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 A prominent weakness of the dynamic programming methods is that 

they perform operations throughout the entire set of states in a 

Markov decision process in every updating phase. In this paper, we 

propose a novel chaos-based method in order to solve the problem. 

For this purpose, a chaotic system is first initialized, and the resultant 

numbers are mapped onto the environment states through initial 

processing. In each traverse of the policy iteration method, policy 

evaluation is performed only once, and only a few states are updated. 

These states are proposed by the chaos system. In this method, the 

policy evaluation and improvement cycle lasts until an optimal policy 

is formulated in the environment. The same procedure is performed in 

the value iteration method, and only the values of a few states 

proposed by the chaos are updated in each traverse, whereas the 

values of the other states are left unchanged. Unlike the conventional 

methods, an optimal solution can be obtained in the proposed method 

by only updating a limited number of states that are properly 

distributed all over the environment by chaos. The test results indicate 

the improved speed and efficiency of the chaotic dynamic 

programming methods in obtaining the optimal solution in different 

grid environments. 
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1. Introduction 

Dynamic programming is a useful technique for 

solving problems. Within the framework of 

reinforcement learning and dynamic 

programming, the value iteration and policy 

iteration methods can be employed in order to 

solve some problems modeled on the Markov 

decision process (MDP). These methods try to 

iteratively update the values attributed to the 

states to approach the optimal value. 

In the dynamic programming methods, a serious 

challenge is to perform the updating process, and 

operate on all sets of states. This problem is one 

of the major obstacles to the implementation of 

these methods because the time complexity of 

these types of algorithms is very high and their 

use is not cost-effective. In this case, the 

asynchronous dynamic programing languages can 

be used, for it is not necessary to traverse the 

entire state set. These algorithms support the 

values of states without considering any orders, 

and use the available values of the other states at 

the time of calculation. This class of algorithms 

provides a considerable flexibility in selecting the 

supported states [1].  

In [2], the real-time dynamic programming 

(RTDP) has been proposed in order to overcome 

the problem of global search by evaluating only a 

subset of the state space. At each step of the trial 
(paths from the start state to a goal state), RTDP 

updates the current state, and changes the current 

state randomly according to the transition 

function. Each trial stops when a goal state is 

reached or a maximum number of steps is 

accomplished. The states unreachable from the 

start state are ignored in the trials, and therefore, 

are never updated. Other versions of this 
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algorithm have also been developed due to some 

of its flaws such as the lack of a convergence 

detection mechanism. For instance, the labeled-

RTDP method has been developed in [3] in order 

to label the solved states and accelerate 

convergence by avoiding the unnecessary 

supporting procedures in those states. The 

bounded-RTDP (BRTDP) algorithm has been 

proposed in [4] in order to determine the upper 

and lower bounds of the optimal value function 

and use them to decide whether the current state 

value function reaches convergence so that further 

search could be performed in those areas of the 

state space with large difference. Another version 

of the BRTDP algorithm has been proposed in [5] 

in order to avoid the states with converged 

policies but no converged value functions in 

addition to identifying the states with converged 

policies. A novel version of the BRTDP algorithm 

has been employed in [6] in order to solve the 

dynamic resource routing problem by changing 

the upper and lower bounds adaptively. 

The topological value iteration (TVI) algorithm 

has been developed in [7] in order to first divide 

every MDP into strongly connected components 

(SCCs) and then solve these components. In this 

method, all updates are done on the values of an 

SCC in every step, and the next SCC is selected 

when the previous one is converged. SCCs are 

converged in an inverted topological order. The 

topological policy iteration operations have been 

performed on the MDPs of limited parameters in 

[8]. Similar to [7], necessary updates are then 

applied in an inverted topological order after the 

strongly connected components are found. 

The idea of prioritizing states based on the well-

known Bellman error has been used in [9]. Here, 

the problem state space is divided into several 

clusters. In fact, the states of a partition are 

updated instead of applying global updates. A 

cluster is selected, and its state values are updated 

until convergence occurs. Only in the case of 

convergence, another cluster is selected. In every 

step, this method selects a partition with the 

highest dependency on the previously selected 

partitions. Another algorithm has been developed 

in [10] in order to use the referrals to one state 

from the other states as a criterion for prioritizing. 

The low priority states can be omitted here. 

The heuristic search algorithms have also been 

employed in order to improve efficiency in 

solving the MDP problems. These algorithms try 

to use appropriate heuristic functions in order to 

find a solution faster and avoid unimportant 

updates. For instance, a heuristic method called 

LAO* has been introduced in [11] in order to 

solve an MDP problem that has two alternating 

stages. LAO* expands the best partial solution, 

and evaluates the states using the heuristic 

function. It then executes dynamic programming 

on the visited states to update their values and 

possibly revise the best current solution. Another 

heuristic algorithm called Anytime AO* has also 

been proposed in [12] to remove the flaws of the 

previous algorithms. It can achieve an optimal 

policy in the environment without having an 

admissible heuristic process. 

In all the reviewed methods, the classic problems 

of dynamic programming may still exist while 

dealing with plenty of states and in large-scale 

problems. 

In this work, chaos was employed in order to find 

the states that should be updated in the policy 

iteration or value iteration processes. The chaotic 

systems are known as effective methods in this 

problem due to having unique features such as 

sensitivity to the initial value, pseudo-

randomness, unpredictability, non-periodic 

mechanism, and examination of different 

segments of the state space. 

The research hypothesis is to employ chaos to 

improve the speed and efficiency of the classic 

methods of policy iteration and value iteration. 

This has never been utilized before, and can 

widely be applied in many techniques. Therefore, 

this manuscript focuses merely on the role of 

chaos in dynamic programming. 

Section 2 gives a brief introduction of chaotic 

systems, and Section 3 discusses the 

reinforcement learning and dynamic programming 

briefly. The proposed method is presented in 

Section 4, and its calculative results are analyzed 

in Section 5. 

 

2. Chaotic Systems  

The chaos theory concerns the systems whose 

dynamics show such high sensitivity to changes in 

the initial values that it will be impossible to 

predict their future behavior. 

The chaotic systems are non-linear systems that 

are very sensitive to their initial conditions, and 

show a pseudo-random behavior. Making a slight 

change in the initial conditions of such systems 

will lead to massive changes in the future; this 

phenomenon is known as the butterfly effect in 

the chaos theory. Despite their pseudo-random 

behavior, definability is an important feature of 

chaotic systems that have made then popular with 

many applications such as cryptography [13-16]. 

Many chaotic systems have been introduced so 

far. For instance, the Lorenz chaotic system [17] 

is based on the dynamic equations of real systems. 
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Another instance is the Chen chaotic system [18] 

that has no specific physical changes, and is 

merely a mathematical model. 

Equation (1) shows the equations governing the 

Lorenz system. 

   { 
 ̇   (   )                     
 ̇                        
 ̇                            

                         (1) 

This system is chaotic if a = 10, b = 28, and c = 

8/3. 

The logistic system [19] is another chaotic system, 

in which the governing equations are shown as 

Equation (2): 

        (    )                                         (2) 

Where x0 is a value within the (1-0) range, from 

which the following values are obtained. 

Regarding the values of λ within [3.56-4], the 

system shows a chaotic behavior. 

Figure 1 shows the behavior of the logistic system 

with the initial value of x0 = 0.52 and λ = 3.9999; 

moreover, Table 1 indicates the first 25 numbers 

generated by the system. These numbers were 

approximated to four digits. 

Evidently, the generated numbers were distributed 

properly in the space between 0 and 1, and the 

other segments of the space were visited after a 

few iterations. This is another feature of the 

chaotic systems. If the initial value presented in 

Figure 1 changes only to a small value, the 

following generated numbers will be very 

different from these numbers. 

Figure 2 demonstrates the path on which a robot 

moves to find a target. Chaos was used in the 

equations through which the robot moves. 

Accordingly, the robot searches the space very 

well in order to find the target chaotically [20]. 

 

 

Figure 1. Chaotic behavior of the logistic signal in the first 

500 iterations with x0 = 0.52 and λ = 3.9999 (the horizontal 

dimension shows the number of iterations, whereas the 

vertical dimension indicates the resultant logistic signal in 

every iteration). 

Based on the discussed features of chaos, the 

chaotic generated numbers can replace the random 

numbers. Despite benefiting from the pseudo-

random behavior of this phenomenon, it is also 

possible to use its certainty. In other words, the 

same numbers can always be generated by giving 

every initial value. 

 

Table 1. First 25 numbers of the logistic signal with x0 = 

0.52 and λ = 3.9999. 

 1 2 3 4 5 

Values 

1 to 5 

0.5200 0.9984 0.0065 0.258 0.1005 

Values 

6 to 10 

0.3615 0.9233 0.2833 0.8121 0.6104 

Values 

11 to 15 

0.9512 0.1857 0.6049 0.9560 0.1684 

Values 

16 to 20 

0.5601 0.9855 0.0571 0.2153 0.6757 

Values 

21 to 25 

0.8765 0.4329 0.9820 0.0709 0.2634 

 

 

Figure 2. Robot’s path towards the target through the 

Lorenz chaotic equation [20]. 

 

3. Reinforcement Learning and Dynamic 

Programming  

Reinforcement learning means learning an 

appropriate action from a series of authorized 

actions for a particular situation based on the 

granted rewards or received penalties [1]. The key 

idea of reinforcement learning is to use the value 

functions to find appropriate policies. Dynamic 

programming is a method of reinforcement 

learning, in which the Bellman equation is 

employed in order to calculate the value of each 

state of an environment or the state-action value 

(Equations (3) and (4)). The values of other states 

are utilized to calculate the value of each state. 

  ( )  ∑  (   ) ∑     
      

     (  )      (3) 

  (   )  ∑     
      

     (  )                   (4) 

In these equations, Action a is selected from the 

state set s, and the next states of s’ are the 

members of the state set. Moreover,   ( ) 

denotes the value of s under policy π, whereas 

    
  and     

  show the transmission probability 

and the expected value of the next reward, 

respectively. Furthermore,  (   ) refers to the 
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probability of selecting an action (a) in the state 

(s). Finally, γ is the discount factor. 

The dynamic programming algorithms require a 

thorough model of the environment to formulate 

the optimal policies. Such a model is usually 

presented as an MDP. 

Assume that there is an arbitrary policy (π) for a 

problem. The process of calculating the state 

value function (V
π
) is called the policy valuation 

of π [1]. In this method, the initial approximation 

(V0) is selected optionally, except for the values of 

the final states that should be selected zero if they 

exist. The next approximations are obtained from 

the Bellman equation as an updating rule for all 

states. 

The process of formulating a new policy, which 

improves the value function of an initial policy 

from a relatively greedy perspective, is called the 

policy improvement method. 

If the value of π is estimated, then V
π
 can be 

employed to improve π in case it is not optimal. 

Therefore, a better policy (π’) is developed. It is 

then possible to calculate the value of V
π’

 to 

improve the existing policy again and formulate a 

better policy (π”). Hence, a sequence of policies 

and value functions can be generated and 

improved through a normal procedure. This 

method of finding an optimal policy is called the 

value iteration, which is usually converged 

through multiple iterations. The algorithms 1, 2, 

and 3 present the pseudo-codes of policy 

evaluation, policy improvement, and policy 

iteration, respectively. 

In the policy improvement pseudo-code,         

denotes a value of a that maximizes the 

expression, i.e. selecting a greedy action. In fact, 

it selects an action that looks the best action in the 

short run (the next step) based on V
π
. 

A weakness of the policy iteration method is that 

it executes policy evaluation and policy 

improvement processes consecutively many 

times. If the optimal policy value function is 

estimated instead of the current policy, it is then 

possible to formulate the optimal policy after the 

optimal value function is obtained. This solution 

is called the value iteration method, in which the 

maximum value is selected from the resultant 

values of actions in each state. Algorithm 4 shows 

the pseudo-code of the value iteration method. 

 

Algorithm 1: Pseudo-code of the iterative policy 

evaluation [1]. 

Function policyEvaluation (Inputs) Return Output 

    Inputs: π//the policy to be evaluated 

                 V(s)//V(s)   

    Repeat 

            △ = 0; 

            For each s   

                v = V(s); 

                 ( )  ∑  (   ) ∑     
 [    

    (  )]    

                △=max (△,|v-V(s)|); 

            End for 

    Until △<ε //ε is small positive threshold 

    Output: V//V≈V
π
 

 
Algorithm 2: Pseudo-code of the policy improvement 

method [1]. 

Function policyImprovement (Inputs) Return Output 

    Inputs: V(s)//V(s)    

    For each s   

         ( )         ∑     
 [    

     (  )]   

    Output: π(s)// π(s)  A(s):  s S 

 

Algorithm 3: Pseudo-code of the policy iteration method 

[1]. 

Function policyIteration (Inputs) Return Output 

    Inputs: π(s)// π(s)  A(s):  s S  

                 V(s)//V(s)   

    Repeat 

                 

            V= policyEvaluation (π,V); 

             π= policyImprovement (V); 

    Until (    ) 

    Output: π(s)// π(s)  A(s):  s S 

 
Algorithm 4: Pseudo-code of the value iteration method 

[1]. 

Function valueIteration (Inputs) Return Output 

    Inputs: V(s)//V(s)   

    Repeat 

            △ = 0; 

            For each s   

                v=V(s); 

                 ( )      ∑     
 [    

    (  )]    

                △ = max (△,|v-V(s)|); 

            End for 

    Until △<ε //ε is small positive threshold 

     ( )         ∑     
 [    

     (  )]   

    Output: π(s)// π(s)  A(s):  s S 

 
4. Proposed Method  

The chaotic systems (e.g. logistic systems) are 

employed in order to prevent global updates in the 

dynamic programming algorithms. In the policy 

iteration method, a fewer number of states (M 

states) are updated in every execution of the 

policy evaluation algorithm instead of updating all 

sates. The designated states are determined by the 

chaotic system. The same procedure is performed 

in the value iteration method. 

In the proposed method, M denotes the number of 

environmental states that must be updated in each 

chaotic policy iteration and value iteration. 
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The algorithm execution time decreases because a 

smaller number of states are updated in each 

iteration. 

For example, Table 2 shows an output with a 

chaotic system (after pre-processing) for an 

environment with 10 states. We can use these 

numbers if we want to update only 5 states (M) at 

a time. The states 3, 5, 1, 6, and 8 will be updated 

in the first iteration, and the states 10, 1, 9, 10, and 

7 in the second iteration. 
 

Table 2. Few numbers are created by a chaotic system 

after pre-processing. 

1 to 5 
3 5 1 6 8 

6 to 10 
10 1 9 10 7 

11 to 15 
6 8 2 1 7 

16 to 20 
8 5 3 10 4 

 

The following steps are taken in the policy 

iteration method: 

First, the following four actions are performed: 

1) Start the logistic chaotic system with an 

appropriate initial value. 

2) Put zero for the initial values of all states 

(V = 0). 

3) Put the initial policy (π) at random. 

4) Insert the number of states (M) that 

should be updated in every evaluation 

iteration of a policy 

All steps of the policy iteration method are similar 

to the conventional technique, and only the sub-

procedure PolicyEvaluation changes to Algorithm 

5. 

 

Algorithm 5: Proposed pseudo-code for evaluation of the 

iterative policy. 

Function policyEvaluation (Inputs) Return Output 

    Inputs: π , V(s), M 

    X// an array of chaotic numbers 

    i = 0;     

    Repeat 

          i = i + 1; 

               (     (( ( ))      )   )    

           ( )  ∑  (   ) ∑     
 [    

    (  )]    

    Until i <= M  

    Output: V 

 

In this algorithm, rem denotes the remaining 

integer function, whereas floor refers to the 

integer part of the number, and S0 shows the 

number of states in the environment. As a result, s 

ranges from 0 to S0-1, and shows an environment 

state that should be updated. In this algorithm, an 

M-length array of chaotic numbers is received as 

an input in each iteration. 

In this sub-procedure, the current policy is 

updated only once for M states of the evaluation 

environment. In other words, the values of some 

states are updated with the current policy (this 

action is done several times for all states in the 

conventional version of this algorithm); however, 

the values of the other states are not updated, and 

the same input value remains. For this purpose, 

the inplace updating method was applied to the 

input values of function. 

Each time the policy evaluation procedure is 

called, the next M number is used in the chaotic 

production series. 

Figure 3 shows a flowchart of the proposed policy 

evaluation method. 

 

 

 
Figure 3. A flowchart of the proposed policy 

evaluation method. 

The value iteration method includes the following 

steps: 
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 The three following actions are first taken: 

1)  Start the logistic chaotic system with an 

appropriate initial value. 

2) Put zero in the initial values of all states 

(V = 0). 

3) Insert the number of states that should be 

updated in each value iteration traverse 

(M). 

All steps of the value iteration method resemble 

the conventional state; however, the new values of 

M states of the environment are only calculated in 

the proposed chaotic system instead of obtaining 

the new values of all states. Algorithm 6 shows 

the pseudo-code of the proposed method for value 

iteration. 

Algorithm 6: Proposed pseudo-code of the value iteration 

method. 

Function valueIteration (Inputs) Return Output 

    Inputs: V(s), M  

    X // an array of chaotic numbers 

    For j = 1 to Number of Element in X  

                (     ( ( ))      )   )   
    K = 1; 

    Repeat 

            △ = 0; 

            D = C[K..K+M]; 

            K = K+M; 

            For each s   

                v = V(s); 

                 ( )      ∑     
 [    

    (  )]    

                △ = max(△,|v-V(s)|); 

            End for 

    Until △<ε//ε is small positive threshold 

     ( )         ∑     
 [    

     (  )]   

   Output: π(s)//π(s)  A(s):  s S 

 

The proposed algorithms emphasize the efficiency 

of chaos with no intelligence for the usefulness 

evaluation of any states. Based on the features of 

chaos in visiting different points of the problem 

state space, the chaotic numbers are mapped onto 

some states of the environment. After that, only 

the designated states are updated instead of 

updating all states. 

 

5. Computational Results  

The proposed method was implemented and tested 

in MATLAB R2018a running on Windows 8 

operating on a system with 4 GB of RAM and an 

Intel Core i5 processor. 

Figure 4 shows some samples of the environment 

for testing the proposed method. In these 

environments, every cell corresponds to a state. 

Every cell includes for possible actions, i.e. 

moving up, moving left, moving right, and 

moving down. An agent moves definitively in the 

designated direction, and enters the cell located in 

that direction near the current cell. The actions 

that make the agent leave the network or hit an 

obstacle will make no changes in the agent’s 

success; however, they make the agent face a 

penalty of -1 in the environment unless the 

performed action helps the agent reach the target. 

In this case, it will receive a reward of +1. An 

example of solving these problems is also shown 

in Figure 4. 

In this figure, there are 399, 47, 423, 44, 724, 139, 

and 134 accessible states in a, b, c, d, e, f, and g, 

respectively. This number does not include 

obstacles. 

In addition to the environments presented in 

Figure 4, another environment called h includes 

2500 accessible states. Having no obstacles, it is a 

50*50-grid environment, where the final cell on 

the lower right-hand corner is the target cell. 

In Algorithm 1, ε was put 0.01, whereas it was put 

zero in Algorithms 4 and 6. 

The logistic chaotic equation has two parameters λ 

and an initial value. According to [23], if λ equals 

3.9999, the system shows appropriate chaotic 

attributes; therefore, this value was used in the 

tests. Several initial values and λ’s were used in 

[24] in order to achieve the desired goals. They 

resulted in a proper efficiency; thus some of those 

parameters were also used in this work. According 

to [19], the closer λ is to 4, the more appropriate 

chaotic attributes the system shows. It is also 

possible to discard the initial production numbers 

and use the subsequent numbers (for example, do 

not use the first 3000 numbers) to eliminate the 

transient state of the chaos system. 

Table 3 presents the results. Accordingly, each 

output results from the mean of five consecutive 

executions in the same conditions. The proposed 

idea was tested with different parameters. 

However, given the extensiveness of the logistic 

system parameters, it is possible to obtain better 

results. Moreover, S denotes the total number of 

the visited states until the algorithm convergence. 

In the policy iteration method, it is necessary to 

update the existing states in the two phases of 

policy iteration and policy improvement. In 

addition, t shows the necessary time until 

convergence. It also includes generating the 

random or chaotic numbers, whereas X0 and M 

denote the initial value of the logistic system and 

the number of states updated in policy evaluation 

or value iteration, respectively. 

Since the max operator always returns the first 

value in MATLAB if there are multiple maximum 

values, a very small random number is added 

temporarily to its inputs to randomly select one of 

the inputs equal values.
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a[21] 

  
c b[1] 

  
e[22] d 

  
g f 

Figure 4. Environments used for testing the proposed method (an example of solving these environments can also 

be seen). 
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According to Table 3, the rand function was used 

in MATLAB to generate random numbers in 

order to determine the superiority of chaos to 

randomness. The resultant random numbers were 

then used instead of the chaotic numbers. 

Evidently, if the same idea is to be implemented 

through random numbers, the problem will fail to 

become convergent in many cases. If the problem 

becomes convergent, a longer period of time than 

chaos is spent. In addition, it is impossible to 

repeat the state in which the solution is found 

randomly (nature of randomness and 

probabilities). In other words, there might be 

some variations in the results of a random state if 

it is repeated. However, the chaos (when the 

initial parameters are determined) always repeats 

the previously generated numbers; therefore, it 

yields the exact same results. 

In a random state, the convergence criterion is to 

reach convergence in all five consecutive states 

with the given value of M. In fact, it would be 

insufficient to reach convergence in only some of 

the executions. 

This idea managed to reduce the execution time 

and decrease the number of states visited to find 

the optimal solution. The chaotic value iteration 

method yielded the best performance in all of the 

tests. 

In the use of chaos, M can be put any number to 

measure convergence and the algorithm execution 

time. However, since only M states are updated in 

every iteration of the proposed algorithm, it is not 

preferable to use a value exceeding the number of 

environment states, for it is possible to update all 

sates at once. Moreover, the designated M is a 

value by which the convergence is reached, and 

the execution time is reduced. There are also other 

values by which the convergence is achieved; 

however, they fail to reduce the execution time 

less than the conventional method.  

In comparison to the standard policy iteration and 

value iteration methods, only two parameters of 

chaotic system and M are added. Accordingly, the 

purpose of changing the chaotic system parameter 

is to acquire a better chaotic attribute, which is of 

little importance in view of the present research 

objective. Therefore, having a new environment 

with N states, we only require to find the M value 

that is theoretically an integer as 0 < M < N. 

Evidently, an M value that can create convergence 

in a shorter period of time than the conventional 

state must not be near 0 or N. Thus the only 

effective parameter is M. 

Table 3. Comparing different algorithms in terms of efficiency in solving environments of Figure 4. 
Algorithm 

Environment  

Policy 

iteration  

Random policy 

iteration  

Chaotic policy 

iteration  

Value 

iteration 

Random value  

iteration 

Chaotic value 

iteration  

a t = 3.1338  
S = 96873.0 

t = 2.7491    

S = 40858.0   

M = 370 

t = 2.5973    

S = 35934   
M = 280  

X0  = 0.9734   

t = 0.5176  
S = 18706 

t = 0.4827    

S = 16112.0   

M = 380 

t = 0.3741    

S = 12420  
M = 180    

X0  = 0.15   

b t = 0.1107  

S = 5529.2 
- 

t = 0.0837    
S = 1562    

M = 25  

X0  = 0.15   

t = 0.0415 

S = 736 
- 

t = 0.0334    
S = 490  

M = 35 

X0  = 0.15   

c t = 1.0659    

S = 95878.0 
- 

T = 0.8518    

S = 36100   

M = 300    
X0 = 0.15   

t = 0.5179 

S = 18568 
- 

t = 0.3535    
S = 11160   

M = 360   
X0  = 0.52   

d t = 0.2802   

S = 6054.4 
- 

t = 0.1749    

S = 1216  

M = 33    
X0 = 0.15   

t = 0.1064 

S = 688 
- 

t = 0.0899    
S = 462   

M = 33   
X0  = 0.9734   

e t = 1.6967    
S = 180750 

t = 1.6191    

S = 79973   

M = 700 

t = 1.4885    

S = 71983   
M = 625    

X0 = 0.9734   

t = 1.0432  
S = 37596 

t = 0.8339    

S = 29394.0  

M = 690 

t = 0.7492    
S = 27000  
M = 540   

X0  = 0.15   

f t = 0.3558 
 S = 23380 

- 

t = 0.2109  

S = 6789  
M = 80    

X0 = 0.15    

t = 0.1071 
S = 3197 

- 

t = 0.0862  

S = 2240  
M = 70   

X0  = 0.52   

g t = 0.2629  

S = 23155 
- 

t = 0.1689  
S = 5525  

M = 87    

X0 = 0.15   

t = 0.0822 

S = 2546 
- 

t = 0.0752  
S = 1980  

M = 90   

X0  = 0.9734   

h t = 10.3441   

S = 732207 

t = 9.4365   

S = 495260  
M = 2300 

t = 9.0920    
S = 469900   

M = 2200    

X0 = 0.52   

t = 5.9810  

S = 247401 
- 

t = 2.6922    
S = 105400   

M = 1700    

X0  = 0.52   
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According to Table 3, the chaotic method reduced 

the number of visited states and the time required 

to find the optimal solution. 

The models focused on grid environments, in any 

of which the tests can be conducted. Moreover, 

some of them are standard environments 

employed in order to examine new respective 

methods. This practice explicitly outperformed the 

conventional methods of policy iteration, value 

iteration, and random methods. This manuscript 

aims to offer a solution to the problems of 

conventional methods; hence, the chaotic attribute 

was used for the first time ever. 

 

6. Conclusions 

In this paper, we proposed a method for 

increasing the speed and efficiency of the chaotic 

dynamic programming methods in certain 

environments. It was also recommended to use 

chaotic equations in order to solve the problem of 

traversing the entire sets of states in dynamic 

programming. In this method, only a few of the 

states are updated in every policy evaluation 

period or every value iteration. These updated 

states were proposed by chaos. According to the 

simulation results, the use of chaos can decrease 

the number of visited states until convergence is 

reached. It can also decrease the time spent on this 

process. The test results show the efficiency and 

speed of the proposed method. In other words, it 

took a shorter time than the conventional methods 

to solve the problem. 

The results obtained concern the use of a logistic 

chaotic system; however, they might improve if 

other chaotic systems were used. 

The results were obtained from the 

implementation of the proposed method in grid 

environments; therefore, further studies must be 

conducted to prove its efficiency in other 

environments. 
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 .0011سال  ،چهارم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده                                                                                               و خدادادی درهمی

 

  سازی پویا به کمک آشوبهای برنامهافزایش سرعت و کارائی روش

 

  *ولی درهمی و  حبیب خدادادی

  ایران.، یزد، دانشگاه یزد، دانشکده مهندسی کامپیوتر

 01/10/0100 پذیرش؛ 10/10/0100 بازنگری؛ 10/10/0100 ارسال

 چکیده:

-های یک فرآیند تصمیم گیرری مرارکود در هرر مرحلره برهحالت سازی پویا انجام عملیات در سرتاسر مجموعههای برنامههای عمده روشیکی از ضعف

اولیره یرک سیمرتم آشروبنا  روزرسانی است. در این مقاله روشی جدید بر مبنای آشوب برای غلبه بر این مشکل ارائه شده است. ابتدا  با دادن مقرادیر 

شود. در هر پیمایش روش تکرار سیاست، ارزیابی سیاست فقط یرک های محیط نگاشت داده میهای اولیه، اعداد تولیدی به حالتشروع شده و با پردازش

شروند؛ در ایرن روش، چرخره پیشنهاد مریها توسط سیمتم آشوب شود که این حالتروزرسانی میها بهشود و تنها تعداد معدودی از حالتبار  انجام می

شرود و در هرر کند. همرین عمرل در روش تکررار ارزش نیرج انجرام مریارزیابی و بهبود سیاست تا رسیدن به یک سیاست بهینه در محیط ادامه پیدا می

هرای مانرد. برر خلراد روشن تغییر باقی میروزرسانی شده و ارزش بقیه حالات بدودهد بهپیمایش، فقط ارزش تعدادی از حالاتی که آشوب پیشنهاد می

توان به حرل اند، میهائی که به خوبی توسط آشوب در سرتاسر فضای محیط پخش شدهروزرسانی تعداد معدودی از حالتمعمولی، در این شیوه تنها با به

-پویای آشوبنا  در بدست آوردن حل بهینره در محریط سازیهای برنامهدهنده افجایش سرعت و کارائی روشهای انجام شده نشانبهینه رسید. آزمایش

   .های مختلف گریدی است

 .سازی پویا، تکرار ارزش، تکرار سیاست، سیمتم آشوبنا  لاجمتیک، یادگیری تقویتیآشوب،  برنامه :کلمات کلیدی

 


