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 One of the most advanced non-invasive medical imaging methods is 

MRI that can make a good contrast between soft tissues. The main 

problem with this method is the time limitation in data acquisition, 

particularly in dynamic imaging. Radial sampling is an alternative for a 

faster data acquisition, and has several advantages compared to the 

Cartesian sampling. Among them, robustness to motion artifacts makes 

this acquisition useful in cardiac imaging. Recently, CS has been used 

in order to accelerate data acquisition in dynamic MRI. Cartesian 

acquisition uses irregular under-sampling patterns to create incoherent 

artifacts to meet the incoherent sampling requirement of CS. Radial 

acquisition, due to its incoherent artifact, even in regular sampling, has 

an inherent fitness to CS reconstruction. In this work, we reconstruct 

the (3D) stack of stars data in cardiac imaging using a combination of 

the TV penalty function and the GRASP algorithm. We reduce the 

number of spokes from 21 to 13, and then reduce to 8 to observe the 

performance of the algorithm at a high acceleration factor. We 

compare the output images of the proposed algorithm with both the 

GRASP and NUFFT algorithms. In all the three modes (21, 13, and 8 

spokes), the average image similarity is increased by at least by 0.4, 

0.1 compared to NUFFT and GRASP, respectively. Moreover, the 

streaking artifacts are significantly reduced. According to the results 

obtained, the proposed method can be used on a clinical study for a fast 

dynamic MRI such as cardiac imaging with a high image quality from 

low- rate sampling. 
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Abbreviations 

MRI   Magnetic Resonance Imaging 

GRASP Golden Angle Radial Sparse Parallel MRI 

FFT Fast Fourier Transform 

  

NUFFT Non-Uniform Fast Fourier Transform 

ASOS Align Stack Of Stars 

TV Total Variation 

CS Compressive sensing 

PSF Point Spread Function 

PI Parallel Imaging 

SENSE Sensitivity Encoding 

GRAPPA GeneRalized Autocalibrating Partial Parallel 

Acquisition 

DWT  Discrete Wavelet Transform 

DCT Discrete Cosine Transform 

SSIM Structural Similarity Index 

 

1. Introduction 
The limited imaging speed of MRI is a severe 

challenge in medical applications. In the late 1990s, 

a series of reconstruction techniques called Parallel 
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Imaging (PI) on MRI was introduced in order to 

accelerate the data acquisition process. In PI, 

several coils with different spatial sensitivities are 

used to perform part of the phase encoding process 

and utilize different algorithms like SENSE and 

GRAPPA in order to reconstruct the non-artifact 

images from an under-sampled k-space [1-4]. The 

advent of PI led to significant advances in MRI like 

the development of several rapid imaging 

techniques such as temporal parallel imaging and 

spatiotemporal acceleration techniques, often 

known as the k-t imaging techniques [5,6]. Another 

technique to address the unacceptable image quality 

and aliasing artifacts from sub-sampling is 

Compressive Sensing (CS). The concept of CS was 

first introduced in 2006 by Donoho and Candes et 

al. [7], and was soon translated to MRI by Lusting 

[8], which became a powerful approach to increase 

the imaging speed in MRI. CS took advantage of 

the fact that the images usually have a sparse 

representation; thus if the data is obtained 

incoherently, the image can be reconstructed using a 

small number of k-space data. CS-MRI has begun 

extensive research works in a variety of clinical 

fields including cardiovascular, body, neurological, 

and spectral imaging. Moreover, it has been shown 

that the combination of CS and PI will further 

increase the imaging speed beyond what is possible 

with only one method [9,10]. 

Non-Cartesian sampling such as a radial or spiral 

acquisition are other approaches for fast imaging. In 

radial sampling, k-space is not acquired directly on 

a uniform grid. Therefore, even the regular 

sampling of radial sampling results in an inherent 

incoherency. Moreover, due to the continuous 

update of the center of k-space in the radial 

acquisition, it is less sensitive to the respiratory 

motion, and therefore, the patient movement and 

breathing information can be obtained. However, 

the disadvantage of radial sampling is its 

reconstruction algorithm that is more complicated 

and time-consuming. In contrast, Cartesian 

sampling k-space is acquired on a uniform grid, and 

the image reconstruction is quick and effective due 

to FFT. Although the reconstruction of Cartesian 

data is computationally optimized and has a higher 

efficacy, there is a long history of non-Cartesian 

sampling since the beginning of MRI. In the recent 

years, this method has been widely used due to its 

higher acquisition speed and resistance to 

movement [6]. In particular, golden ratio radial 

sampling significantly improves the temporal 

resolution. Golden angle radial sampling was first 

introduced for MRI in 2004 [11]. In this method, 

the angles of consecutive spokes are increased with 

a constant step of 111.25 degrees. This angle 

corresponds to the golden ratio (g = (1+√5)/2), and 

makes any measurement of the data a complement 

to the previous coverage of the k-space, and the 

measurements never repeat. This acquisition 

scheme provides approximately a uniform coverage 

of the k-space for any arbitrary number of spokes, 

in particular, if its number belongs to the Fibonacci 

series [12]. It can also be extended to 3D Stack of 

Stars (SOS) by repeating the 2D data acquisition 

process for each slide [13]. The SOS method is 

widely used for dynamic imaging or motion-

sensitive imaging such as angiography, cardiac 

imaging, and abdomen imaging [14]. 

In SOS volumetric imaging, the radial sampling is 

combined with Cartesian sampling with a hybrid 

sampling scheme such that the radial sampling is 

performed on the kx-ky plane and Cartesian 

sampling along kz. In the golden SOS sampling, 

instead of the linear step, a golden ratio is used as 

the angle between the adjacent spokes; the process 

is shown in Figure 1 [15]. Since the k-space is 

aligned through the kz, a 1D inverse Fourier 

transform (IFFT) is applied as an initial processing 

step, and enables a slide-by-slide reconstruction 

[12,15]. This procedure reduces the computational 

cost and allows for a direct reconstruction. 

Image reconstruction with Total Variation (TV) has 

been the focus of the researchers for many years. 

This method will greatly help reduce the noise level 

in the images [16,17]. Compressibility of the image 

in both the TV field and the sparse space can be a 

prerequisite for producing a low noise level image 

[8,18]. In 2010, Otazu et al. obtained a significant 

acceleration rate by combining CS and PI at the k-t 

SPARSE-SENSE technique for dynamic MRI with 

Cartesian data [10]. In [19], the authors developed 

an accelerated 3D late gadolinium enhancement 

(LGE) pulse sequence using balanced steady-state 

free precession readout with stack-of-stars k-space 

sampling and extra motion-state golden-angle radial 

sparse parallel (XD-GRASP) reconstruction, and 

tested the performance for detecting atrial scar and 

fibrosis in the patients with atrial fibrillation (AF). 

In [20], Zhang et al. developed and evaluated an 

accelerated 3D self-gated cardiac cine imaging 

technique at 3 Tesla without the use of external 

electrocardiogram triggering or respiratory gating. 

In [21], the authors demonstrated the basic 
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functionality of SSA-FARY using numerical 

simulations, and applied it to in-vivo cardiac radial 

single-slice bSSFP and simultaneous multi-slice 

radiofrequency-spoiled gradient-echo measurements 

as well as to Stack-of-Stars bSSFP measurements. 

In 2014, Li Feng et al. introduced the GRASP 

algorithm [15], and the idea of k-t SPARSE-SENSE 

[5] was extended for a volumetrically SOS data 

acquisition with a golden angle order acquisition. In 

the GRASP algorithm, a finite-difference of time 

frames is used as the sparse space. In other words, 

sparsity in the GRASP algorithm is in the time 

domain. This approach enables utilizing redundant 

information in time very well. Our goal in this work 

is to present a new formulation based on the 

combination of the GRASP method and the TV 

algorithm in order to produce a lower noise level 

image in the 4D data from the heart. Thus, at first, 

the basic concepts of CS and GRASP would be 

explained, and then the proposed algorithm will be 

discussed. 

 

Figure. 1. Continues acquisition of radial spokes with 

3D golden angle ASOS [16]. 
 

2. A Brief Overview of Compressive Sensing 

The Nyquist theorem is a prerequisite for a correct 

signal reconstruction. Unfortunately, the Nyquist 

theorem requirement is often time-consuming and 

requires a large amount of memory for data transfer 

and storage in the design of sampling systems 

[12,22]. CS uses the sparsity to reconstruct signals 

from the samples less than the Nyquist rate instead 

of using the bandwidth limitation, and therefore, in 

this way, it can reduce the scan time significantly . 

However, the main problem of this theory is finding 

the solution of an underdetermined system of 

equations; the formulation is based on Equation 1 

[22]. 
 

Y S   (1) 

where Φ is the sampling matrix or the coefficients 

matrix, and S is the sparse signal. This equation is 

more precisely expressed in the following equation: 
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Where 1 2 3 ]N   K    is the sparsifying 

matrix and 1 2 3[ ]nX x x x x K  is the coefficients 

vector. In this case, the number of equations is less 

than the number of unknowns. Therefore, it is 

underdetermined, and has numerous solutions. Thus 

in order to solve it and find a unique solution, we 

have to apply other conditions to the unknown 

vector. CS uses the sparsity to find the unique 

solution of the system. The general approach to 

solve it is given by Equation 3. 

0min
s

s Subject to Y SP P   (3) 

The main idea of this method is to choose the 

sparsest vector among all the vectors in the above 

equation. Since the use of l0 norm leads to an NP-

hard and non-convex problem, the only solution is 

an exhaustive search, which has a high 

computational cost and is not a practical approach. 

There are several methods for the reconstruction of 

sparse signals. The most common method is to 

approximate the cost function with a convex 

formulation, and then minimize it with convex 

optimization algorithms that provides an excellent 

signal reconstruction. The reason for the popularity 

of this method is the main theorem of convex 

optimization. According to this theorem, the local 

extremum of the problem also will be global 

extremum, which guarantees that we will converge 

to the correct answer [23]. There are three basic 

requirements for using CS [6]: 

1. The sparsity or sparse representation of the target. 

2. Incoherent sampling (incoherency between 

sampling and sparse domain). 

3. Non-linear reconstruction algorithm that enforces 

sparsity with data consistency. 

In what follows, each one of these three 

requirements will be explained [5]. 

2.1. Sparsity 

If an image has only a small number of non-zero 

coefficients compared to the total number of voxels, 

it is sparse. An example of this is the MR 

angiography image, which suppresses the 



Kazemitabar et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022 

46 
 

background tissue area, and only the vessels 

represent the signal. Therefore, MR angiography is 

sparse in the image domain, which is not valid for 

all MRI images. However, a transformation such as 

DWT, DCT, and FFT is usually found that provides 

a sparse representation of the image. The number of 

measurements that are used to show the information 

directly related to the acceleration factor. A higher 

degree of sparsity is obtained during multi-

dimensional processing like dynamic 3D imaging 

because the time dimension is highly compressible, 

and leads to a faster dynamic imaging than static 

imaging [6]. 

2.2. Incoherency 

The second requirement for CS is that the artifacts 

from the sub-sampling should be incoherent; in 

other words, it should emerge as a noise-like pattern 

in the sparse space. This criterion is in contrast with 

regular sampling in Cartesian acquisition because, 

in this case, under-sampling leads to the correlated 

artifact in the images. The most popular solution is 

random under-sampling for Cartesian k-space, in 

which some steps of the phase encoding are 

eliminated randomly. Radial sampling is an 

attractive alternative due to its inherent incoherency 

behavior. The under-sampling artifacts in the radial 

acquisition, even with regular sampling, have higher 

incoherency than the Cartesian data. It also has 

other benefits such as high resistance to motion and 

breathing artifacts, which are particularly important 

in some imaging applications such as cardiac 

imaging. However, finding the optimal 

reconstruction algorithm for non-Cartesian data is 

still a major challenge. 

2.3. Non-Linear Reconstruction Algorithm 

CS reconstruction requires a problem that enforces 

the incoherence artifacts from the Nyquist sub-

sampling, and maximizes the data consistency 

between the solution and the sub-sampled k-space 

data that is available. Finally, the problem can be 

mathematically formulated in Equation 4 [22].  

1

arg min

. .

m

Tm

s t y Fm  

   
(4) 

where m is the reconstructed images, F is the 

Fourier transform corresponding to the data 

acquisition that maps the space between k-space 

and image, y is the k-space (raw data), T is the 

sparsifying transform, and 𝞮 is the estimated noise 

level. The data consistency is checked by the l2 

norm, which determines the magnitude of the error 

between the measurements and the estimated data. 

The sparsity of the signal is controlled by 

minimizing the l1 . Equation 4 tries to find the 

sparsest answer between all the solutions that have a 

lower error level than the error threshold. The l1 

minimization is widely used in the sparse 

reconstruction because a convex optimization 

problem will be obtained. The constrained 

optimization problem in Equation 5 can be re-

written in an unconstrained form with the help of 

Lagrange coefficients: 

2

2

1

arg min m
m

m

y F

T





P P

P P
  (5) 

The optimization problem in (5) can be solved using 

the iterative algorithms such as the descending 

gradient method or other convex problem-solving 

algorithms. These algorithms start by reducing the 

number of artifacts at each iteration. The coefficient 

λ also has the function of controlling the data 

consistency (l2) and sparsity (l1)  [6,15,24]. A TV 

penalty is usually used to reduce noise levels. The 

formulation will be as follows: 

2

2 1
arg min ( )

m

y Fm Tm TV m     (6) 

where β controls the sparse representation 

coefficients with the TV-coefficient, and λ, F, T, m, 

and y are the same in Equation 6.  

3. GRASP Formulation 

The formulation of the GRASP method is according 

to Equation 7 [15]. 

2

2 1

ˆ arg min . . .d F S d m T d    (7) 

where d is the reconstructed images set, T is the 

temporal total variation imposed on the l1 norm, 

1 2[ ]cm m m m K  is the radial k-space data of all 

coils (assuming the number of coils is c), F is the 

NUFFT [25], 1 2[ ]cS s s s K  is the coil 

sensitivity matrix, and λ is the parameter for 

balancing the sparsity and the data consistency in 

CS. In this work, the idea of the GRASP method is 

combined with the total variation denoising 
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algorithm, and results are compared with the 

GRASP and NUFFT reconstructions. 

4. Method 

TV on the third constraint is the difference between 

the adjacent pixels on each image that controls the 

noise, β is a weighting parameter to control the 

sparsity from sparsifying transform and TV sparsity 

of each individual image, And F, S, d, m, λ, and T 

are the same as the Equation 7. In order to 

determine the optimal value of λ, the performance 

of several different values of λ on a dataset with a 

specified time resolution (21, 13, and 8 spokes per 

time frame) was evaluated. The reconstructions 

were performed using weights ranging from 0.01 * 

I0 to 0.1 * I0 (step size 0.01), where I0 is the 

maximum value in the NUFFT images used to 

initialize the iterative method. Finally, 0.025 * I0 

for the λ parameter and 0.1 * I0 for the β parameter 

were considered as the final values. According to 

the Nyquist rate, the number of samples required in 

this case is 384 * 2 / pi = 604, which will result in 

the acceleration factor of 28.7, 46.4, and 75.5 (21 

spokes: 604/21 = 28.7, 13 spokes: 604/13 = 46.4 

and 8 spokes: 604/8 = 75.5). The Point Spread 

Function (PSF) indicates the degree of incoherency 

associated with the radial sub-sampling before 

applying CS. In order to calculate PSF, we consider 

the value of the raw data one, and then apply the 

NUFFT to reconstruct the images. Based on the 

results obtained, the lateral edges will decrease in 

the 21 spokes to 13 and 8 spokes.  

5. Results 

The data used in this work is a cardiac image series 

with dimensions of 256 * 256 * 20 * 11 (20 

temporal frames, 11 slices, and 256 * 256 = X x Y) 

[26]. These images are first interpolated into the 

Cartesian k-space data and then into the radial data 

(3D SOS with golden ratio step). The dimensions of 

the initial k-space are 600 x 768 (Kx x Ky) for each 

slice. PSF in this algorithm was determined for 

three cases (21, 13, and 8 spokes) and was depicted 

in two angles of view, from above and from the 

side, as shown in Figure 2. The degree of 

correlation was calculated by the ratio of the main 

lobe to the side lobe. The values for the 8th, 13th, 

and 21st spokes are 30.09, 32.16, and 34.27, 

respectively, which verify the improvement of 

incoherency.  

The reconstructed images are aimed for 

quantification of the myocardium, which is located 

in the central part of the image. Therefore, for each 

reconstruction, the structural similarity index 

(denoted as SSIM) in the central part of the image 

(a box with a 96 x 96 pixel area) was measured in 

comparison with the original images to quantify the 

visual difference from the original image. Since the 

key point in the cardiac imaging assessment is the 

structure of anatomy (cardiac), the coefficients of 1 

and 0.75 were considered for the structure and 

contrast, and 0 for the illumination in SSIM. The 

SSIM values for the reconstructed images using the 

proposed method on the under-sampled data were 

calculated and compared to SSIM of the images 

reconstructed by NUFFT and GRASP (reported in 

Table 1). The average quality improvement of all 

images was near 0.1 in comparison to GRASP. The 

images reconstructed with NUFFT and the proposed 

algorithm are shown in Figure 3, and the reference 

images in Figure 4. Clearly, the artifacts 

significantly decreased in images processed by the 

proposed method. According to Figure 3, as well as 

similarity index in Table 1, the images 

reconstructed with the proposed algorithm in this 

work have the most considerable similarity to the 

reference images. Due to a large number of images 

and the slide-by-slide reconstruction, only the 

images belonging to the 1st, 8th, 14th, and 20th 

temporal frames of the 2nd, 4th, 6th, and 10th slices 

were presented. In all reconstructions, the values of 

λ and β are 0.025, and 0.1 maximum of the initial 

image reconstructed with NUFFT, respectively. 

According to the last column in Table 1 (averaged 

through the partitions), the similarity increased 

more than 0.4, 0.48, and 0.54 for 21st, 13th, and 8th 

spokes, respectively, over the NUFFT through the 

whole volume. All three groups also improved on 

average by at least 0.1 compared to GRASP, while 

the required time and computation cost did not 

increase.
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Figure. 2. Point spread function (PSF) of an undersampled radial trajectories, 21, 13 and 8 golden angle spokes in 3D 

Align Stack of Stars (ASOS). 

 

Table 1. Image quality assessment scores represent SSIM for each reconstruction category (21, 13 and 8 spokes with 

NUFFT, GRASP and proposed method), The bold numbers are the maximum value of each method. 

Slice Number 1 2 3 4 5 6 7 8 9 10 11 Ave Spokes 
Number 

GRASP 0.85 0.84 0.83 0.82 0.83 0.81 0.82 0.80 0.78 0.73 0.72 0.80  

NUFFT 0.50 0.49 0.51 0.48 0.49 0.47 0.51 0.51 0.52 0.49 0.50 0.49 21 

Proposed Method 0.86 0.87 0.88 0.89 0.89 0.89 0.90 0.89 0.90 0.91 0.92 0.89  

GRASP 0.78 0.78 0.77 0.77 0.77 0.74 0.75 0.76 0.74 0.72 0.71 0.75  

NUFFT 0.36 0.35 0.38 0.37 0.36 0.35 0.39 0.39 0.39 0.36 0.39 0.37 13 

Proposed Method 0.82 0.83 0.84 0.84 0.85 0.86 0.88 0.87 0.86 0.85 0.86 0.85  

GRASP 0.70 0.72 0.69 0.74 0.73 0.75 0.75 0.70 0.77 0.72 0.70 0.72  

NUFFT 0.26 0.25 0.27 0.27 0.27 0.26 0.28 0.29 0.29 0.27 0.28 0.27 8 

Proposed Method 0.81 0.81 0.82 0.83 0.84 0.82 0.83 0.81 0.82 0.80 0.79 0.81  

 

6. Discussion 

The main difficulty of all the iterative algorithms is 

their speed and computational cost. Both the 

GRASP and proposed methods are time-consuming 

due to the interpolation steps of NUFFT at each 

iteration so the elimination of the interpolation steps 

may solve this drawback.  

 

Recently Polar Fourier Transform (PFT) [27] has 

been introduced by Golshani et al., which can 

reconstruct the radial data without any interpolation 

steps; thus PFT can be an alternative for NUFFT. 

By using PFT instead of NUFFT in the proposed 

method, the time-consuming issue probably would 

be solved. 
 

21 spokes 13 spokes 8 spokes 
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7. Conclusion 

In this work, we proposed a reconstruction method 

based on a combination of the TV and GRASP 

methods for highly under-sampled ASOS-golden 

angle cardiac MRI data, and calculated PSF in order 

to investigate the degree of incoherency. In the 

images reconstructed by the proposed method, the 

streaking artifact significantly declined. The 

similarity between the sub-sampled (only 8 spokes) 

and reference images enhanced more than 0.81, 

while the time complexity and computational cost 

were almost the same with the GRASP algorithm 

and did not increase. By reducing the number of 

spokes from 21 to 8, the resistance of the proposed 

algorithm to different sampling rates was also 

investigated. Even the visual comparison of the 

results proves the improvement of the image quality 

using the proposed method. In brief, in this work, 

8 spokes 13 spokes 21 spokes 
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Figure. 3. Reconstruction of five representative partition from the simulation golden-angle volumetric cardiac dataset 

using (a) proposed method (b)NUFFT with three different spokes number: 21, 13 and 8. 

Figure. 4. Original Images (Ground truth). 
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three approaches were compared with each other, 

and finally, high-resolution images were 

successfully reconstructed at a high acceleration 

rate by the proposed method. 
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-در تصویربرداری تشدید مغناطیسی با استفاده از ادغام روش Stack of Starsبازسازی داده سه بعدی 

  TVو GRASPهای 

 

  *1رجواد کاظمی تبا و2، عباس نصیرایی مقدم1عطاالله ابراهیم زاده، 1میترا توکلی

 .مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، مازندران، ایران دانشکده 1
 .، ایرانتهران ،امیرکبیر، دانشگاه صنعتی پزشکیمهندسی دانشکده  2

 42/40/0401 پذیرش؛ 02/40/0401 بازنگری؛ 40/11/0404 ارسال

 چکیده:

کناد.  جاادینار  ا یبافتهاا نیب یتواند تضاد خوب یاست که م تصویربرداری تشدید مغناطیسی، یرتهاجمیغ یربرداریتصو یروشها نیتر شرفتهیاز پ یکی

سرعت اخاذ داده در  شیافزا یپرکاربرد برا یهااز روش. است ایپو یربرداریدر تصو ژهیداده ، به و اخذدر  یزمان تیروش محدود نیا یمشکل اصلهرچند 

دارد. از  نیکاارتز یباردارباا نموناه ساهیرا در مقا یمتعادد یایروش مزا نیاشاره کرد. ا یشعاع یبرداربه نمونه توانیم یسیمغناط دیتشد یربرداریتصو

باه رارفتن اطلاعاار در  دنیسارعت بششا یبارانیاز سانجش فشارده   زا ریاخ یها. در سالباشدیم یحرکت یهافکتیها مقاومت در برابر آرتجمله آن

 ینموناه باردار قیاناهمبساته  اسات کاه از طر یفکتهایبه وجود آرت ازیروش، ن نیاستفاده از ا یاستفاده شده است. برا یسیمغناط دیتشد یربرداریتصو

 جاادیا ،یباردارمنظم نمونه یهابا طرح یکه حت یاناهمبسته یهافکتیبشاطر آرت یالزا  در اخذ شعاع نیاست. ا یابیقابل دست ن،ینامنظم در اخذ کارتز

مرباو  باه  ماهیتابع جر کیقلب با استفاده از اضافه کردن  یربرداریدر تصو یداده سه بعد یپژوهش به بازساز نی. در اشودیبرآورده م یبه خوب کند؛یم

باا  یخروجا ریتصاو سهی. مقامیاسپوک پرداخت 01در حالت  GRASP یروش اخذ و بازساز یبنددر فرمول -Total-Variation-ریهر تصو یکل رارییتغ

داشاته  شیافازا کنواخاتیریغ هیافور لینسبت به تبد 43.0 ریشباهت تصاو زانینشان داد که  م  کنواختیریغ هیفور لیو تبد GRASP تمیهر دو الگور

 یبارا تواندیم یشنهادیمقاله روش پ نیا یهاافتهی. بنابر باشدیواضح م زین یبصر ررخط در هرسه حالت بصو خط یهافکتیآرت ریاست. کاهش چشمگ

 استفاده شود. ستیکوئینا رنرخیز یبرداربالا در نمونه تیفیبا ک ریساخت تصاو یبرا ایپو یسیمغناط دیتشد یربرداریسرعت تصو شیافزا

 .فشرده یحسگر ،ییطلا هیبا زاو یخذ شعاعا ،قلب تصویر برداری تشدید مغناطیسی :کلمات کلیدی

 


