

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 10, No. 4, 2022, 505-514.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Benefiting from Structured Resources to Present a Computationally Efficient

Word Embedding Method

Fatemeh Jafarinejad
*

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.

Article Info Abstract

Article History:
Received 14 July 2022

Revised 21 September 2022

Accepted 25 September 2022

DOI:10.22044/jadm.2022.12113.2362

 In the recent years, new word embedding methods have improved the

accuracy of NLP tasks. A review of the progress of these methods

shows that the complexity of these methods is growing. Therefore,

there is a requirement for methodological innovation to provide new

word embeddings. Most current word embedding methods use a large

corpus of unstructured data to train the word semantic vectors. The

main idea of this paper is to directly use the knowledge embedded in

the structure of structured data to introduce embedding vectors.

Therefore, the need for high processing power, large amount of

memory, and long processing time will be eliminated using structured

resources, and conceptual knowledge hidden in them. For this purpose,

a new embedding vector, Word2Node, is proposed. This method uses a

well-known structured resource, the WordNet, as its training corpus.

Our hypothesis is that it is possible to directly use the linguistic

knowledge lies in WordNet's graphical structure to provide accurate

and small embedding vectors. The evaluation of this method on the

text classification task has shown that the proposed method works the

same or better compared Word2Vec. This result has been achieved

while the amount of training data has decreased by about 50000000%.

Moreover, the comparison of the proposed method with some other

knowledge graph based embedding methods indicates the superiority

of the proposed method on the word semantic similarity task. These

results show the capacity of structured data to improve the quality of

existing word embedding methods and their resulting vectors.

Keywords:
Word Embeddings, WordNet,

Graph Embeddings, Node2Vec.

Word Semantic Similarity.

*Corresponding author:
jafarinejad@shahroodut.ac.ir (F.

Jafarinejad).

1. Introduction

Utilization of machine learning methods in

symbolic data structures (e.g. texts or graphs)

requires the use of methods to convert these data

structures into numerical data structures.

Embeddings are one of the common methods that

map the basic elements of their underlying system

(for example, words or phrases in text, and nodes

or edges in graph) to a point in an N-dimensional

vector space. Capability of coding the semantic

information of the basic elements and their

conceptual relationship (for example, synonymy

of words in a text or the adjacency of nodes in a

graph) while mapping to a compact

representation, has led to improved accuracy,

speed, and memory consumption of machine

learning models that use these vectors.

The word embedding methods have been shown

to be effective for improving the performance of

many tasks of Natural language processing (NLP).

SENNA [1], Word2Vec [2], GloVe [3], BERT

[4], RoBERTa [5], GPT-3 [6], and XLNet [7] are

some examples of word embedding methods.

Word embeddings have greatly improved the

accuracy of NLP tasks, so that nowadays, the best

systems in many tasks include these types of

information. Text classification [8], sentiment

analysis [9]–[11] machine translation (MT) [12],

text summarization [13], image captioning [14],

mailto:jafarinejad@shahroodut.ac.ir%20(F

Jafarinejad/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

506

and question answering [15] are some examples

of these NLP tasks.

However, reviewing the progress of embedding

methods shows that along with increasing the

accuracy of NLP tasks, the new embedding

methods have more and more training parameters.

This forces the embedding methods to require

larger training corpus, time and memory, and

consequently, more powerful and expensive

hardware for computation. Therefore, there is a

need for methodological innovation to suggest

strong and fast embedding methods.

Actually, the existing word embedding methods

use a large corpus of unstructured texts and ignore

the structure of input, if any. The novelty of this

article is to introduce a new paradigm for creating

word embeddings. The basic idea is to use the

structure of structured texts to present the

embedding vector, and thus reduce the size of the

training corpus, the number of training

parameters, training time, and memory.

We hypothesized that semantic information

encoded within the structured resources could

compensate for this data deficiency.

Albeit limited works have been done in literature

in the field of embedding information of

knowledge graphs (e.g. BabelNet [16], WordNet)

as synset embeddings [17]–[20]. AutoExtend [17]

finds the unknown WordNet synset embedding

vectors from the known word embedding vectors

of Word2Vec with huge computations using

machine learning methods. Denis et al. [18] uses

WordNet to proposed a synset embedding. They

proceed by constructing some different similarity

graphs over synsets using various synset similarity

algorithms [21]. Their method learns word

representation from synset embedding. Path2Vec

[19] uses graph distance measures to propose

node embeddings for WordNet nouns. Syn2Vec

[20] builds a large-scale synset graph using

different monolingual and cross-lingual

colexification graphs, popular embeddings. They

compute word embeddings from the embeddings

of synsets using various fusion approaches.

In this paper, WordNet as a structured data is used

for proposing a computationally efficient word

embedding and test the performance of the basic

hypothesis of the paper: graphical structure of the

WordNet includes valuable linguistic knowledge

that can be considered and not ignored to provide

cost-effective and small-sized embedding vectors.
To take advantage of this graph, we went to a

simple node embedding method, Node2Vec. Of

course, different types of graph embedding

methods can be used in this field. However, since

the Node2Vec algorithm utilizes the Word2Vec

method, by choosing this graph embedding

method, a significant round trip has been done

between the text and node embedding algorithms,

which will show the high power of combinability

of these methods together. Node2Vec generates

node embeddings by applying Word2Vec to the

corpus of graph random walks. Needless to say,

newer types of word embeddings can also be used

to construct node embedding using the corpus of

random walks.

In this paper, WordNet is considered as the input

graph. Words of WordNet are considered as nodes

of WordNet graph. Applying the Node2Vec

algorithm to this graph, suitable embeddings for

words will result.

The evaluation of the proposed approach in two

tasks of word similarity and text classification

shows the efficiency of this method and its

resulting embedding vector (named Word2Node)

in comparison to its embedded basic embedding

method (Word2Vec). Word2Node embedding

vector is trained on PC hardware with little

memory consumption in a short time.

Furthermore, benefiting from a smaller number of

elements in the embedding vector (70 instead of

300 elements in Word2Vec) will increase the

speed and decrease the training parameters of the

new embedding in the underlying machine

learning tasks that will use it. In this work, we will

analyze the efficiency of the proposed idea from

these perspectives, as well.

The structure of the paper is as what follows. In

Section 2, some theoretical backgrounds are

explained. Graph embedding methods, word

embeddings, and WordNet structure are briefly

discussed in this section. The third section

describes the proposed method. In Section 4, we

will evaluate the proposed method in two tasks:

word similarity and text classification. Lastly, we

will conclude and describe the future work in

Section 5.

2. Materials and Methods

2.1. Node embeddings

Graph embedding approaches, also known as

network representation learning, embed some

elements of the input graph (e.g. nodes [22], edges

[23] or the entire or sub-graph [24]) into a

continuous low-dimensional vector space. This

mapping should preserve network properties so

that, after an optimization step of the learned

embeddings, geometric relationships in the

embedding space reflect the structure of the

original network [25]. Learned embeddings are

then used as useful semantic-aware input to

machine learning algorithms. Different graph

Benefiting from Structured Resources to Present a Computationally Efficient Word Embedding Method

507

embedding approaches are categorized in [26] as:

geometric embeddings [27], stochastic and

probabilistic embeddings [22, 23], and neural

network embeddings [24, 25].

Utilizing adjacency matrix of the graph, matrix

factorization is one of the methods that can be

used for graph embedding [26, 27]. Another way

of thinking about graph embedding is to provide

closer embedding vectors (e.g. higher cosine

similarity) to similar element (e.g. nodes) of the

underlying graph (according to some criterion).

Adjacency-based similarity [22, 24, 28], multi-

hop similarity [32], and closeness in random

walks [23, 29] can be used in this regard to

measure similarity among nodes. Random walk-

based methods use some generated random walks

(with different strategies, e.g. DFS walks, BFS

walks or biased walks) to propose a node

embedding.

Node2Vec [29] is a node embedding method in

which Word2Vec [2] is applied to fixed-length

random walks of graph. To do this, originating

from each of the graph nodes, several biased

random walks are produced. Thereafter, set of all

walks are considered as sentences of a corpus

whose words are the node names. Applying

Word2Vec embedding on this corpus will result in

the embedding of corpus words (nodes of the

underlying graph). This method can be applied to

directed/undirected graphs with/without weights.

Walk length, number of walks of nodes, word2vec

sliding window size, and the vector size are the

hyper-parameters of this method.

2.2. Word embeddings

Compact representation of word embeddings

allows machine learning methods to be used faster

than spars matrices of one-hot or term frequency-

inverse document frequency (tf-idf)

vectorizations. Utilization of singular value

decomposition (SVD) on matrix of point wise

mutual information (PMI) or latent semantic

analysis (LSA) [36] was one of the earliest

methods to achieve this compact word

representation. SENNA [1] is one of the first

methods using neural networks to compute the

word embeddings. The basic idea of it was to

avoid task-specific man-made input features for

NLP tasks (including part-of-speech tagging,

chunking, named entity recognition, and semantic

role labeling). Instead, it learns internal word

representations on the basis of vast amounts of

mostly unlabeled training data. SENNA requires

about 200MB of RAM and should run on any

IEEE floating point computer
1
. Word2Vec [2]

uses a feed-forward neural network architecture

with one hidden layer. Its 300-dimensional

pretrained vector is trained on the Google News

dataset (about 100 billion tokens, and 3 million

word types). GloVe [3] learns to encode the

information of the probability ratio of word co-

occurrences in form of word vectors. It is trained

on Wikipedia 2014 + Gigaword5 (with 6B tokens,

400K vocab). BERT [4] uses a bidirectional

transformer to learn a language representation.

16GB of Books Corpus and English Wikipedia

are used as training corpus in BERT and training

time was 4 days using 4 TPU Pods.

Lately, several methods have been presented to

improve BERT on either its prediction metrics or

computational speed but not both. BERT uses

masked language model (MLM), where only the

masked tokens (15%) are predicted. To achieve

better performance, XLNet [7] introduces

permutation language modeling, where all tokens

are predicted in random order. XLNet uses a

larger data and more computational power to be

able to do so. Actually, it was trained with over

130 GB of textual data and 512 TPU chips

running for 2.5 days.

RoBERTa [5] introduces dynamic masking, so

that the masked token changes during the training

epochs. RoBERTa uses 160 GB of text for pre-

training, which is 1000% more data than the data

used in BERT. It uses 1024 V100 Tesla GPU’s

running for a day to get the pretrained embedding

vector.

Therefore, it seems that so far most of the

performance improvements of word embeddings

are either due to increased data, computation

power or training procedure. The need for faster

inference speed tends to a new embedding:

DistilBERT [37]. It uses the idea of distillation to

approximate BERT’s large neural network by a

smaller one. However, it needs BERT’s neural

network to be trained firstly. It only uses half the

number of BERT’s parameters but retaining 95-

97% performance of BERT in different

applications.

In this paper, we address the idea of utilizing

knowledge encoded in the structured data to faster

develop an embedding vector in a most memory

efficient manner.

2.3. Princeton WordNet

WordNets are one of the most important language

resources created in different languages. They are

1 https://ronan.collobert.com/senna/

Jafarinejad/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

508

structured data containing linguistic knowledge

such as set of words, synonyms, antonyms, and

taxonomic relations. In fact, the words, different

meanings of them, and the set of synonymous

words (synsets) can be considered as nodes of this

lexical network. Relations between words or

synsets form the edges of this graph, which

encodes high-level information of the underlying

language. Princeton WordNet [38] (simply called

WordNet in this paper) was the first WordNet

created for English. In WordNet, the relations

between nodes include two categories: lexical

relations (relations between words), and semantic

relations (relations between two sets of

synonymous words). Information related to words

(in the 4 syntactic categories of noun, verb,

adjective, and adverb) and their lexical relations

(e.g. antonymy and derivation) are coded in this

hyper-graph. Each word may have several senses

depending on its different meanings. A word

sense (or lemma) is a representation of one aspect

of different meanings of a word. Set of synonyms

form another important type of nodes in the

hyper-graph of WordNet, called Synsets.

A synset contains all of the word senses with a

specific meaning. Thus each synset has different

lemmas, and is identified by its most commonly

used lemma. Different types of semantic relations

including hypernymy, hyponymy, meronymy,

holonymy, and entailment form other types of

edges of WordNet graph connecting two different

synsets. Set of synsets and the most important

semantic relation between them (i.e. taxonomic

relations) form a lexical ontology of language.

Due to the high level linguistic information coded

in WordNet lexical network, this lexicology have

been used as one of the most important tools to

solve many high level semantic problems of

languages. Word sense disambiguation [39],

sentiment Analysis [40], information retrieval

[41], question answering [37, 38], word

embedding vector construction [44], and machine

translation [45] are some but not all applications

of the WordNets. In this work, graphic structure

of the Princeton WordNet is used to provide a

small-sized cost-efficient embedding for words of

language.

3. Theory and Calculations

3.1. Proposed idea

A review of the progress of word embedding

methods shows that the complexity of these

models, their training parameters, and therefore,

memory consumption grows increasingly.

Therefore, there is a need for methodological

innovation for presenting new word embedding

methodologies. We see that most current word

embedding methods use a large corpus of

unstructured data (and neglect corpus structural

information, if any) to train the semantic vectors

of words. The amount of corpus leads to more

memory consumption and training time. If we

could use a smaller corpus, the memory

consumption and the training time will be

reduced. The training corpus must contain some

semantic information, and the proposed

embedding method should use this semantic

information to compensate the issue of small

amount of training data. The basic hypothesis was

that structure of structured data can provide us

with this information. As a well-known structured

data utilizing from semantic knowledge of human

language, we went to WordNet. Therefore, the

need for strong hardware, large amount of

memory, and long processing time will be met

using structures and conceptual knowledge lies in

WordNet. In order to provide a novel word

embedding method, we construct a graph from

WordNet. By applying the Node2Vec algorithm

to the constructed graph we produce embeddings

for the graph nodes (i.e. all words of WordNet).

Therefore, we use Node2vec and Word2vec (that

lies in Node2Vec) embedding methods to evaluate

our idea of using semantic-aware training corpus

to train word embeddings in a simpler manner

(with less memory consumption and training

time). We evaluate the resulting word embedding

in two tasks and consider its effectiveness, while

using simple embedding methodologies. Note that

newer more powerful graph and word embedding

methods can be used in this regard. Nevertheless,

profit from small structured and semantic-aware

training corpus to reduce amount of required

processing power.

3.2. Methodology

The idea of using semantic-aware corpus to train

word embeddings simpler is addressed in the

previous section. Utilizing linguistic knowledge

encoded in WordNet, we evaluated this idea. We

need a method to benefit from this semantic

information. Algorithm 1 outlined the procedure

of resulting Word2Node embedding. Graphical

structure of WordNet leads us to use a graph

embedding technique (Node2Vec) in this regard.

Princeton WordNet 3.0 [38] (simply referred to as

WordNet) is used for this purpose. We firstly

construct a graph from WordNet. The nodes of

this graph correspond to the set of all words of the

WordNet. The edges of the graph also show the

direct/indirect relationships between the words.

By direct relations we mean lexical relations that

Benefiting from Structured Resources to Present a Computationally Efficient Word Embedding Method

509

already exist in WordNet and map two different

words to each other. Indirect relations between

two words, however, can be distinguished using a

round trip to synsets containing a lemma of the

words and semantic relations of them. Finally,

applying the Node2Vec algorithm to the

constructed graph will produce embedding for the

graph nodes (i.e. all words of WordNet).

Algorithm 1: Word2Node: Node2Vec-based word

embedding method using WordNet as semantic-aware

training corpus

Inputs: Hyper-parameters 𝒩𝓌, 𝒲𝓁, 𝒹, 𝓌, 𝒹𝒻, 𝓈𝒻. 𝒩𝓌:

number of walks in Node2Vec, 𝒲𝓁: walk length of

Node2Vec, 𝒹: dimension of embedding vectors, 𝓌: size of

sliding window in Node2Vec and its corresponding

Word2Vec algorithm, 𝒹𝒻, 𝓈𝒻: Boolean flags set to True, if

the graph is directed, and has self-edges, resp.

Output: Word embedding vectors

1. Compute 𝒲 , the set of all words of WordNet

2. Make a new directed/undirected (according to the value

of 𝒹𝒻) graph 𝒢 with 𝒲 as set of its nodes

3. Compute the graph edges:

Construct_GraphEdges(𝒢,𝒲,𝒹𝒻,𝓈𝒻)

4. Generating 𝒩𝓌 walks of length 𝒲𝓁 from the graph

5. Compute 𝒹-dimensional node embeddings with window

of length 𝓌𝓁 using Node2Vec algorithm

Algorithm 1 has two important phases: graph

construction (lines 1 to 3), and calculation of

embedding vectors using Node2Vec (lines 4 and

5). The procedure of computing the edges of the

WordNet graph (line 3) is described in Algorithm

2. As mentioned before, edges of this graph could

contain indirect relations of words indicating

semantic relations of synsets containing words’

lemmas, as well as direct lexical relations. For

each word of WordNet as nodes, this procedure

calculates these edges.

In lines 1.A.a-1.A.e, the relations between the

synsets containing the lemma of each the senses

of a word and lemma of their hypernym,

entailment relation, hyponym, holonym, and

meronym synsets are added to the set of graph

edges. Note that since these relations are coded as

semantic relations in WordNet, we must use

different lemmas of these synsets (as a word)

instead of the synsets themselves.

In line 1.A.f, calculation of the

synonyms/antonyms of an adjective word is

addressed. Note that a set of synonyms of a word

can be calculated using lemmas of the synset

containing the word. Moreover, antonymy

relations are encoded as lexical relations in

WordNet, and could be added to set of graph

edges easily.

Suitable selection of WordNet graph structure as

well as the hyper-parameters of Node2Vec

(number of walks, walk length, embedding vector

dimension, and sliding window size) affect the

performance of the resulting embedding. We got

them by trial and error, and investigated the effect

of these hyper-parameter selections in the task of

word similarity in Table 1 of the next section.

Algorithm 2: Construct _GraphEdges: Compute edges

between WordNet words as nodes of WordNet graph, 𝒢

Inputs: 𝒢: the returned graph initially have nodes without any

edges between them, 𝒲: set of all nodes of the graph, 𝒹𝒻: a

Boolean flag which is set to True, if the graph is directed, 𝓈𝒻:

a Boolean flag, set to True, if the graph has self-edges.

Output: WordNet Graph

1. For 𝓌 in 𝒲, set of all words of WordNet:

A. For 𝓈 in set of all synsets of word 𝓌 in WordNet:

a. for 𝓁1 in the set of all lemmas of all hypernyms of

𝓈:

i. add the edge (𝓁1.name(), 𝓌) to the 𝒢

ii. if 𝒹𝒻, add the edge (𝓌, 𝓁1.name()) to the 𝒢

b. for 𝓁1 in the set of all lemmas of all entailments of

𝓈:

i. add the edge (𝓁1.name(), 𝓌) to the 𝒢

ii. if 𝒹𝒻, add the edge (𝓌, 𝓁1.name()) to the 𝒢

c. for 𝓁1 in the set of all lemmas of all hyponyms of

𝓈:

i. add the edge (𝓌, 𝓁1.name()) to the 𝒢

ii. if 𝒹𝒻, add the edge (𝓁1.name(), 𝓌) to the 𝒢

d. for 𝓁1 in the set of all lemmas of all holonyms of 𝓈:

i. add the edge (𝓁1.name(), 𝓌) to the 𝒢

ii. if 𝒹𝒻, add the edge (𝓌, 𝓁1.name()) to the 𝒢

e. for 𝓁1 in the set of all lemmas of all meronyms of

𝓈:

i. add the edge (𝓌, 𝓁1.name()) to the 𝒢

ii. if 𝒹𝒻, add the edge (𝓁1.name(), 𝓌) to the 𝒢

f. for 𝓁𝓁1 in the set of all lemmas of 𝓈:

i. add the edge (𝓌, 𝓁𝓁1.name()) to the 𝒢

ii. for 𝒶𝒶1 in antonyms of 𝓁𝓁1:

Z. add the edge (𝓌, 𝒶𝒶1.name()) to

the 𝒢

4. Results and Discussion

In order to analyze the performance of the

proposed idea and the new word embedding

methodology, we evaluate it in the two tasks of

word similarity and text classification. We

compare the results of Word2Node embedding

with the result of Word2Vec as its base word

embedding method. For word2Vec, we download

and use the pretrained 300-dimensional word

vectors trained on Google news using Word2Vec

CBOW algorithm [2]. Wordsim353 dataset [46] is

used for word similarity task. Kaggle’s News

category dataset [47] and IMBD dataset [48] are

used for text classification. The following

provides results of applying Word2Node

embedding on these datasets.

Jafarinejad/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

510

4.1. Word similarity task

In order to analyze the proposed method, we

firstly evaluate the method and the effect of

different hyper-parameters in word similarity task

on Wordsim353 dataset [46]. This dataset consists

of word pairs and their similarity measure (which

is a number in range [0,10]). We divide similarity

measures of this dataset by 10 to be in the range

[0,1] and be comparable with positive cosine

similarity.

To evaluate the embedding model, we get the

embedding vector of each word pairs of the

dataset, compute their cosine similarity, and

compare it with the number suggested by the

dataset itself (as mentioned, divided by 10). We

do this procedure for Word2Vec embedding

method, as well. Mean squared error (MSE) of the

numbers suggested by each embedding method

with the gold standard numbers is a measure of

goodness of each embedding method. MSE of the

proposed embedding method for an undirected

graph with self-edges, and vector dimension 70,

walk length 14, number of walks 50, and window

size 14, was 0.0317. MSE of Word2Vec on this

dataset was 0.045. These results are obtained

while the proposed method use smaller vector size

(70, instead of vector size 300 for Word2Vec).

This experiment shows the effectiveness of the

proposed word embedding method on task of

word similarity. The effect of using other values

for hyper-parameters in the proposed embedding

is illustrated in Table 1.

Table 1. Evaluation of Structure-Aware WordNet

Training Corpus and the Proposed Corresponding

Embedding Method (Word2Node) in Word Similarity

Task.
Method 𝒹𝒻 𝓈𝒻 𝒹 𝒲𝓁 𝒩𝓌 𝓌 MSE

Word2Vec - - 300 -- -- -- 0.123

Word2Node

(Proposed)

F T 70 14 50 14 0.063

T T 70 13 50 13 0.080
F T 100 17 60 10 0.081

F T 25 12 40 7 0.049

F T 40 12 40 7 0.053

F T 50 12 40 7 0.058

F T 50 5 40 7 0.060

F T 50 7 40 7 0.060
F T 70 14 50 10 0.066

F T 70 14 50 5 0.066
F T 70 14 50 7 0.063

F T 70 17 60 14 0.071

Furthermore, we evaluate the performance of the

proposed word embedding method against three

embedding methods [18]–[20], which used the

information of knowledge graphs in word

similarity task, as us. [18] reports the Pearson

correlation of its method on various word

similarity datasets (i.e. wordsim353 [46], RG [49],

and MEN [50] dataset). We evaluate our method

on another important word similarity dataset, MC

[51], as well. Path2Vec [19] uses SimLex999 [52]

dataset to evaluate the performance of its

algorithm using Spearman correlation. It just uses

666 noun similarities of the dataset. For fairness

of comparison, we just use noun concepts of the

SimLex999 dataset, as well. Syn2vec [20] used

the Spearman correlation as a criteria for

performance evaluation on Multi-SimLex dataset

[53]. As we use English WordNet, we compare

methods just in monolingual English word

similarities. Tables 2, 3 illustrate the results.

Columns of these tables shows different datasets

that are abbreviated as WS, RG, MEN, MC,

SL99, and MuSL, respectively for wordsim353

[46], RG [49], MEN [50], MC [51], SimLex999

[52], and Multi-SimLex [53]. Moreover,

Path2Vec, Word2Vec, and the proposed

Word2Node methods are abbreviated in rows of

tables as P2V, W2V, and W2N, resp.

Table 2. Comparing Pearson Correlation of some

Methods on Word Similarity Datasets.

Method\

Dataset

WS RG MEN MC SL99 MuS

L

[18] 0.52 0.76 0.31 - - -

W2V 0.65 0.77 0.76 0.79 0.46 0.44

W2N 0.48 0.81 0.54 0.80 0.57 0.50

Table 3. Comparing Spearman Correlation of some

methods on Word Similarity Datasets.

Method\

Dataset

WS RG MEN MC SL99

9

MuS

L

S2V [20] - - - - - 0.47

P2V [19] - - - - 0.51 -

W2V 0.70 0.76 0.77 0.80 0.45 0.49

W2N 0.48 0.79 0.54 0.74 0.56 0.50

As it can be seen in these tables, the proposed

method outperforms the two knowledge graph-

based embedding methods in all of the datasets.

However, for some dataset the Word2Vec

embedding works better than the proposed

Word2Node embedding.

4.2. Text classification task

We used part of the Kaggle’s News category

dataset [47] and IMBD dataset [48] to compare

the effectiveness of the proposed embedding idea

and method in the task of text classification. The

Kaggle’s News category dataset [47] contains

200853 news in 41 different categories. We

Benefiting from Structured Resources to Present a Computationally Efficient Word Embedding Method

511

limited our work to three categories (name it as

3CATS-News): ENTERTAINMENT, POLITICS,

and TECH. This subset of the database contains

50879 news items, 70% of which are used for

training and 30% remained for testing. The IMDB

dataset [48] is a dataset having 50K movie

reviews for binary sentiment classification. A set

of 40k movie reviews is provided for training.

Validation and test both contain 5k reviews.

Figure 1. Architecture of the Used Classification Model.

The same deep learning architecture is used to

evaluate the performance of Word2Vec and

proposed embedding in text classification. This

model is a sequential model containing an

embedding layer, a LSTM layer, a max pooling

layer, and two fully connected layers. Figure 1

shows the architecture of the model for

Word2Node. In case of Word2Vec, the same

model is used except the output dimension of

embedding layer of which is equal to (None, 100,

300). In other words in the embedding layers, the

application of pretrained Word2Vec weights is

compared with using the proposed Word2Node

embedding.

Table 2 demonstrates the accuracy and timing of

each of the two mentioned embeddings. We

consider 4 timing factors for each word

embedding model: spent time to load the

embedding model (load), time for construction of

embedding matrix for deep learning models

(const.), average training time of the deep model

per epochs (train), and the prediction time (pred.)

in seconds. As it can be seen in the table, the

accuracy of the proposed method is approximately

equal to that of the Word2Vec, while the predict

speed is 23% faster than the Word2Vec method.

Moreover, the loading time of the model and the

construction of its embedding matrix are much

less than Word2Vec. This difference in processing

speed and time will be more pronounced in large

datasets.

Table 4. Evaluation of Semantic-Aware WordNet

Training Corpus and corresponding method, Word2Node

on Text Classification Task.
Datas

et

Method/Crit

eria

Accura

cy

Loa

d

Con

st.

Trai

n

Pred

.

3CAT

S-

News

Word2Vec 93.933 35.7
98

0.16
93

51.5 7.21
73

Word2Node

on 3cats-
news

93.436 2.43 0.03

12

34.1 5.50

16

IMDB Word2Vec 87.60 35.7

98

0.25

78

200 2.48

13
Word2Node 84.58 2.43 0.14

72

34 1.91

38

4.3. Cost analysis

In order to further evaluate the efficiency of the

idea of utilizing a semantic-aware training corpus

in embedding vectors, in this section, we will

examine factors affecting the training cost of the

proposed embedding method. The required

processing power of the hardware used for

training procedure is one of these factors. The

amount of memory consumed and training time

are some other factors that are of course related to

the size of the training corpus. Table 5 shows the

results of these factors. As it can be seen, utilizing

structured data in presenting an embedding

method will lead to a much reduction in the size

required for the training corpus. In comparison to

Google’s pretrained vectors for Word2Vec, the

required training data is reduced by about

50,000,000%. This factor will further affect the

processing time, memory, and processing power.

Table 5. Required Processing Power to Train Word2Node

Embedding Method.
 System

Spec

Memor

y

Training

Time

Trainin

g

Corpus

Size

Word2

Node

(propos

ed)

PC with

Intel i7-
8700K CPU

@ 3.70GHz

8GB 14351seconds

(≈4hours)

188097*

)*The number of words of WordNet used was

147,306. However, in terms of semantic relations

and considering that we worked with synsets,

some of lemmas of synsets do not exist in set of

words of WordNet (inconsistency!) and added as

nodes to the graph. Therefore, the number of final

nodes of our graph is more than the number of

words of WordNet(.

5. Conclusions and Future Work

Nowadays, word embedding methods do a trade-

off between prediction and computation metrics.

Fundamental improvements that can increase

performance while using fewer data and resources

are required. In this paper, the basic idea of

InputLayer: (None, 100)

Embedding: (None, 100, 70)

LSTM: (None, 100, 128)

Dense: (None, 64)

GlobalMaxPooling1D: (None, 128)

Dense: (None, 3)

Jafarinejad/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

512

utilizing from structure of the corpus was

addressed. Utilizing linguistic knowledge encoded

in WordNet, this idea was developed. Graphical

structure of WordNet tends to produce word

embedding vectors using a simple node

embedding algorithm. Evaluation of the produced

vectors in two tasks of word similarity and text

classification shows the efficiency of this new

paradigm shift in word embeddings. Faster

training procedure and less memory consumption

while are the results of this new embedding that it

has an accuracy comparable to Word2Vec in these

tasks. This idea can be more developed to extract

word vectors using more powerful graph

embedding and word embedding techniques.

Nevertheless, benefit from small structured and

semantic-aware training corpus to reduce amount

of required processing power.

References
[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.

Kavukcuoglu, and P. Kuksa, “Natural Language

Processing (Almost) from Scratch,” J. Mach. Learn.

Res., vol. 12, pp. 2493–2537, 2011.

[2] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and

J. Dean, “Distributed Representations of Words and

Phrases and Their Compositionality,” in Advances in

Neural Information Processing Systems, Oct. 2013, pp.

1–9.

[3] J. Pennington, R. Socher, and C. Manning, “GloVe:

Global Vectors for Word Representation,” in

Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing ({EMNLP}),

Oct. 2014, pp. 1532–1543, doi: 10.3115/v1/D14-1162.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding.” 2018.

[5] Y. Liu et al., “RoBERTa: A Robustly Optimized

BERT Pretraining Approach,” arXiv Prepr.

arXiv1907.11692, 2019.

[6] T. Brown et al., “Language Models are Few-Shot

Learners,” arXiv:2005.14165, May 2020.

[7] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.

Salakhutdinov, and Q. Le, “XLNet: Generalized

Autoregressive Pretraining for Language

Understanding,” arXiv:1906.08237, Jun. 2019.

[8] R. A. Stein, P. A. Jaques, and J. F. Valiati, “An

Analysis of Hierarchical Text Classification Using

Word Embeddings,” Inf. Sci. (Ny)., vol. 471, pp. 216–

232, 2019, doi:

https://doi.org/10.1016/j.ins.2018.09.001.

[9] Q. Chen and A. Crooks, “Analyzing the

Vaccination debate in social media data Pre- and Post-

COVID-19 pandemic,” Int. J. Appl. Earth Obs.

Geoinf., vol. 110, p. 102783, 2022, doi:

https://doi.org/10.1016/j.jag.2022.102783.

[10] A. Pimpalkar and J. R. Raj R, “MBiLSTMGloVe:

Embedding GloVe Knowledge Into the Corpus Using

Multi-Layer BiLSTM Deep Learning Model for Social

Media Sentiment Analysis,” Expert Syst. Appl., vol.

203, p. 117581, 2022, doi:

https://doi.org/10.1016/j.eswa.2022.117581.

[11] M. Molaei and D. Mohamadpur, “Distributed

Online Pre-Processing Framework for Big Data

Sentiment Analytics,” J. AI Data Min., vol. 10, no. 2,

pp. 197–205, 2022, doi:

10.22044/jadm.2022.11330.2293.

[12] E. Manzini, J. Garrido-Aguirre, J. Fonollosa, and

A. Perera-Lluna, “Mapping Layperson Medical

Terminology into the Human Phenotype Ontology

using Neural Machine Translation Models,” Expert

Syst. Appl., vol. 204, p. 117446, 2022, doi:

https://doi.org/10.1016/j.eswa.2022.117446.

[13] A. Joshi, E. Fidalgo, E. Alegre, and L. Fernández-

Robles, “DeepSumm: Exploiting Topic Models and

Sequence to Sequence Networks for Extractive Text

Summarization,” Expert Syst. Appl., vol. 211, p.

118442, 2023, doi:

https://doi.org/10.1016/j.eswa.2022.118442.

[14] T. Xian, Z. Li, C. Zhang, and H. Ma, “Dual Global

Enhanced Transformer for image captioning,” Neural

Networks, vol. 148, pp. 129–141, 2022, doi:

https://doi.org/10.1016/j.neunet.2022.01.011.

[15] A. Shahini Shamsabadi, R. Ramezani, H.

Khosravi Farsani, and M. Nematbakhsh, “Direct

Relation Detection for Knowledge-Based Question

Answering,” Expert Syst. Appl., vol. 211, p. 118678,

2023, doi: https://doi.org/10.1016/j.eswa.2022.118678.

[16] R. Navigli and S. P. Ponzetto, “BabelNet:

Building a Very Large Multilingual Semantic

Network,” in In Proceedings of the 48th Annual

Meeting of the Association for Computational

Linguistics, 2010, pp. 216–225.

[17] S. Rothe and H. Schütze, “AutoExtend: Extending

Word Embeddings to Embeddings for Synsets and

Lexemes,” in In Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference

on Natural Language Processing, 2015, pp. 1793–1803,

doi: 10.3115/v1/P15-1173.

[18] A. T. Thibault Cordier, “Learning Word

Representations by Embedding the WordNet Graph,”

2018.

[19] A. Kutuzov, M. Dorgham, O. Oliynyk, C.

Biemann, and A. Panchenko, “Learning Graph

Embeddings from WordNet-based Similarity

Measures,” in Conference: Proceedings of the Eighth

Joint Conference on Lexical and Computational

Semantics, 2019, pp. 125–135, doi: 10.18653/v1/S19-

1014.

[20] J. Harvill, R. Girju, and M. Hasegawa-Johnson,

Benefiting from Structured Resources to Present a Computationally Efficient Word Embedding Method

513

“Syn2Vec: Synset Colexification Graphs for Lexical

Semantic Similarity,” in Proceedings of the 2022

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, 2022, pp. 5259–5270, doi:

10.18653/v1/2022.naacl-main.386.

[21] A. Budanitsky and G. Hirst, “Evaluating

WordNet-Based Measures of Lexical Semantic

Relatedness,” Comput. Linguist., vol. 32, no. 1, pp. 13–

47, 2006.

[22] Z. Zhao, X. Chen, D. Wang, Y. Xuan, and G.

Xiong, “Robust Node Embedding Against Graph

Structural Perturbations,” Inf. Sci. (Ny)., vol. 566, pp.

165–177, 2021, doi:

https://doi.org/10.1016/j.ins.2021.02.046.

[23] X. Wu, Y. Zheng, T. Ma, H. Ye, and L. He,

“Document Image Layout Analysis Via Explicit Edge

Embedding Network,” Inf. Sci. (Ny)., vol. 577, pp.

436–448, 2021, doi:

https://doi.org/10.1016/j.ins.2021.07.020.

[24] Q. Tian et al., “Lower Order Information

Preserved Network Embedding Based on Non-

Negative Matrix Decomposition,” Inf. Sci. (Ny)., vol.

572, pp. 43–56, 2021, doi:

https://doi.org/10.1016/j.ins.2021.04.095.

[25] A. Amara, M. A. Hadj Taieb, and M. Ben

Aouicha, “Network Representation Learning

Systematic Review: Ancestors and Current

Development State,” Mach. Learn. with Appl., vol. 6,

p. 100130, 2021, doi:

https://doi.org/10.1016/j.mlwa.2021.100130.

[26] L. Moyano, “Learning Network Representations,”

Eur. Phys. J. Spec. Top., vol. 226, pp. 499–518, 2017,

doi: 10.1140/epjst/e2016-60266-2.

[27] G. Alanis-Lobato, P. Mier, and M. A. Andrade-

Navarro, “Efficient Embedding of Complex Networks

to Hyperbolic Space via Their Laplacian,” Sci. Rep.,

vol. 6, no. 1, p. 30108, 2016, doi: 10.1038/srep30108.

[28] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and

Q. Mei, “LINE: Large-Scale Information Network

Embedding,” Line Large-Scale Inf. Netw. Embed.,

2015, doi: 10.1145/2736277.2741093.

[29] A. Grover and J. Leskovec, “Node2vec: Scalable

Feature Learning for Networks,” in Proceedings of the

22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2016, pp.

855–864, doi: 10.1145/2939672.2939754.

[30] D. Wang, P. Cui, and W. Zhu, “Structural Deep

Network Embedding,” in Proc. ACM SIGKDD, 2016,

pp. 1225–1234, doi: 10.1145/2939672.2939753.

[31] Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on

Graphs: A Survey,” IEEE Trans. Knowl. Data Eng.,

vol. PP, p. 1, 2020, doi: 10.1109/TKDE.2020.2981333.

[32] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning

Graph Representations with Global Structural

Information,” in Proceedings of the 24th ACM

International on Conference on Information and

Knowledge Management, 2015, pp. 891–900, doi:

10.1145/2806416.2806512.

[33] J. Chen, Z. Gong, W. Wang, W. Liu, and X. Dong,

“CRL: Collaborative Representation Learning by

Coordinating Topic Modeling and Network

Embeddings,” IEEE Trans. neural networks Learn.

Syst., vol. PP, Feb. 2021, doi:

10.1109/TNNLS.2021.3054422.

[34] A. Ahmed, N. Shervashidze, S. Narayanamurthy,

V. Josifovski, and A. Smola, “Distributed Large-scale

Natural Graph Factorization,” in WWW 2013 -

Proceedings of the 22nd International Conference on

World Wide Web, 2013, pp. 37–48, doi:

10.1145/2488388.2488393.

[35] B. Perozzi, R. Al-Rfou, and S. Skiena,

“DeepWalk: Online Learning of Social

Representations,” Proc. ACM SIGKDD Int. Conf.

Knowl. Discov. Data Min., Mar. 2014, doi:

10.1145/2623330.2623732.

[36] T. Landauer, P. Foltz, and D. Laham, “An

Introduction to Latent Semantic Analysis,” Discourse

Process., vol. 25, pp. 259–284, 1998, doi:

10.1080/01638539809545028.

[37] V. Sanh, L. Debut, J. Chaumond, and T. Wolf,

“DistilBERT, a Distilled Version of BERT: Smaller,

Faster, Cheaper and Lighter,” arXive:1910.01108,

2019.

[38] D. Soergel, WordNet. An Electronic Lexical

Database. MIT Press, 1998.

[39] A. Pal and D. Saha, “Word Sense Disambiguation:

A Survey,” Int. J. Control Theory Comput. Model., vol.

5, Aug. 2015, doi: 10.5121/ijctcm.2015.5301.

[40] A. Montejo-Ráez, E. Martínez-Cámara, M. T.

Martín-Valdivia, and L. A. Ureña-López, “Ranked

WordNet graph for Sentiment Polarity Classification in

Twitter,” Comput. Speech Lang., vol. 28, no. 1, pp.

93–107, 2014, doi:

https://doi.org/10.1016/j.csl.2013.04.001.

[41] O. El Midaoui, B. El Ghali, A. El Qadi, and M. D.

Rahmani, “Geographical Query reformulation using a

Geographical Taxonomy and WordNet,” Procedia

Comput. Sci., vol. 127, pp. 489–498, 2018, doi:

https://doi.org/10.1016/j.procs.2018.01.147.

[42] T. Hao, W. Xie, Q. Wu, H. Weng, and Y. Qu,

“Leveraging Question Target Word Features Through

Semantic Relation Expansion for Answer Type

Classification,” Knowledge-Based Syst., vol. 133, pp.

43–52, 2017, doi:

https://doi.org/10.1016/j.knosys.2017.06.030.

[43] S. K. Ray, S. Singh, and B. P. Joshi, “A Semantic

Approach for Question Classification Using WordNet

and Wikipedia,” Pattern Recognit. Lett., vol. 31, no.

13, pp. 1935–1943, 2010, doi:

https://doi.org/10.1016/j.patrec.2010.06.012.

[44] J. Goikoetxea, A. Soroa, and E. Agirre, “Bilingual

Embeddings with Random Walks Over Multilingual

Jafarinejad/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

514

WordNets,” Knowledge-Based Syst., vol. 150, pp.

218–230, 2018, doi:

https://doi.org/10.1016/j.knosys.2018.03.017.

[45] D. Banik, A. Ekbal, P. Bhattacharyya, S.

Bhattacharyya, and J. Platos, “Statistical-Based System

Combination Approach to Gain Advantages Over

Different Machine Translation Systems,” Heliyon, vol.

5, no. 9, p. e02504, 2019, doi:

https://doi.org/10.1016/j.heliyon.2019.e02504.

[46] L. Finkelstein et al., “Placing Search in Context:

The Concept Revisited,” ACM Trans. Inf. Syst., vol.

20, pp. 116–131, 2002.

[47] R. Misra, “News Category Dataset.” 2018, doi:

10.13140/RG.2.2.20331.18729.

[48] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A.

Y. Ng, and C. Potts, “Learning Word Vectors for

Sentiment Analysis,” in Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, Jun.

2011, pp. 142–150, [Online]. Available:

http://www.aclweb.org/anthology/P11-1015.

[49] H. Rubenstein and J. Goodenough, “Contextual

Correlates of Synonymy,” Commun. ACM, vol. 8, pp.

627–633, 1965, doi: 10.1145/365628.365657.

[50] G. Cassani and A. Lopopolo, “Multimodal

Distributional Semantics Models and Conceptual

Representations in Sensory Deprived Subjects.” 2016,

doi: 10.13140/RG.2.1.3394.3924.

[51] G. A. Miller and W. G. Charles, “Contextual

Correlates of Semantic Similarity,” Lang. Cogn.

Process., vol. 6, no. 1, pp. 1–28, 1991, doi:

10.1080/01690969108406936.

[52] A. K. Felix Hill and Roi Reichart, “SimLex-

999: Evaluating Semantic Models With (Genuine)

Similarity Estimation,” Comput. Linguist., vol. 41, no.

4, pp. 665–695, 2015.

[53] I. Vulić et al., “Multi-SimLex: A Large-Scale

Evaluation of Multilingual and Crosslingual Lexical

Semantic Similarity,” Comput. Linguist., vol. 46, no. 4,

pp. 847–897, 2020.

 .1041 سال ،چهارم شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده جعفری نژاد

 کلمهتعبیه روش کارآمد کیارائه یبرا افتهیاز منابع ساختار یبهره مند

 *فاطمه جعفری نژاد

 .دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شاهرود، شاهرود، ایران

 22/40/2422 پذیرش؛ 21/40/2422 بازنگری؛ 10/40/2422 ارسال

 چکیده:

روشهها نشهان نیا ایمقایسه یاست. بررس دهیرا بهبود بخش کاربردهای مختلف پردازش زبان طبیعی دقت تعبیه کلمات دیجد یهاروش ر،یاخ یهادر سال

وجهود دیه جد کلمهات هیه تعب روشهای ارائه یبرا یبه نوآور ازین ن،ی. بنابرارشد استروبهآنها یآموزش یمدلها و تعداد پارامترها نیا یدگیچیدهد که پیم

یهده الهلی . اکننهد یکلمات استفاده م ییمعنا یآموزش بردارها یبدون ساختار برا یها از داده یاز مجموعه بزرگ یفعل اتکلم تعبیه یها روش اکثردارد.

بهه قهدرت ازیه ن ترتیه بهدین . تعبیه کلمات است یبردارها یمعرف یبرا افتهیساخت یهاشده در ساختار داده هیاز دانش تعب مستقیم استفاده، مقاله این

منظهور، نیا ی. براشودبرطرف میدر آنها نهفته یو دانش مفهوم افتهیبا استفاده از منابع ساختار یو زمان پردازش طولان ،حافظه ادیپردازش بالا، حجم ز

 یآموزشه پیکهره ، بهه عنهوان WordNetمعروف، افتهیمنبع ساختار کیز روش این شده است. ا شنهادی، پWord2Node ،روش تعبیه کلمات جدید کی

 شهده هیه تعب یارائه بردارها یراب WordNet یکیساختار گراف توان بدون واسطه از دانش زبانی موجود درمی است که نیاما هیکند. فرضیخود استفاده م

آن درنهفتهه ات کلمه هیه با روش تعب سهیدر مقاپیشنهادی ن نشان داده است که روش ومت یبنددر طبقه دهیا نیا یابی. ارزاستفاده نمودو کوچک دقیق

(Word2Vec) اسهت. افتهه ی% کهاهش 24444444حهدود یآموزشه یهها هکهه حجهم داد شدهحالل یدر حال جهینت نیکند. ایبهتر عمل م ای کسانی

همچنین مقایسه روش پیشنهادی با برخی روشهای تعبیه کلمات مبتنی بر گراف دانش، در کاربرد تشخیص شباهت کلمهات نیهز حهاکی از برتهری ایهن

 از آنهاست.حالل یموجود و بردارهاتعبیه کلمات یروشها تیفیبهبود ک یبرا افتهیساخت یهاداده تیظرف نشان دهنده جینتا نیا روش است.

 کلمات. ، شباهت معناییNode2Vec، وردنت، تعبیه گراف، کلماتتعبیه :کلیدی کلمات

