frozen during the 

subsequent LSEP, and their information 

is moved to other filters. Lastly, they are 

pruned at the beginning of the subsequent 

LSEP. In this way, AdapNet prevents 

irrecoverable information loss caused by 

filter pruning, a prevalent problem in 

many extant algorithms. 

This approach maintains the network’s 

accuracy during training, and the resulting 

network is more accurate than other 

algorithm outcomes. On the basis of 

simulation results, the effectiveness of 

filter freezing is evident. To test it, we 

turned off filter freezing and ran AdapNet 

on VGG11. The outcome of this 

simulation is provided in Table 11. Based 

on this simulation, the prune ratio remains 

nearly unchanged, whereas network 

accuracy decreases by approximately 3%. 

This result demonstrates the effect of soft 

pruning on the transfer of knowledge 

from candidate pruning filters to other 

filters prior to hard pruning. 

 AdapNet evaluates the required capacity 

of each layer according to the extracted 
ICs on that layer. If filters of the layer are 

not sufficiently able to discriminate 

extracted ICs of that layer, a new filter 

with a specific correlation is inserted into 

that layer. The insertion of a new filter 

with a specific correlation accelerates 

training and enhances the network’s 

accuracy. Our intuition is that the new 

filter correlation is what the network will 

learn with stochastic gradient descent in 

future epochs; however, we provide it to 

the network early enough. This strategy 

accelerates AdapNet achievement for the 

final network. To test the effects of the 

new filter insertion, we disabled the filter 

insertion module and ran AdapNet on 

VGG11. The results of this simulation are 

presented in Table 12. The network’s 

accuracy and prune ratio decreased 

according to simulation results, while the 

number of epochs increased. This 

finding can be interpreted as AdapNet 

ignoring the pruning of valueless filters 

due to high KSE and non-uniform 

distribution on ICs as a consequence of 

not inserting new filters. 

 AdapNet trains the DSC-Net network in 

two epochs for each LSEP in order to 

extract the affinity matrix. Spectral 

clustering is performed on the basis of the 

Table 10. Result of AdapNet on VGG11 without filter 

merging. 

Dataset CFAR10 CFAR100 

Train Acc (%) 95 86 

Top1 Acc. (%) 89 84 

Top2 Acc. (%) 93 91 

Prune Ratio (%) 80 75 

Num of Epoch (#) 60 53 

 

Table 11. Result of AdapNet on VGG11 without soft 

pruning. 

Dataset CFAR10 CFAR100 

Train Acc (%) 94 87 

Top1 Acc. (%) 85 86 

Top2 Acc. (%) 90 87 

Prune Ratio (%) 87 80 

Num of Epoch (#) 54 48 

 

Table 12. Result of AdapNet on VGG11 without 

new filter insertion. 

Dataset CFAR10 CFAR100 

Train Acc (%) 93 94 

Top1 Acc. (%) 88 89 

Top2 Acc. (%) 91 90 

Prune Ratio (%) 81 74 

Num of Epoch (#) 61 68 
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extracted affinity matrix, and AdapNet 

must retain the clustering result and 

RFMDist matrix until the algorithm’s 

termination. Therefore, compared to other 

methods, AdapNet requires more memory 

and processing power. Nevertheless, the 

high execution cost of AdapNet is 

justifiable in light of the necessity of a 

pretrained network and the large number 

of fine-tuning epochs required by other 

algorithms. 

 Based on the simulation results, there is a 

minor difference between train and test 

accuracy in the AdapNet resultant 

network, which may suggest that 

AdapNet precludes overfitting during 

pruning. This issue is related to the 

independence of AdapNet from 

backpropagation. AdapNet operates based 

on the extracted deep representation that 

we refer to as ICs. At the beginning of 

each epoch, worthless ICs are detected 

and eliminated from FMDist based on the 

filter’s activation distribution on ICs. 

AdapNet maintains the proper distance 

between extracted ICs and discourages 

overlap based on extracted IC boundary 

points. Therefore, AdapNet prevents 

overfitting during pruning by eliminating 

ineffectual ICs and preventing IC overlap. 

 When the training dataset contains 

numerous classes, multiple clusters and 

ICs are identified. As a result of the 

extraction of numerous useful ICs, the 

prune ratio is low, as demonstrated in 

Tables 4 and 6 for CFAR100. 

 There is a tension between batch size and 

the speed and stability of the learning in 

model training. Regardless of the effect 

that the batch size has on network 

training, different batch size in AdapNet 

has an impact on ICs extraction. AdapNet 

utilizes incremental k-means clustering in 

ICs extraction. If incremental k-means 

clustering converges to the same solution 

despite different batch sizes, then the 

batch size has minor to no effect on 

AdapNet’s result. However, the result of 

k-means won’t necessarily be the same in 

each run. Depending on the initial 

centroid and the order of training data k-

means will converge to different 

solutions. Thus, due to the non-

deterministic behavior of k-means, the 

definite and noteworthy effect of batch 

size in the result of AdapNet is not 

expected. To inspect we conducted a 

simulation with different batch sizes that 

result reported in Table 13. Decreasing 

the batch size led to an increase in noise 

effect in k-means clustering and 

instability in ICs extraction, and this led 

to a decline in the prune ratio and growth 

epoch number, as presented in Table 13. 

Due to the impact of batch size in the 

training process, the attribution of all 

variations to ICs extraction of AdapNet 

maybe not be sound. However, based on 

simulation result decreasing the batch size 

to 16 has destructive effect on AdapNet. 

6. Conclusion and future works 

The proposed algorithm is a step toward 

eliminating trial and error from the CNN 

architecture design process. We compared our 

algorithm’s results with those of 

pruning/compression algorithms. In contrast to 

many current pruning methods, the proposed 

algorithm operates online and has three significant 

improvements from existing algorithms: (1) filter 

evaluation is based on the combination of filter 

profit in its layer and the next layer; (2) similar 

filters are merged to compress the layer if certain 

conditions are met; and (3) network layer capacity 

is evaluated during pruning, and if a new filter is 

required, it is inserted into the layer. The 

simulation results demonstrate the algorithm’s 

effectiveness. Our algorithm achieves a higher 

prune ratio and accuracy, as well as a quicker 

network formation. 

For a future version of the algorithm, we consider 

three challenges: (1) determining the optimal filter 

size based on FMs’ entropy; (2) dynamically 

varying the number of batches in LSEP and, 

thereby, enhancing the algorithm’s speed and its 

filter evaluation accuracy, and (3) evaluating the 

impact of the filter in the last network layer. 
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Table 13. Result of AdapNet on VGG11 

(CFAR10) with different batch size. 

Batch size 16 32 64 128 

Train Acc (%) 89 93 92 93 

Top1 Acc. (%) 84 82 89 88 

Top2 Acc. (%) 86 88 90 92 

Prune Ratio (%) 63 88 86 87 

Num of Epoch (#) 
Manually 

terminated 

in 100 

86 61 53 

 



Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023 
 

64 
 

References 
[1] N. Elyasi and M. Hosseini Moghadam, 

“Classification of Skin Lesions by Tda Alongside 

Xception Neural Network,” J. AI Data Min., vol. 10, 

no. 3, pp. 333–344, 2022. 
 

[2] F. Salimian Najafabadi and M. T. Sadeghi, 

“AgriNet: a New Classifying Convolutional Neural 

Network for Detecting Agricultural Products’ 

Diseases,” J. AI Data Min., vol. 10, no. 2, pp. 285–302, 

2022.  
 

[3] R. Ranjan, V. M. Patel, and R. Chellappa, 

“HyperFace: A Deep Multi-Task Learning Framework 

for Face Detection, Landmark Localization, Pose 

Estimation, and Gender Recognition,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 41, no. 1, pp. 121–135, 

Jan. 2019. 
 

[4] H. Filali, J. Riffi, I. Aboussaleh, A. M. Mahraz, and 

H. Tairi, “Meaningful Learning for Deep Facial 

Emotional Features,” Neural Process. Lett. 2021, pp. 

1–18, Sep. 2021. 
 

[5] M. Alam, J.-F. Wang, C. Guangpei, L. Yunrong, 

and Y. Chen, “Convolutional Neural Network for the 

Semantic Segmentation of Remote Sensing Images,” 

Mob. Networks Appl. 2021 261, vol. 26, no. 1, pp. 200–

215, Feb. 2021. 
 

[6] J. Guo, J. Yang, H. Yue, H. Tan, C. Hou, and K. Li, 

“CDnetV2: CNN-Based Cloud Detection for Remote 

Sensing Imagery with Cloud-Snow Coexistence,” 

IEEE Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 

700–713, Jan. 2021. 
 

[7] X. Zhang, G. Chen, K. Saruta, and Y. Terata, “A 

Guideline for Object Detection Using Convolutional 

Neural Networks,” Lect. Notes Electr. Eng., vol. 572 

LNEE, pp. 157–164, 2020. 
 

[8] BoukercheAzzedine and HouZhijun, “Object 

Detection Using Deep Learning Methods in Traffic 

Scenarios,” ACM Comput. Surv., vol. 54, no. 2, Mar. 

2021. 
 

[9] P. Wang, Q. Wu, C. Shen, A. Dick, and A. Van 

Den Hengel, “FVQA: Fact-Based Visual Question 

Answering,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 40, no. 10, pp. 2413–2427, Oct. 2018. 
 

[10] N. Takahashi, M. Gygli, and L. van Gool, 

“AENet: Learning Deep Audio Features for Video 

Analysis,” IEEE Trans. Multimed., vol. 20, no. 3, pp. 

513–524, Mar. 2018. 
 

[11] N. Kruger et al., “Deep hierarchies in the primate 

visual cortex: What can we learn for computer 

vision?,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 

35, no. 8, pp. 1847–1871, 2013. 
 

[12] Y. Bengio, “Learning Deep Architectures for AI,” 

Found. Trends® Mach. Learn., vol. 2, no. 1, pp. 1–

127, Nov. 2009. 
 

[13] KrizhevskyAlex, SutskeverIlya, and H. E., 

“ImageNet classification with deep convolutional 

neural networks,” Commun. ACM, vol. 60, no. 6, pp. 

84–90, May 2017. 
 

[14] S. Liu and W. Deng, “Very deep convolutional 

neural network-based image classification using small 

training sample size,” Proc. - 3rd IAPR Asian Conf. 

Pattern Recognition, ACPR 2015, pp. 730–734, Jun. 

2016. 
 

[15] C. Szegedy et al., “Going deeper with 

convolutions,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., vol. 07-12-June-2015, 

pp. 1–9, Oct. 2015. 
 

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep 

residual learning for image recognition,” Proc. IEEE 

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 

vol. 2016-December, pp. 770–778, Dec. 2016. 
 

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. 

Weinberger, “Densely connected convolutional 

networks,” Proc. - 30th IEEE Conf. Comput. Vis. 

Pattern Recognition, CVPR 2017, vol. 2017-January, 

pp. 2261–2269, Nov. 2017. 
 

[18] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, 

“Object Detection with Deep Learning: A Review,” 

IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 

11, pp. 3212–3232, Nov. 2019. 
 

[19] T. Choudhary, V. Mishra, A. Goswami, and J. 

Sarangapani, “A comprehensive survey on model 

compression and acceleration,” Artif. Intell. Rev. 2020 

537, vol. 53, no. 7, pp. 5113–5155, Feb. 2020. 
 

[20] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. 

Guttag, “What is the State of Neural Network 

Pruning?,” Proc. Mach. Learn. Syst., vol. 2, pp. 129–

146, Mar. 2020, Accessed: Sep. 29, 2021. [Online]. 

Available: https://github.com/jjgo/shrinkbench. 
 

[21] X. Chen, J. Mao, and J. Xie, “Comparison 

Analysis for Pruning Algorithms of Neural Networks,” 

Proc. - 2021 2nd Int. Conf. Comput. Eng. Intell. 

Control. ICCEIC 2021, pp. 50–56, 2021. 
 

[22] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y. 

Yang, “Asymptotic Soft Filter Pruning for Deep 

Convolutional Neural Networks,” IEEE Trans. 

Cybern., vol. 50, no. 8, pp. 3594–3604, Aug. 2020. 
 

[23] L. Cai, Z. An, C. Yang, and Y. Xu, "Softer 

Pruning, Incremental Regularization," in: Proc. 2020 

25th International Conf. on Pattern Recognition 

(ICPR), 2021, pp. 224-230. 
 

[24] M. Mousa-Pasandi, M. Hajabdollahi, N. Karimi, 

S. Samavi, and S. Shirani, "Convolutional Neural 

Network Pruning Using Filter Attenuation," in: Proc. 

2020 IEEE International Conf. on Image Processing 

(ICIP), 2020, pp. 2905-2909.  
 

[25] Z. Wang, C. Li, and X. Wang, “Convolutional 

neural network pruning with structural redundancy 

reduction,” Proc. IEEE Comput. Soc. Conf. Comput. 

Vis. Pattern Recognit., pp. 14908–14917, 2021. 



Adaptive Pruning of Convolutional Neural Network 

65 

 

[26] PeiSongwen, WuYusheng, GuoJin, and 

QiuMeikang, “Neural Network Pruning by Recurrent 

Weights for Finance Market,” ACM Trans. Internet 

Technol., vol. 22, no. 3, pp. 1–23, Jan. 2022. 
 

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. 

P. Graf, “Pruning Filters for Efficient ConvNets,” in: 

Proceedings of the 5th International Conf. on Learning 

Representations (ICLR). Nov. 2017. Toulon, France. 

 

[28] S. Han, J. Pool, J. Tran, and W. J. Dally, 

“Learning Both Weights and Connections for Efficient 

Neural Networks,” in Proceedings of the 28th 

International Conference on Neural Information 

Processing Systems - Volume 1, 2015, pp. 1135–1143. 
 

[29] X. Liu, B. Li, Z. Chen, and Y. Yuan, “Exploring 

Gradient Flow Based Saliency for DNN Model 

Compression,” in Proceedings of the 29th ACM 

International Conference on Multimedia, New York, 

NY, USA: Association for Computing Machinery, 

2021, pp. 3238–3246. 
 

[30] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and 

J. Kautz, “Importance estimation for neural network 

pruning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. 

Pattern Recognit., vol. 2019-June, pp. 11256–11264, 

Jun. 2019. 
 

[31] C. H. Sarvani, M. Ghorai, S. R. Dubey, and S. H. 

S. Basha, “HRel: Filter pruning based on High 

Relevance between activation maps and class labels,” 

Neural Networks, vol. 147, pp. 186–197, Mar. 2022. 
 

[32] M. Soltani, S. Wu, J. Ding, R. Ravier, and V. 

Tarokh, “On the information of feature maps and 

pruning of deep neural networks,” Proc. - Int. Conf. 

Pattern Recognit., pp. 6988–6995, 2020. 
 

[33] C. Hur and S. Kang, “Entropy-based pruning 

method for convolutional neural networks,” J. 

Supercomput. 2018 756, vol. 75, no. 6, pp. 2950–2963, 

Nov. 2018. 
 

[34] Y. Si and W. Guo, “Application of A Taylor 

Expansion Criterion-based Pruning Convolutional 

Network for Bearing Intelligent Diagnosis,” 2020 

Glob. Reliab. Progn. Heal. Manag. PHM-Shanghai 

2020, Oct. 2020. 
 

[35] C. Yu, J. Wang, Y. Chen, and X. Qin, “Transfer 

channel pruning for compressing deep domain 

adaptation models,” Int. J. Mach. Learn. Cybern. 2019 

1011, vol. 10, no. 11, pp. 3129–3144, Sep. 2019. 
 

[36] Z. Huang, L. Li, and H. Sun, “Global biased 

pruning considering layer contribution,” IEEE Access, 

vol. 8, pp. 173521–173529, 2020. 
 

[37] B. Wang, F. Ma, L. Ge, H. Ma, H. Wang, and M. 

A. Mohamed, “Icing-EdgeNet: A Pruning Lightweight 

Edge Intelligent Method of Discriminative Driving 

Channel for Ice Thickness of Transmission Lines,” 

IEEE Trans. Instrum. Meas., vol. 70, 2021. 
 

[38] T. Xu et al., “CDP: Towards Optimal Filter 

Pruning via Class-Wise Discriminative Power,” in 

Proceedings of the 29th ACM International Conference 

on Multimedia, New York, NY, USA: Association for 

Computing Machinery, 2021, pp. 5491–5500. 
 

[39] Z. Chen, T. B. Xu, C. Du, C. L. Liu, and H. He, 

“Dynamical Channel Pruning by Conditional Accuracy 

Change for Deep Neural Networks,” IEEE Trans. 

Neural Networks Learn. Syst., vol. 32, no. 2, pp. 799–

813, Feb. 2021. 
 

[40] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari, 

“Do Semantic Parts Emerge in Convolutional Neural 

Networks?,” Int. J. Comput. Vis. 2017 1265, vol. 126, 

no. 5, pp. 476–494, Oct. 2017. 
 

[41] Y. Le Cun, Y. Le Cun, J. S. Denker, and S. A. 

Solla, “Optimal Brain Damage,” Adv. Neural Inf. 

Process. Syst., vol. 2, pp. 598--605, 1990, Accessed: 

Sep. 18, 2022. [Online]. Available: 

http://130.203.136.95/viewdoc/summary?doi=10.1.1.3

2.7223. 
 

[42] Z. Wang, W. Hong, Y. P. Tan, and J. Yuan, 

“Pruning 3D Filters for Accelerating 3D ConvNets,” 

IEEE Trans. Multimed., vol. 22, no. 8, pp. 2126–2137, 

Aug. 2020. 
 

[43] Y. Zhang, Y. Yuan, and Q. Wang, “ACP: 

Adaptive Channel Pruning for Efficient Neural 

Networks,” in IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), 

Apr. 2022, pp. 4488–4492. 
 

[44] B. Zhou, D. Bau, A. Oliva, and A. Torralba, 

“Interpreting Deep Visual Representations via Network 

Dissection,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 41, no. 9, pp. 2131–2145, Sep. 2019. 
 

[45] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and 

Q. Tian, “Variational convolutional neural network 

pruning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. 

Pattern Recognit., vol. 2019-June, pp. 2775–2784, Jun. 

2019. 
 

[46] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, 

and I. Fried, “Invariant visual representation by single 

neurons in the human brain,” Nat. 2005 4357045, vol. 

435, no. 7045, pp. 1102–1107, Jun. 2005. 
 

[47] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. 

Zhou, and A. Torralba, “Understanding the role of 

individual units in a deep neural network,” Proc. Natl. 

Acad. Sci., vol. 117, no. 48, pp. 30071–30078, Dec. 

2020. 
 

[48] C. Li, M. Z. Zia, Q. H. Tran, X. Yu, G. D. Hager, 

and M. Chandraker, “Deep Supervision with 

Intermediate Concepts,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 41, no. 8, pp. 1828–1843, Aug. 

2019. 
 

[49] C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. 

Tu, “Deeply-Supervised Nets,” in Proceedings of the 

Eighteenth International Conference on Artificial 

Intelligence and Statistics, 2015, vol. 38, pp. 562–570, 

[Online]. Available: 

https://proceedings.mlr.press/v38/lee15a.html. 

https://proceedings.mlr.press/v38/lee15a.html


Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023 
 

66 
 

[50] Z. Zhuang et al., “Discrimination-Aware Channel 

Pruning for Deep Neural Networks,” in Proceedings of 

the 32nd International Conference on Neural 

Information Processing Systems, 2018, pp. 883–894. 
 

[51] Z. Hou and S. Y. Kung, “A discriminant 

information approach to deep neural network pruning,” 

Proc. - Int. Conf. Pattern Recognit., pp. 9553–9560, 

2020, doi: 10.1109/ICPR48806.2021.9412693. 
 

[52] E. Saraee, M. Jalal, and M. Betke, “Visual 

complexity analysis using deep intermediate-layer 

features,” Comput. Vis. Image Underst., vol. 195, p. 

102949, Jun. 2020. 
 

[53] A. S. Morcos, D. G. T. Barrett, N. C. Rabinowitz, 

and M. Botvinick, “On the importance of single 

directions for generalization,” 6th Int. Conf. Learn. 

Represent. ICLR 2018 - Conf. Track Proc., Mar. 2018. 
 

[54] J. Ukita, “Causal importance of low-level feature 

selectivity for generalization in image recognition,” 

Neural Networks, vol. 125, pp. 185–193, May 2020. 
 

[55] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A 

discriminative feature learning approach for deep face 

recognition,” Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 9911 LNCS, pp. 499–515, 2016. 
 

[56] H. Peng and S. Yu, “Beyond softmax loss: Intra-

concentration and inter-separability loss for 

classification,” Neurocomputing, vol. 438, pp. 155–

164, May 2021. 
 

[57] H. M. Yang, X. Y. Zhang, F. Yin, and C. L. Liu, 

“Robust Classification with Convolutional Prototype 

Learning,” Proc. IEEE Comput. Soc. Conf. Comput. 

Vis. Pattern Recognit., pp. 3474–3482, Dec. 2018. 
 

[58] S. Son, S. Nah, and K. M. Lee, “Clustering 

Convolutional Kernels to Compress Deep Neural 

Networks,” Lect. Notes Comput. Sci. (including Subser. 

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 

vol. 11212 LNCS, pp. 225–240, 2018. 
 

[59] Z. Zhou, W. Zhou, H. Li, and R. Hong, “Online 

Filter Clustering and Pruning for Efficient Convnets,” 

Proc. - Int. Conf. Image Process. ICIP, pp. 11–15, 

Aug. 2018. 
 

[60] S. Yu, K. Wickstrom, R. Jenssen, and J. Principe, 

“Understanding Convolutional Neural Networks with 

Information Theory: An Initial Exploration,” IEEE 

Trans. Neural Networks Learn. Syst., vol. 32, no. 1, pp. 

435–442, Jan. 2021. 
 

[61] Y. Li et al., “Exploiting kernel sparsity and 

entropy for interpretable CNN compression,” Proc. 

IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit., vol. 2019-June, pp. 2795–2804, Jun. 2019. 
 

[62] E. Elhamifar and R. Vidal, “Sparse subspace 

clustering: Algorithm, theory, and applications,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 

2765–2781, 2013. 
 

[63] B. McWilliams and G. Montana, “Subspace 

clustering of high-dimensional data: a predictive 

approach,” Data Min. Knowl. Discov. 2013 283, vol. 

28, no. 3, pp. 736–772, May 2013. 
 

[64] M. Liu, Y. Wang, and Z. Ji, “Self-Supervised 

Convolutional Subspace Clustering Network with the 

Block Diagonal Regularizer,” Neural Process. Lett. 

2021, pp. 1–27, Aug. 2021. 
 

[65] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid  

“Deep Subspace Clustering Networks,” in: 

Proceedings of the 31st International Conf. on Neural 

Information Processing Systems. Curran Associates 

Inc., Red Hook, NY, USA, 2017, pp 23–32. 
 

[66] S. Roy, P. Panda, G. Srinivasan, and A. 

Raghunathan, “Pruning Filters while Training for 

Efficiently Optimizing Deep Learning Networks,” 

Proc. Int. Jt. Conf. Neural Networks, Jul. 2020. 
 

[67] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. 

Yang, “Learning Filter Pruning Criteria for Deep 

Convolutional Neural Networks Acceleration,” Proc. 

IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit., pp. 2006–2015, 2020. 
 

[68] Z. Zhou, W. Zhou, R. Hong, and H. Li, “Online 

Filter Weakening and Pruning for Efficient Convnets,” 

Proc. - IEEE Int. Conf. Multimed. Expo, vol. 2018-

July, Oct. 2018. 

[69] P. Singh, V. K. Verma, P. Rai, and V. P. 

Namboodiri, “Acceleration of Deep Convolutional 

Neural Networks Using Adaptive Filter Pruning,” 

IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 

838–847, May 2020. 
 

[70] Y. Bengio, A. Courville, and P. Vincent, 

“Representation learning: A review and new 

perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 35, no. 8, pp. 1798–1828, 2013. 

[71] B. Aaron, D. E. Tamir, N. D. Rishe, and A. 

Kandel, “Dynamic incremental K-means clustering,” 

Proc. - 2014 Int. Conf. Comput. Sci. Comput. Intell. 

CSCI 2014, vol. 1, pp. 308–313, 2014. 
 

[72] U. von Luxburg, “A tutorial on spectral 

clustering,” Stat. Comput. 2007 174, vol. 17, no. 4, pp. 

395–416, Aug. 2007. 
 

[73] L. Rosasco, M. Belkin, and E. De Vito, “On 

Learning with Integral Operators,” J. Mach. Learn. 

Res., vol. 11, no. 30, pp. 905–934, 2010, Accessed: 

Sep. 30, 2021. [Online]. Available: 

http://jmlr.org/papers/v11/rosasco10a.html. 
 

[74] C. Xia, W. Hsu, M. L. Lee, and B. C. Ooi, 

“BORDER: Efficient computation of boundary points,” 

IEEE Trans. Knowl. Data Eng., vol. 18, no. 3, pp. 289–

303, Mar. 2006. 
 

[75] A. Achille and S. Soatto, “Emergence of 

invariance and disentanglement in deep 

representations,” 2018 Inf. Theory Appl. Work. ITA 

2018, Oct. 2018. 



Adaptive Pruning of Convolutional Neural Network 

67 

 

[76] L. Decreusefond, I. Flint, N. Privault, and G. L. 

Torrisi, “Determinantal Point Processes,” Bocconi 

Springer Ser., vol. 7, pp. 311–342, 2016. 
 

[77] H. Wang, P. Chen, and S. Kwong, “Building 

Correlations between Filters in Convolutional Neural 

Networks,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 

3218–3229, Oct. 2017. 

 

[78] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-

Margin Softmax Loss for Convolutional Neural 

Networks,” in Proceedings of the 33rd International 

Conference on International Conference on Machine 

Learning - Volume 48, 2016, pp. 507–516. 
 

[79] A. Krizhevsky and A. Krizhevsky, “Learning 

multiple layers of features from tiny images,” 2009, 

Accessed: May 10, 2022. [Online]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1

.1.222.9220. 
 

[80] M. Lin et al., “Hrank: Filter pruning using high-

Rank feature map,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., pp. 1526–1535, 2020. 
 

[81] H. Pan, Z. Chao, J. Qian, B. Zhuang, S. Wang, and 

J. Xiao, “Network pruning using linear dependency 

analysis on feature maps,” ICASSP, IEEE Int. Conf. 

Acoust. Speech Signal Process. - Proc., vol. 2021-June, 

pp. 1720–1724, 2021. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

[82] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and 

Q. Tian, “Variational convolutional neural network 

pruning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. 

Pattern Recognit., vol. 2019-June, pp. 2775–2784, Jun. 

2019. 
 

[83] Z. Huang and N. Wang, “Data-Driven Sparse 

Structure Selection for Deep Neural Networks,” Lect. 

Notes Comput. Sci. (including Subser. Lect. Notes 

Artif. Intell. Lect. Notes Bioinformatics), vol. 11220 

LNCS, pp. 317–334, 2018. 
 

[84] R. Yu et al., “NISP: Pruning Networks Using 

Neuron Importance Score Propagation,” Proc. IEEE 

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 

9194–9203, Dec. 2018. 
 

[85] Y. He, X. Zhang, and J. Sun, “Channel Pruning 

for Accelerating Very Deep Neural Networks,” Proc. 

IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 

1398–1406, Dec. 2017. 
 

[86] T. Wu, X. Li, D. Zhou, N. Li, and J. Shi, 

“Differential Evolution Based Layer-Wise Weight 

Pruning for Compressing Deep Neural Networks,” 

Sensors 2021, Vol. 21, Page 880, vol. 21, no. 3, p. 880, 

Jan. 2021. 



 .2041سال ،اول شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده                              و همکاران                                                                       فائز

 

 های عصبی کانولوشن  هرس تطبیقی شبکه

 

 ۳بهروز معصومی و ،*۲کریم فائز، ۱سعید احمدلوئی

 .گروه مهندسی کامپیوتر و فناوری اطلاعات، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران ۳و۱

 .ایران تهران، مهندسی برق، دانشگاه صنعتی امیرکبیر،دانشکده  ۲

 21/21/1411 پذیرش؛ 40/21/1411بازنگری؛ 24/24/1411 ارسال

 چکیده:

همرراه برا   ها در مسائل دنیای واقع  استفاده از این شبکهبا این وجود اند.  بینایی ماشین کسب کرده  های چشمگیری در حوزه های کانولوشن موفقیت شبکه

بررای  هرا   شربکه ایرن  برای طراحی معماری ی روشدر حال حاضر ( 1، )مستلزم توان پردازشی و حافظه بالا است آنها( استفاده از 2دو چالش عمده است: )

بخشری   چالش اول مطرح شده و نسبتا به نتایج رضرایت  مواجه باها به عنوان راهکاری جهت  کردن این شبکهسازی/هرس مسئله خاص وجود ندارد. فشرده

تروان   . الگوریتم ارائه شده در این مقاله را مری های تکاملی ارائه شده است برخی الگوریتم صرفا چالش دوم تاکنون مواجه بایافته شده است. برای  نیز دست

هرا از معیرار بابرت و از پریش     پیشنهادی برای ارزیابی فیلتر  هر دو چالش به صورت همزمان در نظر گرفت. در الگوریتم مواجه بابه عنوان راهکاری جهت 

میزان مطلوبیرت فیلترر در   ترکیب بر اساس  شبکه طوریکه معیار ارزیابی فیلترها به صورت برخط در طی آموزش  شود، به تعریف شده خاصی استفاده نمی

شرود.   اضرافه مری   هرا  نیرز بره لایره   گیرد. همچنین راهکار جدیدی پیشنهاد شده است که در صورت لزوم فیلتر جدیرد   لایه خودش و لایه بعدی شکل می

هرای   سرازی  با انجام شبیه دهد. تشخیص مینیز بنابراین الگوریتم پیشنهادی صرفا یک الگوریتم هرس کردن نیست بلکه تعداد فیلترهای بهینه هر لایه را 

های موجود، الگوریتم پیشنهادی بره دقرت    پیشنهادی مورد ارزیابی قرار گرفته است. در مقایسه با روش الگوریتمکارکرد های مختلف  متنوع روی معماری

در کرل الگروریتم    ،دارد با توجه به همزمانی آموزش و هررس  epochینه پردازشی بالاتری که در هر زرغم ه علی ، ویافته و نرخ هرس نسبتا بالاتری دست

 .   دهد ه میئها شبکه نتیجه را ارا تمپیشنهادی سریعتر از سایر الگوری

 .سازی معماری تطبیقی، هرس کردن، فشرده های عصبی کانولوشن،  شبکه :کلمات کلیدی

 


