
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 4, 2021, 487-496.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Improving Speed and Efficiency of Dynamic Programming Methods

through Chaos

Habib Khodadadi and Vali Derhami
*

Computer Engineering Department, Yazd University, Yazd, Iran.

Article Info Abstract

Article History:
Received 04 February 2021

Revised 07 July 2021
Accepted 13 August 2021

DOI:10.22044/JADM.2021.10520.2191

 A prominent weakness of the dynamic programming methods is that

they perform operations throughout the entire set of states in a

Markov decision process in every updating phase. In this paper, we

propose a novel chaos-based method in order to solve the problem.

For this purpose, a chaotic system is first initialized, and the resultant

numbers are mapped onto the environment states through initial

processing. In each traverse of the policy iteration method, policy

evaluation is performed only once, and only a few states are updated.

These states are proposed by the chaos system. In this method, the

policy evaluation and improvement cycle lasts until an optimal policy

is formulated in the environment. The same procedure is performed in

the value iteration method, and only the values of a few states

proposed by the chaos are updated in each traverse, whereas the

values of the other states are left unchanged. Unlike the conventional

methods, an optimal solution can be obtained in the proposed method

by only updating a limited number of states that are properly

distributed all over the environment by chaos. The test results indicate

the improved speed and efficiency of the chaotic dynamic

programming methods in obtaining the optimal solution in different

grid environments.

Keywords:
Chaos, Dynamic Programming,

Logistic Chaotic System, Policy

Iteration, Reinforcement Learning,

Value Iteration.

*Corresponding author:

vderhami@yazd.ac.ir (V. Derhami).

1. Introduction

Dynamic programming is a useful technique for

solving problems. Within the framework of

reinforcement learning and dynamic

programming, the value iteration and policy

iteration methods can be employed in order to

solve some problems modeled on the Markov

decision process (MDP). These methods try to

iteratively update the values attributed to the

states to approach the optimal value.

In the dynamic programming methods, a serious

challenge is to perform the updating process, and

operate on all sets of states. This problem is one

of the major obstacles to the implementation of

these methods because the time complexity of

these types of algorithms is very high and their

use is not cost-effective. In this case, the

asynchronous dynamic programing languages can

be used, for it is not necessary to traverse the

entire state set. These algorithms support the

values of states without considering any orders,

and use the available values of the other states at

the time of calculation. This class of algorithms

provides a considerable flexibility in selecting the

supported states [1].

In [2], the real-time dynamic programming

(RTDP) has been proposed in order to overcome

the problem of global search by evaluating only a

subset of the state space. At each step of the trial
(paths from the start state to a goal state), RTDP

updates the current state, and changes the current

state randomly according to the transition

function. Each trial stops when a goal state is

reached or a maximum number of steps is

accomplished. The states unreachable from the

start state are ignored in the trials, and therefore,

are never updated. Other versions of this

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

488

algorithm have also been developed due to some

of its flaws such as the lack of a convergence

detection mechanism. For instance, the labeled-

RTDP method has been developed in [3] in order

to label the solved states and accelerate

convergence by avoiding the unnecessary

supporting procedures in those states. The

bounded-RTDP (BRTDP) algorithm has been

proposed in [4] in order to determine the upper

and lower bounds of the optimal value function

and use them to decide whether the current state

value function reaches convergence so that further

search could be performed in those areas of the

state space with large difference. Another version

of the BRTDP algorithm has been proposed in [5]

in order to avoid the states with converged

policies but no converged value functions in

addition to identifying the states with converged

policies. A novel version of the BRTDP algorithm

has been employed in [6] in order to solve the

dynamic resource routing problem by changing

the upper and lower bounds adaptively.

The topological value iteration (TVI) algorithm

has been developed in [7] in order to first divide

every MDP into strongly connected components

(SCCs) and then solve these components. In this

method, all updates are done on the values of an

SCC in every step, and the next SCC is selected

when the previous one is converged. SCCs are

converged in an inverted topological order. The

topological policy iteration operations have been

performed on the MDPs of limited parameters in

[8]. Similar to [7], necessary updates are then

applied in an inverted topological order after the

strongly connected components are found.

The idea of prioritizing states based on the well-

known Bellman error has been used in [9]. Here,

the problem state space is divided into several

clusters. In fact, the states of a partition are

updated instead of applying global updates. A

cluster is selected, and its state values are updated

until convergence occurs. Only in the case of

convergence, another cluster is selected. In every

step, this method selects a partition with the

highest dependency on the previously selected

partitions. Another algorithm has been developed

in [10] in order to use the referrals to one state

from the other states as a criterion for prioritizing.

The low priority states can be omitted here.

The heuristic search algorithms have also been

employed in order to improve efficiency in

solving the MDP problems. These algorithms try

to use appropriate heuristic functions in order to

find a solution faster and avoid unimportant

updates. For instance, a heuristic method called

LAO* has been introduced in [11] in order to

solve an MDP problem that has two alternating

stages. LAO* expands the best partial solution,

and evaluates the states using the heuristic

function. It then executes dynamic programming

on the visited states to update their values and

possibly revise the best current solution. Another

heuristic algorithm called Anytime AO* has also

been proposed in [12] to remove the flaws of the

previous algorithms. It can achieve an optimal

policy in the environment without having an

admissible heuristic process.

In all the reviewed methods, the classic problems

of dynamic programming may still exist while

dealing with plenty of states and in large-scale

problems.

In this work, chaos was employed in order to find

the states that should be updated in the policy

iteration or value iteration processes. The chaotic

systems are known as effective methods in this

problem due to having unique features such as

sensitivity to the initial value, pseudo-

randomness, unpredictability, non-periodic

mechanism, and examination of different

segments of the state space.

The research hypothesis is to employ chaos to

improve the speed and efficiency of the classic

methods of policy iteration and value iteration.

This has never been utilized before, and can

widely be applied in many techniques. Therefore,

this manuscript focuses merely on the role of

chaos in dynamic programming.

Section 2 gives a brief introduction of chaotic

systems, and Section 3 discusses the

reinforcement learning and dynamic programming

briefly. The proposed method is presented in

Section 4, and its calculative results are analyzed

in Section 5.

2. Chaotic Systems

The chaos theory concerns the systems whose

dynamics show such high sensitivity to changes in

the initial values that it will be impossible to

predict their future behavior.

The chaotic systems are non-linear systems that

are very sensitive to their initial conditions, and

show a pseudo-random behavior. Making a slight

change in the initial conditions of such systems

will lead to massive changes in the future; this

phenomenon is known as the butterfly effect in

the chaos theory. Despite their pseudo-random

behavior, definability is an important feature of

chaotic systems that have made then popular with

many applications such as cryptography [13-16].

Many chaotic systems have been introduced so

far. For instance, the Lorenz chaotic system [17]

is based on the dynamic equations of real systems.

Improving Speed and Efficiency of Dynamic Programming Methods through Chaos

489

Another instance is the Chen chaotic system [18]

that has no specific physical changes, and is

merely a mathematical model.

Equation (1) shows the equations governing the

Lorenz system.

 {
 ̇ ()
 ̇
 ̇

 (1)

This system is chaotic if a = 10, b = 28, and c =

8/3.

The logistic system [19] is another chaotic system,

in which the governing equations are shown as

Equation (2):

 () (2)

Where x0 is a value within the (1-0) range, from

which the following values are obtained.

Regarding the values of λ within [3.56-4], the

system shows a chaotic behavior.

Figure 1 shows the behavior of the logistic system

with the initial value of x0 = 0.52 and λ = 3.9999;

moreover, Table 1 indicates the first 25 numbers

generated by the system. These numbers were

approximated to four digits.

Evidently, the generated numbers were distributed

properly in the space between 0 and 1, and the

other segments of the space were visited after a

few iterations. This is another feature of the

chaotic systems. If the initial value presented in

Figure 1 changes only to a small value, the

following generated numbers will be very

different from these numbers.

Figure 2 demonstrates the path on which a robot

moves to find a target. Chaos was used in the

equations through which the robot moves.

Accordingly, the robot searches the space very

well in order to find the target chaotically [20].

Figure 1. Chaotic behavior of the logistic signal in the first

500 iterations with x0 = 0.52 and λ = 3.9999 (the horizontal

dimension shows the number of iterations, whereas the

vertical dimension indicates the resultant logistic signal in

every iteration).

Based on the discussed features of chaos, the

chaotic generated numbers can replace the random

numbers. Despite benefiting from the pseudo-

random behavior of this phenomenon, it is also

possible to use its certainty. In other words, the

same numbers can always be generated by giving

every initial value.

Table 1. First 25 numbers of the logistic signal with x0 =

0.52 and λ = 3.9999.

 1 2 3 4 5

Values

1 to 5

0.5200 0.9984 0.0065 0.258 0.1005

Values

6 to 10

0.3615 0.9233 0.2833 0.8121 0.6104

Values

11 to 15

0.9512 0.1857 0.6049 0.9560 0.1684

Values

16 to 20

0.5601 0.9855 0.0571 0.2153 0.6757

Values

21 to 25

0.8765 0.4329 0.9820 0.0709 0.2634

Figure 2. Robot’s path towards the target through the

Lorenz chaotic equation [20].

3. Reinforcement Learning and Dynamic

Programming

Reinforcement learning means learning an

appropriate action from a series of authorized

actions for a particular situation based on the

granted rewards or received penalties [1]. The key

idea of reinforcement learning is to use the value

functions to find appropriate policies. Dynamic

programming is a method of reinforcement

learning, in which the Bellman equation is

employed in order to calculate the value of each

state of an environment or the state-action value

(Equations (3) and (4)). The values of other states

are utilized to calculate the value of each state.

 () ∑ () ∑

 () (3)

 () ∑

 () (4)

In these equations, Action a is selected from the

state set s, and the next states of s’ are the

members of the state set. Moreover, ()

denotes the value of s under policy π, whereas

 and

 show the transmission probability

and the expected value of the next reward,

respectively. Furthermore, () refers to the

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

490

probability of selecting an action (a) in the state

(s). Finally, γ is the discount factor.

The dynamic programming algorithms require a

thorough model of the environment to formulate

the optimal policies. Such a model is usually

presented as an MDP.

Assume that there is an arbitrary policy (π) for a

problem. The process of calculating the state

value function (V
π
) is called the policy valuation

of π [1]. In this method, the initial approximation

(V0) is selected optionally, except for the values of

the final states that should be selected zero if they

exist. The next approximations are obtained from

the Bellman equation as an updating rule for all

states.

The process of formulating a new policy, which

improves the value function of an initial policy

from a relatively greedy perspective, is called the

policy improvement method.

If the value of π is estimated, then V
π
 can be

employed to improve π in case it is not optimal.

Therefore, a better policy (π’) is developed. It is

then possible to calculate the value of V
π’

 to

improve the existing policy again and formulate a

better policy (π”). Hence, a sequence of policies

and value functions can be generated and

improved through a normal procedure. This

method of finding an optimal policy is called the

value iteration, which is usually converged

through multiple iterations. The algorithms 1, 2,

and 3 present the pseudo-codes of policy

evaluation, policy improvement, and policy

iteration, respectively.

In the policy improvement pseudo-code,

denotes a value of a that maximizes the

expression, i.e. selecting a greedy action. In fact,

it selects an action that looks the best action in the

short run (the next step) based on V
π
.

A weakness of the policy iteration method is that

it executes policy evaluation and policy

improvement processes consecutively many

times. If the optimal policy value function is

estimated instead of the current policy, it is then

possible to formulate the optimal policy after the

optimal value function is obtained. This solution

is called the value iteration method, in which the

maximum value is selected from the resultant

values of actions in each state. Algorithm 4 shows

the pseudo-code of the value iteration method.

Algorithm 1: Pseudo-code of the iterative policy

evaluation [1].

Function policyEvaluation (Inputs) Return Output

 Inputs: π//the policy to be evaluated

 V(s)//V(s)

 Repeat

 △ = 0;

 For each s

 v = V(s);

 () ∑ () ∑
 [

 ()]

 △=max (△,|v-V(s)|);

 End for

 Until △<ε //ε is small positive threshold

 Output: V//V≈V
π

Algorithm 2: Pseudo-code of the policy improvement

method [1].

Function policyImprovement (Inputs) Return Output

 Inputs: V(s)//V(s)

 For each s

 () ∑
 [

 ()]

 Output: π(s)// π(s) A(s): s S

Algorithm 3: Pseudo-code of the policy iteration method

[1].

Function policyIteration (Inputs) Return Output

 Inputs: π(s)// π(s) A(s): s S

 V(s)//V(s)

 Repeat

 V= policyEvaluation (π,V);

 π= policyImprovement (V);

 Until ()

 Output: π(s)// π(s) A(s): s S

Algorithm 4: Pseudo-code of the value iteration method

[1].

Function valueIteration (Inputs) Return Output

 Inputs: V(s)//V(s)

 Repeat

 △ = 0;

 For each s

 v=V(s);

 () ∑
 [

 ()]

 △ = max (△,|v-V(s)|);

 End for

 Until △<ε //ε is small positive threshold

 () ∑
 [

 ()]

 Output: π(s)// π(s) A(s): s S

4. Proposed Method

The chaotic systems (e.g. logistic systems) are

employed in order to prevent global updates in the

dynamic programming algorithms. In the policy

iteration method, a fewer number of states (M

states) are updated in every execution of the

policy evaluation algorithm instead of updating all

sates. The designated states are determined by the

chaotic system. The same procedure is performed

in the value iteration method.

In the proposed method, M denotes the number of

environmental states that must be updated in each

chaotic policy iteration and value iteration.

Improving Speed and Efficiency of Dynamic Programming Methods through Chaos

491

The algorithm execution time decreases because a

smaller number of states are updated in each

iteration.

For example, Table 2 shows an output with a

chaotic system (after pre-processing) for an

environment with 10 states. We can use these

numbers if we want to update only 5 states (M) at

a time. The states 3, 5, 1, 6, and 8 will be updated

in the first iteration, and the states 10, 1, 9, 10, and

7 in the second iteration.

Table 2. Few numbers are created by a chaotic system

after pre-processing.

1 to 5
3 5 1 6 8

6 to 10
10 1 9 10 7

11 to 15
6 8 2 1 7

16 to 20
8 5 3 10 4

The following steps are taken in the policy

iteration method:

First, the following four actions are performed:

1) Start the logistic chaotic system with an

appropriate initial value.

2) Put zero for the initial values of all states

(V = 0).

3) Put the initial policy (π) at random.

4) Insert the number of states (M) that

should be updated in every evaluation

iteration of a policy

All steps of the policy iteration method are similar

to the conventional technique, and only the sub-

procedure PolicyEvaluation changes to Algorithm

5.

Algorithm 5: Proposed pseudo-code for evaluation of the

iterative policy.

Function policyEvaluation (Inputs) Return Output

 Inputs: π , V(s), M

 X// an array of chaotic numbers

 i = 0;

 Repeat

 i = i + 1;

 (((())))

 () ∑ () ∑
 [

 ()]

 Until i <= M

 Output: V

In this algorithm, rem denotes the remaining

integer function, whereas floor refers to the

integer part of the number, and S0 shows the

number of states in the environment. As a result, s

ranges from 0 to S0-1, and shows an environment

state that should be updated. In this algorithm, an

M-length array of chaotic numbers is received as

an input in each iteration.

In this sub-procedure, the current policy is

updated only once for M states of the evaluation

environment. In other words, the values of some

states are updated with the current policy (this

action is done several times for all states in the

conventional version of this algorithm); however,

the values of the other states are not updated, and

the same input value remains. For this purpose,

the inplace updating method was applied to the

input values of function.

Each time the policy evaluation procedure is

called, the next M number is used in the chaotic

production series.

Figure 3 shows a flowchart of the proposed policy

evaluation method.

Figure 3. A flowchart of the proposed policy

evaluation method.

The value iteration method includes the following

steps:

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

492

 The three following actions are first taken:

1) Start the logistic chaotic system with an

appropriate initial value.

2) Put zero in the initial values of all states

(V = 0).

3) Insert the number of states that should be

updated in each value iteration traverse

(M).

All steps of the value iteration method resemble

the conventional state; however, the new values of

M states of the environment are only calculated in

the proposed chaotic system instead of obtaining

the new values of all states. Algorithm 6 shows

the pseudo-code of the proposed method for value

iteration.

Algorithm 6: Proposed pseudo-code of the value iteration

method.

Function valueIteration (Inputs) Return Output

 Inputs: V(s), M

 X // an array of chaotic numbers

 For j = 1 to Number of Element in X

 ((())))
 K = 1;

 Repeat

 △ = 0;

 D = C[K..K+M];

 K = K+M;

 For each s

 v = V(s);

 () ∑
 [

 ()]

 △ = max(△,|v-V(s)|);

 End for

 Until △<ε//ε is small positive threshold

 () ∑
 [

 ()]

 Output: π(s)//π(s) A(s): s S

The proposed algorithms emphasize the efficiency

of chaos with no intelligence for the usefulness

evaluation of any states. Based on the features of

chaos in visiting different points of the problem

state space, the chaotic numbers are mapped onto

some states of the environment. After that, only

the designated states are updated instead of

updating all states.

5. Computational Results

The proposed method was implemented and tested

in MATLAB R2018a running on Windows 8

operating on a system with 4 GB of RAM and an

Intel Core i5 processor.

Figure 4 shows some samples of the environment

for testing the proposed method. In these

environments, every cell corresponds to a state.

Every cell includes for possible actions, i.e.

moving up, moving left, moving right, and

moving down. An agent moves definitively in the

designated direction, and enters the cell located in

that direction near the current cell. The actions

that make the agent leave the network or hit an

obstacle will make no changes in the agent’s

success; however, they make the agent face a

penalty of -1 in the environment unless the

performed action helps the agent reach the target.

In this case, it will receive a reward of +1. An

example of solving these problems is also shown

in Figure 4.

In this figure, there are 399, 47, 423, 44, 724, 139,

and 134 accessible states in a, b, c, d, e, f, and g,

respectively. This number does not include

obstacles.

In addition to the environments presented in

Figure 4, another environment called h includes

2500 accessible states. Having no obstacles, it is a

50*50-grid environment, where the final cell on

the lower right-hand corner is the target cell.

In Algorithm 1, ε was put 0.01, whereas it was put

zero in Algorithms 4 and 6.

The logistic chaotic equation has two parameters λ

and an initial value. According to [23], if λ equals

3.9999, the system shows appropriate chaotic

attributes; therefore, this value was used in the

tests. Several initial values and λ’s were used in

[24] in order to achieve the desired goals. They

resulted in a proper efficiency; thus some of those

parameters were also used in this work. According

to [19], the closer λ is to 4, the more appropriate

chaotic attributes the system shows. It is also

possible to discard the initial production numbers

and use the subsequent numbers (for example, do

not use the first 3000 numbers) to eliminate the

transient state of the chaos system.

Table 3 presents the results. Accordingly, each

output results from the mean of five consecutive

executions in the same conditions. The proposed

idea was tested with different parameters.

However, given the extensiveness of the logistic

system parameters, it is possible to obtain better

results. Moreover, S denotes the total number of

the visited states until the algorithm convergence.

In the policy iteration method, it is necessary to

update the existing states in the two phases of

policy iteration and policy improvement. In

addition, t shows the necessary time until

convergence. It also includes generating the

random or chaotic numbers, whereas X0 and M

denote the initial value of the logistic system and

the number of states updated in policy evaluation

or value iteration, respectively.

Since the max operator always returns the first

value in MATLAB if there are multiple maximum

values, a very small random number is added

temporarily to its inputs to randomly select one of

the inputs equal values.

Improving Speed and Efficiency of Dynamic Programming Methods through Chaos

493

a[21]

c b[1]

e[22] d

g f

Figure 4. Environments used for testing the proposed method (an example of solving these environments can also

be seen).

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

494

According to Table 3, the rand function was used

in MATLAB to generate random numbers in

order to determine the superiority of chaos to

randomness. The resultant random numbers were

then used instead of the chaotic numbers.

Evidently, if the same idea is to be implemented

through random numbers, the problem will fail to

become convergent in many cases. If the problem

becomes convergent, a longer period of time than

chaos is spent. In addition, it is impossible to

repeat the state in which the solution is found

randomly (nature of randomness and

probabilities). In other words, there might be

some variations in the results of a random state if

it is repeated. However, the chaos (when the

initial parameters are determined) always repeats

the previously generated numbers; therefore, it

yields the exact same results.

In a random state, the convergence criterion is to

reach convergence in all five consecutive states

with the given value of M. In fact, it would be

insufficient to reach convergence in only some of

the executions.

This idea managed to reduce the execution time

and decrease the number of states visited to find

the optimal solution. The chaotic value iteration

method yielded the best performance in all of the

tests.

In the use of chaos, M can be put any number to

measure convergence and the algorithm execution

time. However, since only M states are updated in

every iteration of the proposed algorithm, it is not

preferable to use a value exceeding the number of

environment states, for it is possible to update all

sates at once. Moreover, the designated M is a

value by which the convergence is reached, and

the execution time is reduced. There are also other

values by which the convergence is achieved;

however, they fail to reduce the execution time

less than the conventional method.

In comparison to the standard policy iteration and

value iteration methods, only two parameters of

chaotic system and M are added. Accordingly, the

purpose of changing the chaotic system parameter

is to acquire a better chaotic attribute, which is of

little importance in view of the present research

objective. Therefore, having a new environment

with N states, we only require to find the M value

that is theoretically an integer as 0 < M < N.

Evidently, an M value that can create convergence

in a shorter period of time than the conventional

state must not be near 0 or N. Thus the only

effective parameter is M.

Table 3. Comparing different algorithms in terms of efficiency in solving environments of Figure 4.
Algorithm

Environment

Policy

iteration

Random policy

iteration

Chaotic policy

iteration

Value

iteration

Random value

iteration

Chaotic value

iteration

a t = 3.1338
S = 96873.0

t = 2.7491

S = 40858.0

M = 370

t = 2.5973

S = 35934
M = 280

X0 = 0.9734

t = 0.5176
S = 18706

t = 0.4827

S = 16112.0

M = 380

t = 0.3741

S = 12420
M = 180

X0 = 0.15

b t = 0.1107

S = 5529.2
-

t = 0.0837
S = 1562

M = 25

X0 = 0.15

t = 0.0415

S = 736
-

t = 0.0334
S = 490

M = 35

X0 = 0.15

c t = 1.0659

S = 95878.0
-

T = 0.8518

S = 36100

M = 300
X0 = 0.15

t = 0.5179

S = 18568
-

t = 0.3535
S = 11160

M = 360
X0 = 0.52

d t = 0.2802

S = 6054.4
-

t = 0.1749

S = 1216

M = 33
X0 = 0.15

t = 0.1064

S = 688
-

t = 0.0899
S = 462

M = 33
X0 = 0.9734

e t = 1.6967
S = 180750

t = 1.6191

S = 79973

M = 700

t = 1.4885

S = 71983
M = 625

X0 = 0.9734

t = 1.0432
S = 37596

t = 0.8339

S = 29394.0

M = 690

t = 0.7492
S = 27000
M = 540

X0 = 0.15

f t = 0.3558
 S = 23380

-

t = 0.2109

S = 6789
M = 80

X0 = 0.15

t = 0.1071
S = 3197

-

t = 0.0862

S = 2240
M = 70

X0 = 0.52

g t = 0.2629

S = 23155
-

t = 0.1689
S = 5525

M = 87

X0 = 0.15

t = 0.0822

S = 2546
-

t = 0.0752
S = 1980

M = 90

X0 = 0.9734

h t = 10.3441

S = 732207

t = 9.4365

S = 495260
M = 2300

t = 9.0920
S = 469900

M = 2200

X0 = 0.52

t = 5.9810

S = 247401
-

t = 2.6922
S = 105400

M = 1700

X0 = 0.52

Improving Speed and Efficiency of Dynamic Programming Methods through Chaos

495

According to Table 3, the chaotic method reduced

the number of visited states and the time required

to find the optimal solution.

The models focused on grid environments, in any

of which the tests can be conducted. Moreover,

some of them are standard environments

employed in order to examine new respective

methods. This practice explicitly outperformed the

conventional methods of policy iteration, value

iteration, and random methods. This manuscript

aims to offer a solution to the problems of

conventional methods; hence, the chaotic attribute

was used for the first time ever.

6. Conclusions

In this paper, we proposed a method for

increasing the speed and efficiency of the chaotic

dynamic programming methods in certain

environments. It was also recommended to use

chaotic equations in order to solve the problem of

traversing the entire sets of states in dynamic

programming. In this method, only a few of the

states are updated in every policy evaluation

period or every value iteration. These updated

states were proposed by chaos. According to the

simulation results, the use of chaos can decrease

the number of visited states until convergence is

reached. It can also decrease the time spent on this

process. The test results show the efficiency and

speed of the proposed method. In other words, it

took a shorter time than the conventional methods

to solve the problem.

The results obtained concern the use of a logistic

chaotic system; however, they might improve if

other chaotic systems were used.

The results were obtained from the

implementation of the proposed method in grid

environments; therefore, further studies must be

conducted to prove its efficiency in other

environments.

References
 [1] V. Derhami, F. Alamian Harandi, and M.B.

Dowlatshahi, Reinforcement Learning. Yazd, Iran,

Yazd University Press, 2017.

[2] A.G. Barto, S.J. Bradtke, and S.P. Singh, "Learning

to act using real-time dynamic programming",

Artificial Intelligence, Vol. 72(1), pp. 81–138, 1995.

[3] B. Bonet and H. Geffner, "Labeled RTDP:

Improving the Convergence of Real-time Dynamic

Programming", In Proc. 13th International Conference

on Automated Planning and Scheduling (ICAPS-03),

2003, pp. 12–21.

[4] H.B. McMahan, M. Likhachev, and G.J. Gordon,

"Bounded real-time dynamic programming: RTDP

with monotone upper bounds and performance

guarantees", In Proceedings of the 22nd International

Conference on Machine Learning, New York, 2005,

pp. 569-576.

[5] S. Sanner, R. Goetschalckx, K. Driessens, and G.

Shani, "Bayesian real-time dynamic programming", In

Proceedings of the 21st International Joint Conference

on Artificial Intelligence, Pasadena, California, USA,

2009, pp. 1784-1789.

[6] S. Schmoll and M. Schubert. "Dynamic resource

routing using real-time dynamic programming",

Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence (IJCAI-18),

Stockholm, Sweden, 2018, pp. 4822-4828.

[7] P. Dai, M.D.S. Weld, and J. Goldsmith,

"Topological value iteration algorithms", journal of

Artificial Intelligence, Vol. 42(1), pp. 181–209, 2011.

[8] W. Reis, L. Barros, and K. Delgado, "Robust

topological policy iteration for infinite horizon

bounded Markov Decision Processes", International

Journal of Approximate Reasoning, Vol. 105, pp. 287–

304, 2019.

[9] D. Wingate and K. D. Seppi, "Prioritization

methods for accelerating MDP solvers", In Journal of

Machine Learning Research, Vol. 6, pp. 851-881,

2005.

[10] A. Khademi, "A Novel Method for Improving

Value Iteration in Dense Markov Decision Process",

M.S. thesis, Dept. Computer., Yazd Univ., Yazd, 2016.

[11] E.A. Hansen and S. Zilberstein, "Lao*: A heuristic

search algorithm that finds solutions with loops",

Artificial Intelligence, 129(1-2), pp. 35–62, 2001.

[12] B. Bonet and G. Hector, "Action selection for

MDPs: Anytime AO* vs. UCT", In AAAI Conference

on Artificial Intelligence, 2012, Toronto, Ontario,

Canada, pp. 1749-1755.

[13] H. Khodadadi and A. Zandvakili, "A New Method

for Encryption of Color Images based on Combination

of Chaotic Systems", Journal of Ai and Data Mining,

Vol. 7(3), pp. 377-383, 2019.

[14] H. Khodadadi and O. Mirzaei, "A stack-based

chaotic algorithm for encryption of colored images",

Journal of AI and Data Mining, Vol. 5(1), pp. 29-37,

2017.

[15] X. Chai, Y. Chen, and L. Broyde, "A novel chaos-

based image encryption algorithm using DNA

sequence operations", Optics and Lasers in

Engineering, Vol. 88, pp. 197-213, 2017.

[16] J.S.A.E. Fouda, J.Y. Effa, S.L. Sabat, and M. Ali,

"A fast chaotic block cipher for image encryption",

Communications in Nonlinear Science and Numerical

Simulation, Vol. 19(3), pp. 578-588, 2014.

[17] E.N. Lorenz, "Deterministic Non-periodic Flow",

Journal of the Atmospheric Sciences, Vol. 20(2),

pp.130-141, 1963.

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

496

[18] G. Chen and T. Ueta, "Yet another chaotic

attractor", International Journal of Bifurcation and

Chaos, Vol. 9(7), pp. 1465-1466, 1999.

[19] A. Kanso and N. Smaoui, "Logistic chaotic maps

for binary numbers generations", Chaos, Solitons and

Fractals, Vol. 40(5), pp. 2557–2568, 2009.

[20] B. Youngchul, "Target Searching Method in the

Chaotic Mobile Robot", In the 23rd Digital Avionics

Systems Conference (IEEE Cat. No.04CH37576), Salt

Lake City, UT, USA, 2004.

[21] S. Thrun, W. Burgard, and D. Fox. Probabilistic

Robotics. Cambridge, MA: MIT Press, 2005.

[22] S. Debnath, L. Liu, and G. Sukhatme,

"Reachability and differential based heuristics for

solving Markov decision processes", The 18th

International Symposium on Robotics Research (ISRR),

Puerto Varas, Chile, 2017.

[23] N.K. Pareek, V. Patidar, and K.K. Sud, "Image

encryption using chaotic logistic map", Image and

Vision Computing, Vol. 24(9), pp. 926-934, 2006.

[24] L. Wang and H. Cheng, "Pseudo-Random Number

Generator Based on Logistic Chaotic System",

Entropy, Vol. 21(10), 2019.

 .0011سال ،چهارم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده و خدادادی درهمی

 سازی پویا به کمک آشوبهای برنامهافزایش سرعت و کارائی روش

 *ولی درهمی و حبیب خدادادی

 ایران.، یزد، دانشگاه یزد، دانشکده مهندسی کامپیوتر

 01/10/0100 پذیرش؛ 10/10/0100 بازنگری؛ 10/10/0100 ارسال

 چکیده:

-های یک فرآیند تصمیم گیرری مرارکود در هرر مرحلره برهحالت سازی پویا انجام عملیات در سرتاسر مجموعههای برنامههای عمده روشیکی از ضعف

اولیره یرک سیمرتم آشروبنا روزرسانی است. در این مقاله روشی جدید بر مبنای آشوب برای غلبه بر این مشکل ارائه شده است. ابتدا با دادن مقرادیر

شود. در هر پیمایش روش تکرار سیاست، ارزیابی سیاست فقط یرک های محیط نگاشت داده میهای اولیه، اعداد تولیدی به حالتشروع شده و با پردازش

شروند؛ در ایرن روش، چرخره پیشنهاد مریها توسط سیمتم آشوب شود که این حالتروزرسانی میها بهشود و تنها تعداد معدودی از حالتبار انجام می

شرود و در هرر کند. همرین عمرل در روش تکررار ارزش نیرج انجرام مریارزیابی و بهبود سیاست تا رسیدن به یک سیاست بهینه در محیط ادامه پیدا می

هرای مانرد. برر خلراد روشن تغییر باقی میروزرسانی شده و ارزش بقیه حالات بدودهد بهپیمایش، فقط ارزش تعدادی از حالاتی که آشوب پیشنهاد می

توان به حرل اند، میهائی که به خوبی توسط آشوب در سرتاسر فضای محیط پخش شدهروزرسانی تعداد معدودی از حالتمعمولی، در این شیوه تنها با به

-پویای آشوبنا در بدست آوردن حل بهینره در محریط سازیهای برنامهدهنده افجایش سرعت و کارائی روشهای انجام شده نشانبهینه رسید. آزمایش

 .های مختلف گریدی است

 .سازی پویا، تکرار ارزش، تکرار سیاست، سیمتم آشوبنا لاجمتیک، یادگیری تقویتیآشوب، برنامه :کلمات کلیدی

