
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 1, 2023, 53-67.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Adaptive Pruning of Convolutional Neural Network

Saeed Ahmadluei
1
, Karim Faez

2*
 and Behrooz Masoumi

3

1,3. Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

2. Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran.

Article Info Abstract

Article History:
Received 10 October 2022
Revised 03 December 2022

Accepted 19 December 2022

DOI:10.22044/jadm.2022.12337.2380

 Deep convolutional neural networks (CNNs) have attained remarkable

success in numerous visual recognition tasks. There are two challenges

when adopting CNNs in real-world applications: a) the existing CNNs

are computationally expensive and memory intensive, impeding their

use in edge computing; b) there is no standard methodology for

designing the CNN architecture for the intended problem. Network

pruning/compression has emerged as a research direction to address

the first challenge, and it has proven to moderate CNN computational

load successfully. For the second challenge, various evolutionary

algorithms have been proposed thus far. The algorithm proposed in

this paper can be viewed as a solution to both challenges. Instead of

using constant predefined criteria to evaluate the filters of CNN layers,

the proposed algorithm establishes evaluation criteria in online manner

during network training based on the combination of each filter’s

profit in its layer and the next layer. In addition, a novel method has

been suggested that inserts new filters into the CNN layers. The

proposed algorithm is not simply a pruning strategy but determines the

optimal number of filters. Training on multiple CNN architectures

allows us to demonstrate the efficacy of our approach empirically.

Compared to current pruning algorithms, our algorithm yields a

network with a remarkable prune ratio and accuracy. Despite the

relatively high computational cost of an epoch in the proposed

algorithm in pruning, altogether it achieves the resultant network faster

than the other algorithms.

Keywords:
Convolutional Neural Network,

Adaptive Architecture, Pruning,

Compression.

*Corresponding author:

kfaez@aut.ac.ir(K. Faez).

1. Introduction

In the recent years, deep learning networks,

specifically convolutional neural networks

(CNNs), have achieved unprecedented success in

challenging problems in vision such as

classification [1, 2], face detection [3, 4], semantic

segmentation [5, 6], object detection [7, 8] and all

other data-rich fields such as natural language

understanding [9] and speech detection [10]. This

success is attributed to the hierarchical structure

of CNN that was inspired by the human brain

structure [11, 12]. The success of CNNs in a

variety of applications is accompanied by a

substantial rise in computation and parameter

storage costs. A glance at network architectures

such as AlexNet (8 layers) [13], VGG (18 layers)

[14], GoogleNet (19 layers) [15], ResNet [16],

and DenseNet [17] (a few hundred layers) reveals

that they have gotten wider and deeper over time.

This strategy results from the well-known rule

that, in general, CNNs with greater depth and

breadth are better equipped to handle complex and

larger problems [16, 18]. With the advent of wider

and deeper CNNs, however, the hardware

requirements have elevated in a way that makes it

difficult to use CNNs in edge computing. Even

though it is well-known that deep neural networks

have many redundant parameters that can be

replaced by a more compact architecture, there is

no standard method for designing the compact

deep architecture for new tasks. Consequently,

mailto:kfaez@aut.ac.ir(K

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

54

many researchers tend toward network pruning

and compression [19, 20]. A common practice in

these studies involves comprehensive training of

the network, followed by repetitive pruning

(based on some predefined criterion) and fine-

tuning. The essence of pruning is

evaluating filters and removing the ones with the

lowest score that result in minimum accuracy loss

and maximum acceleration.

Typically, the input to the pruning algorithm is

a pre-trained network. This being said, one must

initially train the network exhaustively in order to

employ these algorithms. In addition, these

algorithms typically require remarkable fine-

tuning epochs after pruning. In our proposed

algorithm, pruning occurs during training,

eliminating the requirement for a pre-trained

network. However, our algorithm requires

approximately n epochs of startup training before

the pruning process can initiate. In the proposed

algorithm, the number of fine-tuning epochs is

approximately 0.1 times that of extant pruning

algorithms. By eliminating the requirement for an

entirely pre-trained network and a significant fine-

tuning phase following the pruning phase, the

proposed algorithm attains the resulting network

faster than existing pruning algorithms.

In the current pruning algorithms, if pruning some

filters and reducing the capacity of corresponding

layers result in a significant loss in the network

performance, there is no way to undo the pruning.

Under such circumstances, irrecoverable

information loss occurs within the network.

Several methods such as soft pruning [22],

dynamic regularization [23], and filter attenuation

[24] are recommended for mitigating these

conditions. In order to fully address this problem,

we have proposed a novel method that measures

the layer’s capacity and, if necessary, inserts a

new filter into that layer. Therefore, we refer to

our algorithm as Adaptive Network pruning

(AdapNet). Inserting a new filter that has a

specific correlation with other filters also

accelerates network training because stochastic

gradient descent (SGD) is utilized for training the

network on what it will learn in the future.

Filter evaluation methods in pruning algorithms

can be categorized into two main types: (1)

evaluation based on filter intrinsic property such

as L1/L2 norm [25, 26], absolute value [27, 28],

gradient value [29, 30], and entropy [31-33]; and

(2) evaluation based on filter influence on

network cost function [34-38]. The first approach

is based on the outdated but currently contested

notion that “magnitude equals salience” [39-41].

The second method typically has a high

computational cost and is insufficiently accurate.

The proposed algorithm’s filter evaluation

criterion is developed based on the intended task

during network training. We have considered

image classification as the intended task. Future

research may consider the development of

AdapNet for other tasks.

Filter evaluation in our algorithm is based on

intermediate representations that emerge in the

network layers during training. CNNs’

intermediate layer function as semantic detectors,

and these semantics are extremely sensitive to

network architecture and training data [42-45].

We argue that intermediate-layer generated

semantics can be used to determine the optimal

number of filters for each layer. As the network’s

hierarchical structure is inspired by the human

brain, it stands to reason that the number of filters

in each layer may also be [11, 46]. Accordingly,

we define the Intermediate Concept (IC) as the

interpretability and information richness of the

generated Feature Maps (FMs) in intermediate

layers. Here, interpretability refers to the degree to

which FMs correspond to the concept trained to

the network. We introduce a quantitative

measurement based on the distribution of filter

activation on IC to quantify the interpretability of

intermediate layer FMs. By interpretability, we do

not mean interpretability for humans, as we know

that in an optimal state, only a small percentage of

FMs (approximately 40%) that are valuable to

discriminability is interpretable for humans [40,

47]. Thus, we can criticize approaches such as

[45, 48, 49] that rely on human interpretation in

determining the IC to be learned by the network.

We propose a novel method for extracting ICs

from FMs and for quantitatively evaluating the

extracted ICs’ utility for the intended task.

In sum, unlike the existing pruning algorithms,

AdapNet does not require a pretrained network

and eliminates the substantial fine-tuning phases

following pruning. In addition, it does not utilize

the static filter evaluation criterion during

pruning; and, it inserts a new filter based on the

layer capacity evaluation. AdapNet enhances the

prune ratio while maintaining the accuracy of

pruned networks and is significantly faster than

the existing pruning algorithms. The proposed

approach has been evaluated on multiple CNNs

(VGG11, ResNet50, AlexNet, Net2) over two

benchmarked datasets (CFAR10/100). The

simulation results demonstrate the effectiveness of

AdapNet in terms of prune ratio and acceleration

Adaptive Pruning of Convolutional Neural Network

55

in achievement of resultant network. Our primary

contributions are as follows:

1. AdapNet input is not a trained CNN, and unlike

other methods, the CNN does not require

exhaustive training prior to pruning.

2. The evaluation criteria for filters are not

static and task-independent. Rather, these criteria

are developed based on the extracted IC during

network training.

3. AdapNet inserts new filters into the layers

based on layer capacity evaluation, as opposed to

the existing methods that only prune the filters

and may cause irrecoverable information loss.

AdapNet is not, therefore, simply a pruning

algorithm, as it determines the optimal number of

filters for each layer.

2. Related Works

CNN pruning and compression is a method of

finding the optimal CNN architecture in terms of

network size or complexity. These methods fall

into two primary categorizes with regard to filter

evaluation and pruning technique: (1) intrinsic

properties and (2) performance importance. In the

first category, the significance of a filter is

calculated by its intrinsic properties. On the other

hand, a score is assigned to the filter based on its

intrinsic properties, and filters with low scores are

removed from the network. L1/L2 norm [25, 26],

absolute value [27, 28], gradient value [29, 30],

and filter entropy [31-33] are examples from

the first category. Research indicates a weak

correlation between L1/L2 norm-based

approaches and network performance [39, 40]. In

this category, the association between selected

parameters (for filter evaluation) and network

performance is typically validated through

simulation with no formal proof.

The second group is based on the significance of

the performance. In these methods, the impact of

the filter on network performance is evaluated,

and pruning is performed in accordance with the

calculated filter importance. For example, [50, 51,

37] inserted the auxiliary loss function into the

intermediate layers and pruned based on the

discrimination power of the FMs. However,

research indicates that increasing the

discrimination power of FMs in intermediate

layers does not necessarily increase the

discrimination of the FMs in the final layer

but may even harm generalization [52-54]. The

Taylor series was used in [34-36] to measure the

effect of each filter on the loss function or

network accuracy. Due to the large number of

filters and the impossibility of calculating the

Taylor series with reasonable accuracy, however,

a more compact approximation was calculated

using the first-order expansion. In general,

measuring the impact of filters on network

performance typically entails high computational

costs and cannot be accomplished accurately.

Millions of parameters and computations in the

network’s intermediate layer extend the

usefulness of the network beyond the task they

were designed for and reach features that are not

necessarily useful for the network’s intended

task [52]. On the other hand, intermediate layers

of CNN behave like a semantic detector (we refer

to as IC), which is sensitive to the network

structure [42, 44, 45, 52]. [45] uses the

evolutionary method to extract these ICs. In [48],

the user identified ICs that help the network to

achieve greater generalization and accuracy

during training. [55, 56] extracted a single

prototype for each class, whereas [57] utilized the

same number of prototypes for each class. We

argue that based on these ICs, accurate evaluation

of filters is possible while taking the intended task

into consideration.

AdapNet applies incremental clustering to FMs

for IC extraction. Clustering is commonly used to

compress CNNs. In [58, 59], filter clustering is

used as the similarity criterion for pruning; in

[59], filter pruning was performed online, whereas

in [58], filter pruning was performed after

training. Using the trained network as input, [58]

employed k-means clustering on the kernels,

utilized cluster centers as new kernels, and

eliminated the remaining cluster members from

the network. [59] applied clustering during

training and, with modifications to the cost

function, attempted to merge similar kernels into

the same clusters.

Nevertheless, online clustering methods receive

two major criticisms. Firstly, the high

dimensionality of data not only increases the

computational time and memory requirements of

algorithms but also negatively affects their

performance due to the noise effect and the

insufficient number of samples with respect to the

ambient space dimension, commonly referred to

as the curse of dimensionality. Secondly, one

cannot decide between filters solely based on their

similarity, as the information of each filter can be

used in subsequent layers depending on

its composition [60, 61]. Instead of being

uniformly dispersed across the ambient space,

high-dimensional data frequently lay in low-

dimensional structures. Recovering low-

dimensional structures in the data reduces the

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

56

computational cost, memory requirements of

algorithms, and reduces the effect of high-

dimensional noise in the data, leading to improved

performance of inference, learning, and

recognition tasks [62, 63]. [62, 64, 65] applied

CNN to clustering in another sub-space. AdapNet

utilizes the idea proposed in these papers. Similar

to [64], a non-linear mapping into another sub-

space was used to extract an adjacency matrix for

use in spectral clustering. The cluster evaluation

method is inspired by [44], which presents the

kernel activity distribution on labels to extract the

sensitivity of each kernel. It assesses each CNN

convolutional unit as a solution to a binary

segmentation task for each visual concept in

BRODEN (Broadly and Densely Labeled Dataset

assembled and applied in [44]).

Another common issue with network compression

algorithms is the need for a CNN that has been

pre-trained. In many previous approaches, the

accepted strategy has been “pruning followed by

training”, which imposes an additional retraining

phase to recover the accuracy degradation caused

by pruning. The simplest algorithm that takes into

account this issue and eliminates the fine-tuning

phase is [66]. It randomly applied three

compression criteria during network training: l1-

norm, random selection, and filter activation. In

other words, filter pruning was performed without

a specific metric and based solely on one of the

aforementioned criteria. In light of the simulation

results presented in [66], the l1-norm is the

optimal network compression criterion. In [67], an

online assessment algorithm was proposed that

selected a set of criteria before and during training

based on cost function distribution on a selected

criteria space, with specific criteria for filter

pruning being selected in each layer. Online

network compression was performed in [39, 68]

with no regard to the network’s cost function. In

[39], random gates were used to prune the filter

channels until the intended FLOP was reached. In

[68], scale factors were introduced and used

during training to reduce filter values selectively

and to ultimately eliminate them from the

network. Two distinct modules were presented in

[69], and the algorithm alternates between pruning

and recovery. However, [69] does not eliminate

the fine-tuning phase; rather, it combines the fine-

tuning phase with pruning.

3. Proposed Algorithm

As depicted in Figure 1, we divided network

training into three distinct phases. During the train

startup phase, network initialization and partial

convergence of filters to the intended task occur.

In the second phase, which we refer to as the

“Structure Evaluation and Change Phase,”

AdapNet execution commences. Upon the

termination of the second phase, the third phase

commences, during which the network’s structure

is maintained, and fine-tuning occurs. In the first

and third phases of all simulations, we employ 50

and 10 epochs, respectively.

Figure 1. Division of training in AdapNet

The input to AdapNet is a CNN with n layers and

with ki filters in layer i. During network training,

ICs are extracted and filter evaluation is

performed; decisions are subsequently made

regarding the removal, merge or insertion of new

filters in each layer. Only during the “Structure

Evaluation and Change” phase do layer structure

modifications and the number of filters increase or

decrease. We introduce “Layer Structure

Evaluation and Change Period” (LSEP) as a set of

α consecutive batches. At each LSEP, evaluation

and structure change are performed on each layer.

After each evaluation and potential change in the

layer structure, training continues with the number

of LSEP batches without any changes in the

network structure; this is illustrated in Figure 2.

Figure 2. Training process phases in AdapNet

If fewer than k filters are pruned during n

consecutive LSEPs, AdapNet terminated and the

fine-tuning phase initiated. In all simulations, we

set n=2 and k=3. However, in extreme

circumstances, we can set k=0. Figure 3 portrays

the AdapNet filter evaluation phase pipeline that

will be described in the following sections.

In each layer l, the activation distribution matrix

of the filter is represented as
 , where F

is the number of filters and C is the number of

extracted ICs in layer l. The matrix

provides AdapNet with instructions for

removing/merging/inserting layer l filters. The

matrix
 is derived from

 (Raw FMDist). The only difference

between FMDist and RFMDist is in the number of

Fine Tune Structure Evaluation and Change Train Startup

All training epochs

Adaptive Pruning of Convolutional Neural Network

57

columns. FMDist selects several columns from

RFMDist (in implementation, only RFMDist is

maintained alongside an array of selected columns

index, which introduces the FMDist. To keep the

text straightforward, we refer to these two

matrixes separately).

Figure 3. AdapNet pipeline of filter evaluation phase.

Ct is the total number of recognized clusters in

layer l, while C is the total number of recognized

ICs in that layer. As illustrated by (1), we define

Pij as the normalized fire probability of filter i for

concept j.

[,] [,] / [,]P FMDist i i FMDist i j FMDist i jij i

(1)

Consequently, the row i of

demonstrates the activity distribution of the fitter

i on the recognized ICs in layer l. FMDists and

RFMDists receive training updates until the

second phase concludes. Changes to the filter

quantity of each layer will cause these two

matrices to be updated in accordance with the

layer’s structural changes. If new clusters are

identified in LSEP, new columns corresponding to

them will be added to the RFMDist, and if new

ICs are identified from newly inserted clusters,

new columns will be added to the FMDist.

Section 3.1 explains the algorithm used for

recognizing the IC from RFMDist clusters

(columns) that are added to the FMDist (selected

as the FMDist column). If ICs in FMDist columns

are deemed useless during network training, they

will be removed at the end of each epoch. In the

FMDist column, valueless ICs are detected with a

partially uniform distribution.

After new filter insertion or pruning/merging, the

number of rows in FMDist/RFMDist increases or

decreases in each LSEP. When the two filters Pix

and Pjx merged, the corresponding rows in

RMFDist were removed and a new row

corresponding to the new filter z with the value

 was inserted into RMFDist.

3.1. Intermediate concept detection

We argue that during network training, FMs are

derived from the union of low-dimensional sub-

spaces, which we refer to as the IC. We must learn

(in an unsupervised manner) an explicit non-linear

mapping of the FMs that is well-suited to a sub-

space we refer to as the IC sub-space. We employ

the method proposed in [64, 65], namely the

subspace clustering network, to accomplish this.

Deep autoencoders with a self-expressive layer

between the encoder and the decoder are proposed

in [64, 65] to mimic the self-expressiveness

property of data. We use the self-

expressiveness of FMs to generate an affinity

matrix and employ it in spectral clustering, which

leads to the emergence of an IC on the fly during

network training.

In (2), the determination of the self-

expressiveness coefficient matrix (C) is

formalized as an optimization problem [65].

1 2
(,) || || || ||1

2

22
|| ||

2

L C X X C pF

Z Z C Fe e

. .(() 0)s t diag c

(2)

where represents the data reconstructed by the

auto-encoder and

 is the self-

expressiveness term. Ideally, only if the

corresponding data points Xi and Xj are drawn

from the same sub-space (that we refer to as the

IC) [62]. As such, we can leverage the self-

expressiveness coefficient matrix C to construct

the affinity matrix for spectral clustering.

We employ the network architecture proposed for

the COIL100 dataset in [65], namely DSC-Net,

due to its generality and larger capacity. Using

buffered FMs in the layer, the DSC-Net was

trained for two epochs during each LSEP. The

network learns partially non-local representations

in the interior layers [70]. Hence, we utilize the

layer output FMs as a training dataset for DSC-

Net. DSC-Net training is conducted in every

LSEP; therefore, for each DSC-Net training, we

will have m training samples, as shown in (3).

(3)

After training DSC-NET, the affinity matrix is

extracted for use in spectral clustering, as posited

in [65]. In light of the fact that all training data

(FMs) are unavailable in each LSEP, we use

incremental k-means clustering [71] in spectral

clustering eigenspace to preserve the clustering

result of previous steps.

Based on the perturbation theory and spectral

graph theory, the eigengap heuristic is suggested

to calculate the optimal number of clusters [72,

m LSEP number of filters in layer

number of samples ineachbatch

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

58

73]. The optimal number of clusters can be

determined when the Laplacian (affinity) matrix is

approximately block-diagonal, which restricts the

Laplacian’s eigenvalue spectrum. The objective

is, therefore, to select the number of clusters k in

each layer such that all eigenvalues λ1, λ2, …, λk

of the Laplacian matrix are extremely small but

λk+1 is relatively large. Each cluster center has

corresponding columns in RFMDist, and

RMFDist[i,j] represents the frequency with which

filter i is clustered in cluster j. Each cluster

resulting from spectral clustering is a candidate

for the IC.

AdapNet prevents the overlap of ICs by utilizing

the IC’s boundary point as its margin during the

ICs extraction process. To find IC boundary

points, we employ the method proposed in [74].

Boundary points are data points at the margin of

densely distributed data, such as a cluster. [74] has

proposed the BORDER (BOundaRy points

DEtectoR) method for detecting such points.

BORDER utilizes the advanced database

technique Gorder kNN join and the unique

property of the reverse k nearest neighbor (RkNN)

to find boundary points.

Algorithm 1 presents the new IC detection

process.

Any cluster will be selected as an IC if (1) its

filter activation distribution is not uniform and (2)

the distance between its center and the boundary

points of the nearest IC is greater than 75% (we

reach empirically to this number) of the distance

between the center of the nearest IC and its

boundary points. We utilize chi-square

distribution to measure the uniformity of filter

activation in FMDist, and parameter β is defined

as a threshold for detecting non-uniformity.

3.2. Filter pruning and merging

The invariance in a deep neural network is

equivalent to the minimality of the representation

it computes. Therefore, minimizing the network

layer by eliminating or merging ineffective filters

reduces the network’s computational and

maintenance costs and increases its generalization

[75]. Our intent in filter pruning and merging is to

minimize the network layer size while

maintaining the desired accuracy threshold.

Two criteria that can be used to evaluate each

layer’s filters are their relative information and

diversity. These two criteria align with the

concept presented in determinantal point

processes [42, 76]. Consequently, we consider

redundancy in the following two cases: 1. A filter

is relatively valueless in its layer and for the

successive layers, and 2. Other filters can mimic

a filter’s functionality in the subsequent layers.

These two criteria must be evaluated

independently. To evaluate filter value based on

the first criterion, we examine the filter activity

distribution in FMDist. Thus such filters are

candidates for pruning if there is no statistically

significant filter activity distribution on ICs based

on the chi-square test and if the distribution is

partially uniform. However, individual filters

within and across layers play different roles in the

network. Therefore, in addition to activity

distribution, we measure the importance of the

candidate filter from the perspective of the

subsequent layer before pruning it. In order to

accomplish this, we employ kernel sparsity and

entropy (KSE) [61], as an indicator that represents

the sparsity and information richness of FMs in a

feature-agnostic manner. However, here only the

information richness of the selected feature map

from the perspective of the subsequent layer is

essential; therefore, we set the sparsity parameter

 in the KSE indicator () to 1 in (4).

The KSE indicator determines whether a

particular filter transmits valuable data to the

subsequent layer. Thus, if the KSE of a pruning

candidate filter is below a certain threshold (we

empirically reach a 60% KSE threshold), it will

continue to be considered a pruning candidate.

Inspired by [22], we employ soft filter pruning to

avoid sudden model capacity reduction and

unrecoverable information loss. Consequently, the

intended filter will not be updated during the

subsequent LSEP and will be physically removed

(hard pruned) at the beginning of the subsequent

LSEP. Algorithm 2 describes the identification of

candidate filters for pruning.

Algorithm 1. Intermediate Concept Detection
Input:

//columns of FMDist
C ={cluster centers currently selected as the IC in layer l}

//cluster centers that are candidate to be intermediate

concepts

S = {Ct} – {C}

Foreach(Ci in S){

 if(chi-square(RMFDist∗Ci
 < β){

 Find Sj ∈ C such that ||Sj Ci|| is min.

 k= sqrt(|{feature maps clustered in Sj}|)
 For all feature maps clustered in Sj calculate RkNN set.

 Border_Point ={ points that have 20% min(|RkNN|) }

 if(||Ci {Border_Point} || > 0.75 ||Sj {Border_Point}||)
 {insert Ci to C} }

Adaptive Pruning of Convolutional Neural Network

59

On the basis of the second criterion, cosine

similarity and filter activity distribution are

utilized to select merging candidates. The cosine

similarity matrix of each layer’s FMs is calculated

until the end of the second phase of network

training. This matrix is reset in every LSEP and

always contains the average cosine similarity of

each layer’s FMs. As merging candidates, filters

with a cosine similarity greater than the specified

threshold and a similar distribution in FMDist will

be identified. In merging, the cosine similarity

threshold is set at twice the average cosine

similarity. Moreover, the Chebyshev distance is

used to measure the differences in distribution

between two marked filters. Two merged filters

are removed from the network, and a new filter

with the average of their values is added to both

the network and RFMDist. The merging of filters

is described in Algorithm 3.

3.3. New filter insertion

FMDist must be diagonal in the optimal state. If

this is the case, its rows are linearly independent

and span the space of each layer’s IC. If we

identify a semi-block diagonal matrix similar to

FMDist, then the block size and the number of

non-zero items in the off-block diagonal item of

that matrix can be utilized to determine whether or

not the existing filters can code ICs in

corresponding layer. Because of the high

processing cost, it is not plausible to identify a

similar semi-block diagonal matrix with an

unknown number/size of blocks during network

training. Therefore, we suffice to Algorithm 4 for

determining whether or not a new filter is required

in a specific layer. Our intuition suggests that 70%

of each filter’s activation should be focused on

30% of detected ICs in each layer; otherwise, the

deviation value reveals the demand score for a

new filter. To accomplish this, we use the largest

gap in the normalized value of each filter

activation in FMDist and divide the ICs of each

filter into active and inactive groups. For each

filter, two parameters are calculated, the positive

value of which indicates the demand for a new

filter. The parameter P1 monitors the number of

elements in the active set that must be

smaller than 30% of all ICs, whereas the

parameter P2 represents the total score in the

active set that must be greater than 0.7. We

empirically determine these numbers and

incorporate them into Algorithm 4.

New filter initialization builds on the

results reported in [77]. One filter with P1>0 or

P2>0 is randomly selected as the master filter.

Based on a specific correlation with the master

filter, a new filter is generated. The network is

divided into four sections to determine

the correlation type. The position of the intended

layer determines the correlation type between the

new filter and the master filter. According to [77],

the correlation between the new filter and the

master filter for the first quarter layers (the first

section) is inverse, whereas a rotary correlation

holds in the second quarter. Scaling and

translational correlation are the topics of the next

two sections. During the next two LSEP, the new

filter will not become a pruning/merging

candidate.

,
() ker [61],

; ,

1, 1
1

() (), ,
log

21

(),
1

i c
dm W sumof similarity for nelWi c

N number of filter W channel cof filter ii c

scv where sc c
ec

dm w dm wN i c i c
ec

d di c c

N
d dm w d used to normalize dmc ci c

i

(4)

Algorithm 2. Filter Pruning

Input:

 FMDistl = layer FMDist matrix

 Г1 = KSE threshold
Foreach (row i in FMDist) {

 if(chi-square(FMi) > 𝛽 and KSE(FMi) < Г1){
Select FMi as a candidate filter to freeze in the next LSEP
and hard prune afterward}}

Algorithm 3. Filter Merging
Input:

 FMj = Candidate filter to merge

 Г3 = Chebyshev Distance threshold

 Г = 2× mean_cosine_similarity//Cosine Similarity threshold
Foreach (row i in FMDistl) {

 if(Mean Cosine Similarity(FMi,FMj) > Г and

 Chebyshev Distance(FMi,FMj) < Г3)
{FMi and FMj merged}}

Algorithm 4. Determine the necessity for new filter

 insertion to layer l
Input:

 FMDistl = FMDist matrix of layer l with normalized rows

 n=number of intermediate concepts (column count of FMDist)
 P1t = P2t = 0

foreach (row i in FMDistl) {

 Sort row items of FMDist and use the largest gap as the
 divider to split row items into an Active and Inactive set.

 𝑃1 𝐀𝐜𝐭𝐢𝐯𝐞 𝑛 .3

 𝑃 .7 𝐴𝑐𝑡𝑖𝑣𝑒𝑖
𝑖

 P1=P1 / ((P1>0)? 0.7: 0.3) //normalize P1 in [-1,0] or [0,1]

 P2=P2 / ((P2>0)? 0.7: 0.3) //normalize P2 in [-1,0] or [0,1]
 P1t=P1t+P1

 P2t=P2t+P2}

 if(P1t>0 or P2t>0) {insert new filter to layer l}

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

60

4. Simulation Results

We evaluate AdapNet using four network

architectures: VGG11 [14], AlexNet [13],

ResNet50 [16], and a network architecture

displayed in Table 1 that inspired by [56,78],

which we dub as Net2. The Net2 architecture

adheres to the design philosophy of the VGG

network.

Simulations on two benchmark data-sets, the

mainstream dataset CIFAR-10 [79] and the more

challenging dataset CIFAR-100 [79] demonstrate

that our method outperforms the current methods.

CFAR10 contains 32×32 images from 10 classes,

50,000 training images, and 10,000 test images,

whereas CFAR100 is identical to CFAR10 except

that it contains 100 classes.

Except for the number of startup epochs, which is

20 for Net2 (due to the naive architecture of Net2,

20 epochs were used for it; increasing this

parameter did not improve the result) and 50 for

other networks, all simulations were conducted

with the same hyperparameter settings, as

summarized in Table 2.

We employ stochastic gradient descent with the

following parameters: a batch size of 128, weight

decay of 0.01, a momentum of 0.8, and LSEP of

150. Every 15 epochs, the initial learning rate of

0.025 is divided by 2. Training is performed on an

Nvidia rtx3090, and gradient accumulation is

utilized due to GPU memory limitations. Instead

of updating the network weights after each batch,

gradient values are saved, the next batch is

processed, and the new gradients are added. The

weight update is then performed only after the

model has processed multiple batches.

The results of training Net2 with AdapNet are

displayed in Table 3.

Figure 4 depicts the architecture of Net2 after

training with AdapNet. On the basis of the Net2

architecture after AdapNet pruning (Figure 4), it is

evident that the pruning ratio decreases as we

approach the last network layer.

This indicates the extraction of numerous ICs as

we progress to the deeper network layers, given

the initial architecture of Net2 (Table 1), which

consists of an equal number of filters in all

network layers. It is known that

CNNs extract new abstract features based on

previously extracted ones. Consequently, more

valuable ICs were extracted by AdapNet in the

deeper layer as is evident from the simulation

results of Net2.

Table 3. Result of training Net2 with AdapNet.

(Top1: the model answer must be exactly the expected answer,
Top2: any of your model 2 highest probability answers must

match the expected answer)

Dataset CFAR10 CFAR100

Train Acc (%) 82 79

Top1 Acc. (%) 69 64

Top2 Acc. (%) 84 73

Prune Ratio (%) 88 89

Num of Epoch (#) 50 41

Table 2. AdapNet Hyperparameters.

β initialize to 0.9, at each 5 epochs decrease 0.06 until

Min. value: 0.18

Γ1 (KSE threshold) 0.6

Γ3 (Chebyshev distance threshold) 0.8

Table 1. Initial Architecture of Net2.

Type Kernel Output

Conv,BatchNorm,ReLU 5×5 256×60×60

Conv,BatchNorm,ReLU 5×5 256×56×56

Conv,BatchNorm,ReLU 5×5 256×52×52

Conv,BatchNorm,ReLU 3×3 256×50×50

Conv,BatchNorm,ReLU 3×3 256×48×48

Conv,BatchNorm,ReLU 3×3 256×46×46

Conv,BatchNorm,ReLU 3×3 256×44×44

Conv,BatchNorm,ReLU 3×3 512×42×42

Conv,BatchNorm,ReLU 3×3 512×40×40

Conv,BatchNorm,ReLU 3×3 512×38×38

Conv,BatchNorm,ReLU 3×3 512×36×36

Conv,BatchNorm,ReLU 3×3 512×34×34

MaxPool 2×2 512×17×17

Linear,BatchNorm,ReLU - 147968×512

DropOut,Liner,BatchNor - 512×512

ReLU,Linear - 512× #class

Type Kernel Output Type Kernel Output

conv 5*5 64/64/129 conv 5*5 64/64/127

conv 5*5 64/64/142 conv 5*5 64/64/198

conv 5*5 64/64/173 conv 5*5 64/64/214

conv 3*3 32/32/173 conv 3*3 32/32/214

conv 3*3 32/32/214 conv 3*3 32/32/251

conv 3*3 32/32/236 conv 3*3 32/32/249

conv 3*3 32/32/236 conv 3*3 32/32/255

conv 3*3 32/32/298 conv 3*3 32/32/327

conv 3*3 32/32/318 conv 3*3 32/32/347

conv 3*3 32/32/318 conv 3*3 32/32/347

conv 3*3 32/32/324 conv 3*3 32/32/452

conv 3*3 32/32/341 conv 3*3 32/32/468

(a) (b)

Figure 4. Architecture of Net2 After training with

AdapNet on CFAR10 (a), CFAR100 (b).

Adaptive Pruning of Convolutional Neural Network

61

Tables 4, 5, and 6 present the results of training

VGG11, AlexNet, and ResNet50 with AdapNet,

respectively. The number of epochs in the

“Structure Evaluation and Change Phase”

(AdapNet’s second phase) is indicated in column

“Num of Epoch”. This number must be increased

by 60 epochs to account for startup and fine-

tuning.

5. Discussion and Analysis

 It is difficult to compare the results of

pruning algorithms because there is no
standard methodology [21]; AdapNet is

no exception. However, AdapNet’s prune

ratio falls within an acceptable range.

Tables 7, 8, and 9 provide a comparison

of AdapNet results for VGG11,

ResNet50, and AlexNet on CFAR10 with

those of other algorithms.

Based on comparisons summarized in

tables 7, 8, and 9, AdapNet has a

remarkable prune ratio and accuracy

relative to other algorithms.

 Due to the high computational cost of

AdapNet’s epoch (during pruning) in

contrast to other algorithms. Thus, relying

only on the number of epochs is not a

proper measure to compare the speed of

AdapNet with others. However, the

epoch number of AdapNet is about four

times less than other algorithms (Table 7).

Extant pruning algorithms require a

completely pre-trained network at the

outset and extensive fine-tuning epochs at

the conclusion. AdapNet requires only a

small number of epochs during startup

and fine-tuning. In all simulations, we

used 50 (20 for Net2) epochs at the

startup phase and only 10 epochs in the

fine-tuning. So, overall AdapNet achieves

the resultant network faster than other

algorithms.

 Filter evaluation methods in the existing

pruning algorithms can be categorized

into two approaches: (1) evaluation based

on filter value in its layer, and (2)

evaluation based on the filter’s utility for

the next layer. Given that both approaches

are valid, the filter in its layer has a

particular value according to the

information it extracts. It also has a

Table 4. Result of training VGG11 with AdapNet.

Dataset CFAR10 CFAR100

Train Acc. (%) 93 87

Top1 Acc. (%) 88 85

Top2 Acc. (%) 92 90

Prune Ratio (%) 87 79

Num of Epoch (#) 53 49

Table 5. Result of training AlexNet with AdapNet.

Dataset CFAR10 CFAR100

Train Acc. (%) 86 82

Top1 Acc. (%) 84 79

Top2 Acc. (%) 89 81

Prune Ratio (%) 81 78

Num of Epoch (#) 52 32

Table 6. Result of training ResNet50 with AdapNet.

Dataset CFAR10 CFAR100

Train Acc. (%) 92 91

Top1 Acc. (%) 89 87

Top2 Acc. (%) 94 89

Prune Ratio (%) 89 59

Num of Epoch (#) 49 29

Table 7. Comparison of AdapNet and some other

algorithms for VGG11 on CFAR10.

Algorithm Epoch
Batch
size

Prune
ratio(%)

Acc.
(%)

HRank [80] 330 128 82 92

LDFM [81] 160 128 87 93

Zaho et al. [82] 300 256 73 93

SSS [83] 240 64 73 93

AdapNet 53 128 87 92

Table 8. Comparison of AdapNet and some other

algorithms for RestNet50 on CFAR10.

Algorithm Epoch
Batch

size

Prune
ratio

(%)

Acc.

(%)

HRank [80]

for each
layer, retrain

for 30 epochs

after pruning

128 68 93

NISP [84]

50 epochs
fine tuning

required after

pruning

- 87 93

He et al. [85] 150 128 - 91

Li et al. [61] 220 128 65 76

AdapNet 49 128 89 94

Table 9. Comparison of AdapNet and some other

algorithms for AlexNet on CFAR10.

Algorithm Epoch
Batch

size

 Prune

ratio
(%)

Acc. (%)

NISP [84]

90 epochs

fine tuning

required
after

pruning

-

75 85

DENNC
[86]

40 epochs
fine tuning

required

after
pruning

-

40
12%

decreased

AdapNet 52 128 81 89

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

62

special value according to the information

extracted by it that the next layer uses. In

AdapNet novel method is suggested,

which is the combination of these two

approaches. In this way, the filter

evaluation method of AdapNet is more

precise than the current pruning

algorithm. The accuracy of AdapNet in

filter evaluation led to the remarkable

prune ratio and high accuracy of the

resultant network.

 In addition to filter pruning, AdapNet

merges similar filters using cosine

similarity. On the other hand, if two filters

have similar content and stimulations on

ICs, regardless of filter evaluation,

AdapNet merges them and generates a

single filter. This allows AdapNet to

achieve a higher pruning ratio than

competing algorithms. To test the impact

of the merge module in AdapNet, we

disabled it and ran AdapNet without

merging on VGG11. Table 10 presents

the results of this simulation. A notable

issue is that the prune ratio decreased by

approximately 6%. In other words, nearly

6% of AdapNet’s pruning power can be

attributed to filter merging.

 AdapNet does not immediately prune

filters with a low score that it identified.

These filters are frozen during the

subsequent LSEP, and their information

is moved to other filters. Lastly, they are

pruned at the beginning of the subsequent

LSEP. In this way, AdapNet prevents

irrecoverable information loss caused by

filter pruning, a prevalent problem in

many extant algorithms.

This approach maintains the network’s

accuracy during training, and the resulting

network is more accurate than other

algorithm outcomes. On the basis of

simulation results, the effectiveness of

filter freezing is evident. To test it, we

turned off filter freezing and ran AdapNet

on VGG11. The outcome of this

simulation is provided in Table 11. Based

on this simulation, the prune ratio remains

nearly unchanged, whereas network

accuracy decreases by approximately 3%.

This result demonstrates the effect of soft

pruning on the transfer of knowledge

from candidate pruning filters to other

filters prior to hard pruning.

 AdapNet evaluates the required capacity

of each layer according to the extracted
ICs on that layer. If filters of the layer are

not sufficiently able to discriminate

extracted ICs of that layer, a new filter

with a specific correlation is inserted into

that layer. The insertion of a new filter

with a specific correlation accelerates

training and enhances the network’s

accuracy. Our intuition is that the new

filter correlation is what the network will

learn with stochastic gradient descent in

future epochs; however, we provide it to

the network early enough. This strategy

accelerates AdapNet achievement for the

final network. To test the effects of the

new filter insertion, we disabled the filter

insertion module and ran AdapNet on

VGG11. The results of this simulation are

presented in Table 12. The network’s

accuracy and prune ratio decreased

according to simulation results, while the

number of epochs increased. This

finding can be interpreted as AdapNet

ignoring the pruning of valueless filters

due to high KSE and non-uniform

distribution on ICs as a consequence of

not inserting new filters.

 AdapNet trains the DSC-Net network in

two epochs for each LSEP in order to

extract the affinity matrix. Spectral

clustering is performed on the basis of the

Table 10. Result of AdapNet on VGG11 without filter

merging.

Dataset CFAR10 CFAR100

Train Acc (%) 95 86

Top1 Acc. (%) 89 84

Top2 Acc. (%) 93 91

Prune Ratio (%) 80 75

Num of Epoch (#) 60 53

Table 11. Result of AdapNet on VGG11 without soft

pruning.

Dataset CFAR10 CFAR100

Train Acc (%) 94 87

Top1 Acc. (%) 85 86

Top2 Acc. (%) 90 87

Prune Ratio (%) 87 80

Num of Epoch (#) 54 48

Table 12. Result of AdapNet on VGG11 without

new filter insertion.

Dataset CFAR10 CFAR100

Train Acc (%) 93 94

Top1 Acc. (%) 88 89

Top2 Acc. (%) 91 90

Prune Ratio (%) 81 74

Num of Epoch (#) 61 68

Adaptive Pruning of Convolutional Neural Network

63

extracted affinity matrix, and AdapNet

must retain the clustering result and

RFMDist matrix until the algorithm’s

termination. Therefore, compared to other

methods, AdapNet requires more memory

and processing power. Nevertheless, the

high execution cost of AdapNet is

justifiable in light of the necessity of a

pretrained network and the large number

of fine-tuning epochs required by other

algorithms.

 Based on the simulation results, there is a

minor difference between train and test

accuracy in the AdapNet resultant

network, which may suggest that

AdapNet precludes overfitting during

pruning. This issue is related to the

independence of AdapNet from

backpropagation. AdapNet operates based

on the extracted deep representation that

we refer to as ICs. At the beginning of

each epoch, worthless ICs are detected

and eliminated from FMDist based on the

filter’s activation distribution on ICs.

AdapNet maintains the proper distance

between extracted ICs and discourages

overlap based on extracted IC boundary

points. Therefore, AdapNet prevents

overfitting during pruning by eliminating

ineffectual ICs and preventing IC overlap.

 When the training dataset contains

numerous classes, multiple clusters and

ICs are identified. As a result of the

extraction of numerous useful ICs, the

prune ratio is low, as demonstrated in

Tables 4 and 6 for CFAR100.

 There is a tension between batch size and

the speed and stability of the learning in

model training. Regardless of the effect

that the batch size has on network

training, different batch size in AdapNet

has an impact on ICs extraction. AdapNet

utilizes incremental k-means clustering in

ICs extraction. If incremental k-means

clustering converges to the same solution

despite different batch sizes, then the

batch size has minor to no effect on

AdapNet’s result. However, the result of

k-means won’t necessarily be the same in

each run. Depending on the initial

centroid and the order of training data k-

means will converge to different

solutions. Thus, due to the non-

deterministic behavior of k-means, the

definite and noteworthy effect of batch

size in the result of AdapNet is not

expected. To inspect we conducted a

simulation with different batch sizes that

result reported in Table 13. Decreasing

the batch size led to an increase in noise

effect in k-means clustering and

instability in ICs extraction, and this led

to a decline in the prune ratio and growth

epoch number, as presented in Table 13.

Due to the impact of batch size in the

training process, the attribution of all

variations to ICs extraction of AdapNet

maybe not be sound. However, based on

simulation result decreasing the batch size

to 16 has destructive effect on AdapNet.

6. Conclusion and future works

The proposed algorithm is a step toward

eliminating trial and error from the CNN

architecture design process. We compared our

algorithm’s results with those of

pruning/compression algorithms. In contrast to

many current pruning methods, the proposed

algorithm operates online and has three significant

improvements from existing algorithms: (1) filter

evaluation is based on the combination of filter

profit in its layer and the next layer; (2) similar

filters are merged to compress the layer if certain

conditions are met; and (3) network layer capacity

is evaluated during pruning, and if a new filter is

required, it is inserted into the layer. The

simulation results demonstrate the algorithm’s

effectiveness. Our algorithm achieves a higher

prune ratio and accuracy, as well as a quicker

network formation.

For a future version of the algorithm, we consider

three challenges: (1) determining the optimal filter

size based on FMs’ entropy; (2) dynamically

varying the number of batches in LSEP and,

thereby, enhancing the algorithm’s speed and its

filter evaluation accuracy, and (3) evaluating the

impact of the filter in the last network layer.

Conflicts of interest

The authors declare that they have no conflicts of

interest to report regarding the present study.

Table 13. Result of AdapNet on VGG11

(CFAR10) with different batch size.

Batch size 16 32 64 128

Train Acc (%) 89 93 92 93

Top1 Acc. (%) 84 82 89 88

Top2 Acc. (%) 86 88 90 92

Prune Ratio (%) 63 88 86 87

Num of Epoch (#)
Manually

terminated

in 100

86 61 53

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

64

References
[1] N. Elyasi and M. Hosseini Moghadam,

“Classification of Skin Lesions by Tda Alongside

Xception Neural Network,” J. AI Data Min., vol. 10,

no. 3, pp. 333–344, 2022.

[2] F. Salimian Najafabadi and M. T. Sadeghi,

“AgriNet: a New Classifying Convolutional Neural

Network for Detecting Agricultural Products’

Diseases,” J. AI Data Min., vol. 10, no. 2, pp. 285–302,

2022.

[3] R. Ranjan, V. M. Patel, and R. Chellappa,

“HyperFace: A Deep Multi-Task Learning Framework

for Face Detection, Landmark Localization, Pose

Estimation, and Gender Recognition,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 41, no. 1, pp. 121–135,

Jan. 2019.

[4] H. Filali, J. Riffi, I. Aboussaleh, A. M. Mahraz, and

H. Tairi, “Meaningful Learning for Deep Facial

Emotional Features,” Neural Process. Lett. 2021, pp.

1–18, Sep. 2021.

[5] M. Alam, J.-F. Wang, C. Guangpei, L. Yunrong,

and Y. Chen, “Convolutional Neural Network for the

Semantic Segmentation of Remote Sensing Images,”

Mob. Networks Appl. 2021 261, vol. 26, no. 1, pp. 200–

215, Feb. 2021.

[6] J. Guo, J. Yang, H. Yue, H. Tan, C. Hou, and K. Li,

“CDnetV2: CNN-Based Cloud Detection for Remote

Sensing Imagery with Cloud-Snow Coexistence,”

IEEE Trans. Geosci. Remote Sens., vol. 59, no. 1, pp.

700–713, Jan. 2021.

[7] X. Zhang, G. Chen, K. Saruta, and Y. Terata, “A

Guideline for Object Detection Using Convolutional

Neural Networks,” Lect. Notes Electr. Eng., vol. 572

LNEE, pp. 157–164, 2020.

[8] BoukercheAzzedine and HouZhijun, “Object

Detection Using Deep Learning Methods in Traffic

Scenarios,” ACM Comput. Surv., vol. 54, no. 2, Mar.

2021.

[9] P. Wang, Q. Wu, C. Shen, A. Dick, and A. Van

Den Hengel, “FVQA: Fact-Based Visual Question

Answering,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 40, no. 10, pp. 2413–2427, Oct. 2018.

[10] N. Takahashi, M. Gygli, and L. van Gool,

“AENet: Learning Deep Audio Features for Video

Analysis,” IEEE Trans. Multimed., vol. 20, no. 3, pp.

513–524, Mar. 2018.

[11] N. Kruger et al., “Deep hierarchies in the primate

visual cortex: What can we learn for computer

vision?,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

35, no. 8, pp. 1847–1871, 2013.

[12] Y. Bengio, “Learning Deep Architectures for AI,”

Found. Trends® Mach. Learn., vol. 2, no. 1, pp. 1–

127, Nov. 2009.

[13] KrizhevskyAlex, SutskeverIlya, and H. E.,

“ImageNet classification with deep convolutional

neural networks,” Commun. ACM, vol. 60, no. 6, pp.

84–90, May 2017.

[14] S. Liu and W. Deng, “Very deep convolutional

neural network-based image classification using small

training sample size,” Proc. - 3rd IAPR Asian Conf.

Pattern Recognition, ACPR 2015, pp. 730–734, Jun.

2016.

[15] C. Szegedy et al., “Going deeper with

convolutions,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 07-12-June-2015,

pp. 1–9, Oct. 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

vol. 2016-December, pp. 770–778, Dec. 2016.

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.

Weinberger, “Densely connected convolutional

networks,” Proc. - 30th IEEE Conf. Comput. Vis.

Pattern Recognition, CVPR 2017, vol. 2017-January,

pp. 2261–2269, Nov. 2017.

[18] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu,

“Object Detection with Deep Learning: A Review,”

IEEE Trans. Neural Networks Learn. Syst., vol. 30, no.

11, pp. 3212–3232, Nov. 2019.

[19] T. Choudhary, V. Mishra, A. Goswami, and J.

Sarangapani, “A comprehensive survey on model

compression and acceleration,” Artif. Intell. Rev. 2020

537, vol. 53, no. 7, pp. 5113–5155, Feb. 2020.

[20] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J.

Guttag, “What is the State of Neural Network

Pruning?,” Proc. Mach. Learn. Syst., vol. 2, pp. 129–

146, Mar. 2020, Accessed: Sep. 29, 2021. [Online].

Available: https://github.com/jjgo/shrinkbench.

[21] X. Chen, J. Mao, and J. Xie, “Comparison

Analysis for Pruning Algorithms of Neural Networks,”

Proc. - 2021 2nd Int. Conf. Comput. Eng. Intell.

Control. ICCEIC 2021, pp. 50–56, 2021.

[22] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y.

Yang, “Asymptotic Soft Filter Pruning for Deep

Convolutional Neural Networks,” IEEE Trans.

Cybern., vol. 50, no. 8, pp. 3594–3604, Aug. 2020.

[23] L. Cai, Z. An, C. Yang, and Y. Xu, "Softer

Pruning, Incremental Regularization," in: Proc. 2020

25th International Conf. on Pattern Recognition

(ICPR), 2021, pp. 224-230.

[24] M. Mousa-Pasandi, M. Hajabdollahi, N. Karimi,

S. Samavi, and S. Shirani, "Convolutional Neural

Network Pruning Using Filter Attenuation," in: Proc.

2020 IEEE International Conf. on Image Processing

(ICIP), 2020, pp. 2905-2909.

[25] Z. Wang, C. Li, and X. Wang, “Convolutional

neural network pruning with structural redundancy

reduction,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., pp. 14908–14917, 2021.

Adaptive Pruning of Convolutional Neural Network

65

[26] PeiSongwen, WuYusheng, GuoJin, and

QiuMeikang, “Neural Network Pruning by Recurrent

Weights for Finance Market,” ACM Trans. Internet

Technol., vol. 22, no. 3, pp. 1–23, Jan. 2022.

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H.

P. Graf, “Pruning Filters for Efficient ConvNets,” in:

Proceedings of the 5th International Conf. on Learning

Representations (ICLR). Nov. 2017. Toulon, France.

[28] S. Han, J. Pool, J. Tran, and W. J. Dally,

“Learning Both Weights and Connections for Efficient

Neural Networks,” in Proceedings of the 28th

International Conference on Neural Information

Processing Systems - Volume 1, 2015, pp. 1135–1143.

[29] X. Liu, B. Li, Z. Chen, and Y. Yuan, “Exploring

Gradient Flow Based Saliency for DNN Model

Compression,” in Proceedings of the 29th ACM

International Conference on Multimedia, New York,

NY, USA: Association for Computing Machinery,

2021, pp. 3238–3246.

[30] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and

J. Kautz, “Importance estimation for neural network

pruning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2019-June, pp. 11256–11264,

Jun. 2019.

[31] C. H. Sarvani, M. Ghorai, S. R. Dubey, and S. H.

S. Basha, “HRel: Filter pruning based on High

Relevance between activation maps and class labels,”

Neural Networks, vol. 147, pp. 186–197, Mar. 2022.

[32] M. Soltani, S. Wu, J. Ding, R. Ravier, and V.

Tarokh, “On the information of feature maps and

pruning of deep neural networks,” Proc. - Int. Conf.

Pattern Recognit., pp. 6988–6995, 2020.

[33] C. Hur and S. Kang, “Entropy-based pruning

method for convolutional neural networks,” J.

Supercomput. 2018 756, vol. 75, no. 6, pp. 2950–2963,

Nov. 2018.

[34] Y. Si and W. Guo, “Application of A Taylor

Expansion Criterion-based Pruning Convolutional

Network for Bearing Intelligent Diagnosis,” 2020

Glob. Reliab. Progn. Heal. Manag. PHM-Shanghai

2020, Oct. 2020.

[35] C. Yu, J. Wang, Y. Chen, and X. Qin, “Transfer

channel pruning for compressing deep domain

adaptation models,” Int. J. Mach. Learn. Cybern. 2019

1011, vol. 10, no. 11, pp. 3129–3144, Sep. 2019.

[36] Z. Huang, L. Li, and H. Sun, “Global biased

pruning considering layer contribution,” IEEE Access,

vol. 8, pp. 173521–173529, 2020.

[37] B. Wang, F. Ma, L. Ge, H. Ma, H. Wang, and M.

A. Mohamed, “Icing-EdgeNet: A Pruning Lightweight

Edge Intelligent Method of Discriminative Driving

Channel for Ice Thickness of Transmission Lines,”

IEEE Trans. Instrum. Meas., vol. 70, 2021.

[38] T. Xu et al., “CDP: Towards Optimal Filter

Pruning via Class-Wise Discriminative Power,” in

Proceedings of the 29th ACM International Conference

on Multimedia, New York, NY, USA: Association for

Computing Machinery, 2021, pp. 5491–5500.

[39] Z. Chen, T. B. Xu, C. Du, C. L. Liu, and H. He,

“Dynamical Channel Pruning by Conditional Accuracy

Change for Deep Neural Networks,” IEEE Trans.

Neural Networks Learn. Syst., vol. 32, no. 2, pp. 799–

813, Feb. 2021.

[40] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari,

“Do Semantic Parts Emerge in Convolutional Neural

Networks?,” Int. J. Comput. Vis. 2017 1265, vol. 126,

no. 5, pp. 476–494, Oct. 2017.

[41] Y. Le Cun, Y. Le Cun, J. S. Denker, and S. A.

Solla, “Optimal Brain Damage,” Adv. Neural Inf.

Process. Syst., vol. 2, pp. 598--605, 1990, Accessed:

Sep. 18, 2022. [Online]. Available:

http://130.203.136.95/viewdoc/summary?doi=10.1.1.3

2.7223.

[42] Z. Wang, W. Hong, Y. P. Tan, and J. Yuan,

“Pruning 3D Filters for Accelerating 3D ConvNets,”

IEEE Trans. Multimed., vol. 22, no. 8, pp. 2126–2137,

Aug. 2020.

[43] Y. Zhang, Y. Yuan, and Q. Wang, “ACP:

Adaptive Channel Pruning for Efficient Neural

Networks,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP),

Apr. 2022, pp. 4488–4492.

[44] B. Zhou, D. Bau, A. Oliva, and A. Torralba,

“Interpreting Deep Visual Representations via Network

Dissection,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 41, no. 9, pp. 2131–2145, Sep. 2019.

[45] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and

Q. Tian, “Variational convolutional neural network

pruning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2019-June, pp. 2775–2784, Jun.

2019.

[46] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch,

and I. Fried, “Invariant visual representation by single

neurons in the human brain,” Nat. 2005 4357045, vol.

435, no. 7045, pp. 1102–1107, Jun. 2005.

[47] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B.

Zhou, and A. Torralba, “Understanding the role of

individual units in a deep neural network,” Proc. Natl.

Acad. Sci., vol. 117, no. 48, pp. 30071–30078, Dec.

2020.

[48] C. Li, M. Z. Zia, Q. H. Tran, X. Yu, G. D. Hager,

and M. Chandraker, “Deep Supervision with

Intermediate Concepts,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 41, no. 8, pp. 1828–1843, Aug.

2019.

[49] C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z.

Tu, “Deeply-Supervised Nets,” in Proceedings of the

Eighteenth International Conference on Artificial

Intelligence and Statistics, 2015, vol. 38, pp. 562–570,

[Online]. Available:

https://proceedings.mlr.press/v38/lee15a.html.

https://proceedings.mlr.press/v38/lee15a.html

Faez et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

66

[50] Z. Zhuang et al., “Discrimination-Aware Channel

Pruning for Deep Neural Networks,” in Proceedings of

the 32nd International Conference on Neural

Information Processing Systems, 2018, pp. 883–894.

[51] Z. Hou and S. Y. Kung, “A discriminant

information approach to deep neural network pruning,”

Proc. - Int. Conf. Pattern Recognit., pp. 9553–9560,

2020, doi: 10.1109/ICPR48806.2021.9412693.

[52] E. Saraee, M. Jalal, and M. Betke, “Visual

complexity analysis using deep intermediate-layer

features,” Comput. Vis. Image Underst., vol. 195, p.

102949, Jun. 2020.

[53] A. S. Morcos, D. G. T. Barrett, N. C. Rabinowitz,

and M. Botvinick, “On the importance of single

directions for generalization,” 6th Int. Conf. Learn.

Represent. ICLR 2018 - Conf. Track Proc., Mar. 2018.

[54] J. Ukita, “Causal importance of low-level feature

selectivity for generalization in image recognition,”

Neural Networks, vol. 125, pp. 185–193, May 2020.

[55] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A

discriminative feature learning approach for deep face

recognition,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9911 LNCS, pp. 499–515, 2016.

[56] H. Peng and S. Yu, “Beyond softmax loss: Intra-

concentration and inter-separability loss for

classification,” Neurocomputing, vol. 438, pp. 155–

164, May 2021.

[57] H. M. Yang, X. Y. Zhang, F. Yin, and C. L. Liu,

“Robust Classification with Convolutional Prototype

Learning,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., pp. 3474–3482, Dec. 2018.

[58] S. Son, S. Nah, and K. M. Lee, “Clustering

Convolutional Kernels to Compress Deep Neural

Networks,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

vol. 11212 LNCS, pp. 225–240, 2018.

[59] Z. Zhou, W. Zhou, H. Li, and R. Hong, “Online

Filter Clustering and Pruning for Efficient Convnets,”

Proc. - Int. Conf. Image Process. ICIP, pp. 11–15,

Aug. 2018.

[60] S. Yu, K. Wickstrom, R. Jenssen, and J. Principe,

“Understanding Convolutional Neural Networks with

Information Theory: An Initial Exploration,” IEEE

Trans. Neural Networks Learn. Syst., vol. 32, no. 1, pp.

435–442, Jan. 2021.

[61] Y. Li et al., “Exploiting kernel sparsity and

entropy for interpretable CNN compression,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 2019-June, pp. 2795–2804, Jun. 2019.

[62] E. Elhamifar and R. Vidal, “Sparse subspace

clustering: Algorithm, theory, and applications,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp.

2765–2781, 2013.

[63] B. McWilliams and G. Montana, “Subspace

clustering of high-dimensional data: a predictive

approach,” Data Min. Knowl. Discov. 2013 283, vol.

28, no. 3, pp. 736–772, May 2013.

[64] M. Liu, Y. Wang, and Z. Ji, “Self-Supervised

Convolutional Subspace Clustering Network with the

Block Diagonal Regularizer,” Neural Process. Lett.

2021, pp. 1–27, Aug. 2021.

[65] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid

“Deep Subspace Clustering Networks,” in:

Proceedings of the 31st International Conf. on Neural

Information Processing Systems. Curran Associates

Inc., Red Hook, NY, USA, 2017, pp 23–32.

[66] S. Roy, P. Panda, G. Srinivasan, and A.

Raghunathan, “Pruning Filters while Training for

Efficiently Optimizing Deep Learning Networks,”

Proc. Int. Jt. Conf. Neural Networks, Jul. 2020.

[67] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y.

Yang, “Learning Filter Pruning Criteria for Deep

Convolutional Neural Networks Acceleration,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., pp. 2006–2015, 2020.

[68] Z. Zhou, W. Zhou, R. Hong, and H. Li, “Online

Filter Weakening and Pruning for Efficient Convnets,”

Proc. - IEEE Int. Conf. Multimed. Expo, vol. 2018-

July, Oct. 2018.

[69] P. Singh, V. K. Verma, P. Rai, and V. P.

Namboodiri, “Acceleration of Deep Convolutional

Neural Networks Using Adaptive Filter Pruning,”

IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp.

838–847, May 2020.

[70] Y. Bengio, A. Courville, and P. Vincent,

“Representation learning: A review and new

perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 35, no. 8, pp. 1798–1828, 2013.

[71] B. Aaron, D. E. Tamir, N. D. Rishe, and A.

Kandel, “Dynamic incremental K-means clustering,”

Proc. - 2014 Int. Conf. Comput. Sci. Comput. Intell.

CSCI 2014, vol. 1, pp. 308–313, 2014.

[72] U. von Luxburg, “A tutorial on spectral

clustering,” Stat. Comput. 2007 174, vol. 17, no. 4, pp.

395–416, Aug. 2007.

[73] L. Rosasco, M. Belkin, and E. De Vito, “On

Learning with Integral Operators,” J. Mach. Learn.

Res., vol. 11, no. 30, pp. 905–934, 2010, Accessed:

Sep. 30, 2021. [Online]. Available:

http://jmlr.org/papers/v11/rosasco10a.html.

[74] C. Xia, W. Hsu, M. L. Lee, and B. C. Ooi,

“BORDER: Efficient computation of boundary points,”

IEEE Trans. Knowl. Data Eng., vol. 18, no. 3, pp. 289–

303, Mar. 2006.

[75] A. Achille and S. Soatto, “Emergence of

invariance and disentanglement in deep

representations,” 2018 Inf. Theory Appl. Work. ITA

2018, Oct. 2018.

Adaptive Pruning of Convolutional Neural Network

67

[76] L. Decreusefond, I. Flint, N. Privault, and G. L.

Torrisi, “Determinantal Point Processes,” Bocconi

Springer Ser., vol. 7, pp. 311–342, 2016.

[77] H. Wang, P. Chen, and S. Kwong, “Building

Correlations between Filters in Convolutional Neural

Networks,” IEEE Trans. Cybern., vol. 47, no. 10, pp.

3218–3229, Oct. 2017.

[78] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-

Margin Softmax Loss for Convolutional Neural

Networks,” in Proceedings of the 33rd International

Conference on International Conference on Machine

Learning - Volume 48, 2016, pp. 507–516.

[79] A. Krizhevsky and A. Krizhevsky, “Learning

multiple layers of features from tiny images,” 2009,

Accessed: May 10, 2022. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1

.1.222.9220.

[80] M. Lin et al., “Hrank: Filter pruning using high-

Rank feature map,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., pp. 1526–1535, 2020.

[81] H. Pan, Z. Chao, J. Qian, B. Zhuang, S. Wang, and

J. Xiao, “Network pruning using linear dependency

analysis on feature maps,” ICASSP, IEEE Int. Conf.

Acoust. Speech Signal Process. - Proc., vol. 2021-June,

pp. 1720–1724, 2021.

[82] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and

Q. Tian, “Variational convolutional neural network

pruning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2019-June, pp. 2775–2784, Jun.

2019.

[83] Z. Huang and N. Wang, “Data-Driven Sparse

Structure Selection for Deep Neural Networks,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 11220

LNCS, pp. 317–334, 2018.

[84] R. Yu et al., “NISP: Pruning Networks Using

Neuron Importance Score Propagation,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp.

9194–9203, Dec. 2018.

[85] Y. He, X. Zhang, and J. Sun, “Channel Pruning

for Accelerating Very Deep Neural Networks,” Proc.

IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp.

1398–1406, Dec. 2017.

[86] T. Wu, X. Li, D. Zhou, N. Li, and J. Shi,

“Differential Evolution Based Layer-Wise Weight

Pruning for Compressing Deep Neural Networks,”

Sensors 2021, Vol. 21, Page 880, vol. 21, no. 3, p. 880,

Jan. 2021.

 .2041سال ،اول شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده و همکاران فائز

 های عصبی کانولوشن هرس تطبیقی شبکه

 ۳بهروز معصومی و ،*۲کریم فائز، ۱سعید احمدلوئی

 .گروه مهندسی کامپیوتر و فناوری اطلاعات، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران ۳و۱

 .ایران تهران، مهندسی برق، دانشگاه صنعتی امیرکبیر،دانشکده ۲

 21/21/1411 پذیرش؛ 40/21/1411بازنگری؛ 24/24/1411 ارسال

 چکیده:

همرراه برا ها در مسائل دنیای واقع استفاده از این شبکهبا این وجود اند. بینایی ماشین کسب کرده های چشمگیری در حوزه های کانولوشن موفقیت شبکه

بررای هرا شربکه ایرن برای طراحی معماری ی روشدر حال حاضر (1،)مستلزم توان پردازشی و حافظه بالا است آنها(استفاده از 2دو چالش عمده است:)

بخشری چالش اول مطرح شده و نسبتا به نتایج رضرایت مواجه باها به عنوان راهکاری جهت کردن این شبکهسازی/هرس مسئله خاص وجود ندارد. فشرده

تروان . الگوریتم ارائه شده در این مقاله را مری های تکاملی ارائه شده است برخی الگوریتم صرفا چالش دوم تاکنون مواجه بایافته شده است. برای نیز دست

هرا از معیرار بابرت و از پریش پیشنهادی برای ارزیابی فیلتر هر دو چالش به صورت همزمان در نظر گرفت. در الگوریتم مواجه بابه عنوان راهکاری جهت

میزان مطلوبیرت فیلترر در ترکیب بر اساس شبکه طوریکه معیار ارزیابی فیلترها به صورت برخط در طی آموزش شود، به تعریف شده خاصی استفاده نمی

شرود. اضرافه مری هرا نیرز بره لایره گیرد. همچنین راهکار جدیدی پیشنهاد شده است که در صورت لزوم فیلتر جدیرد لایه خودش و لایه بعدی شکل می

هرای سرازی با انجام شبیه دهد. تشخیص مینیز بنابراین الگوریتم پیشنهادی صرفا یک الگوریتم هرس کردن نیست بلکه تعداد فیلترهای بهینه هر لایه را

های موجود، الگوریتم پیشنهادی بره دقرت پیشنهادی مورد ارزیابی قرار گرفته است. در مقایسه با روش الگوریتمکارکرد های مختلف متنوع روی معماری

در کرل الگروریتم ،دارد با توجه به همزمانی آموزش و هررس epochینه پردازشی بالاتری که در هر زرغم ه علی ، ویافته و نرخ هرس نسبتا بالاتری دست

 . دهد ه میئها شبکه نتیجه را ارا تمپیشنهادی سریعتر از سایر الگوری

 .سازی معماری تطبیقی، هرس کردن، فشرده های عصبی کانولوشن، شبکه :کلمات کلیدی

