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 In the structural software test, the test data generation is essential. The 

problem of generating the test data is a search problem, and for 

solving the problem, the search algorithms can be used. Genetic 

algorithm is one of the most widely used algorithms in this field. 

Adjusting the genetic algorithm parameters helps to increase the 

effectiveness of this algorithm. In this paper, the adaptive genetic 

algorithm is used in order to maintain the diversity of the population 

to the test data generation based on the path coverage criterion, which 

calculates the rate of recombination and mutation with the similarity 

between the chromosomes and the amount of chromosome fitness 

during and around each algorithm. The experiments performed show 

that this method is faster for generating the test data than the other 

versions of genetic algorithm used by the others. 
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1. Introduction 

Software testing is a process of identifying the 

correctness of software by considering its all 

attributes (reliability, scalability, portability, re-

usability, usability) and evaluating the execution 

of the software components to find the software 

bugs or errors or defects. Software testing 

provides an independent view and objective of the 

software, and gives surety of the software's 

fitness. It involves testing all the components 

under the required services to confirm that 

whether it is satisfying the specified requirements 

or not. The process also provides the client with 

information about the quality of the software. 

Once the software is produced, it must be tested. 

According to the research work conducted by 

NIST, the damage caused by software breaches is 

massive [43].  

The software test consumes many resources but 

does not add any new functionality to the product. 

Therefore, significant efforts have been made in 

order to reduce the software development costs by 

developing the automated software testing tools. 

In the last decade, various methods have been 

introduced for automatic software testing in order 

to maximize error detection by producing the least 

number of test data. In the process of test data 

generation, we require a criterion such as a path 

coverage criterion, the edge coverage criterion, 

and the node coverage criterion to determine the 

amount of program coverage by the data 

generated. After selecting the quality criterion, the 

amount of program coverage can be determined 

by the generated data. The automated structural 

testing methods are divided into two categories: 

dynamic and static methods [2]. The generation 

test data in static structural is based on the 

analysis of the program's internal structure 

without the need to run the program, and is 

usually based on the symbolic execution. This 

method has problems with the arrays and pointers 

[1]. 

In the dynamic method, the program under test 

(PUT) is required to be run, and the problems of 

the static method are solved. In this method, 

generating the test data is transformed into an 

optimization problem to use the search 

algorithms. In other words, parts of the test 

program can be overwritten as a function, and 

searched for the optimal value of the resulting 

function. The data obtained covers the intended 

purpose according to the quality criterion. 

In generating the test data, we require a criterion 

referred to as the coverage criterion in order to 

determine the amount of program coverage by the 
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generated data. These criteria are defined based on 

the control flow graph (CFG) of the program. For 

example, the branch coverage or edge coverage 

criterion is one of the criteria in which the goal is 

to cover all the branches of the program CFG. 

Another quality criterion is the statement coverage 

or node coverage criterion, which aims to execute 

all nodes of CFG. Another criterion is the path 

coverage criterion, which aims to cover all paths 

within CFG. The branch coverage and node 

coverage are subsets of the path coverage criteria 

[44]. After selecting a coverage criterion, it is 

possible to determine the program coverage based 

on the selected criterion using the generated test 

data. 

Many previous dynamic methods have used meta-

heuristic or evolutionary algorithms such as 

simulated annealing, genetic algorithm, and 

particle swarm optimization [3,6]. Genetic 

algorithm is one of the widely used algorithms in 

the field of automation of software test data 

generation [21-24].   

The main problems with these methods are 

scalability, premature convergence, and slow 

speed. Scalability involves the size of the software 

under the test, which could be addressed with the 

method. Xiao et al. [45, 46] have reported that the 

genetic algorithm (GA)-based approaches can 

handle a larger number of branches with large 

search spaces. However, they suffer from the 

problem of slow convergence rate. This is mainly 

due to the numerous parameters such as the 

crossover rate (Pc) and mutation rate (Pm), which 

must be tuned. In addition, attempts to speed up 

GA usually results in premature convergence to 

the local optima. The proposed method in this 

paper tries to tune these parameters adaptively in 

such a way that an acceptably good solution is 

found with few number of evaluations, i.e. the 

proposed method both speeds up GA and prevents 

it from a premature convergence. 

Many researchers have proposed the different    

and Pm strategies. They can be categorized as 

constant, random, deterministic, and adaptive 

strategies [46, 50]. In constant to the Pc and Pm 

strategies, if the value of  Pc is too high, it will 

cause the chromosome to lose its ability to adapt, 

and if it is too small, the number of children 

produced will not be enough. In mutation, if the 

rate of this operator is high, the algorithm acts as a 

random search, and if the rate of this operator is 

low, the algorithm may be caught in local 

optimizations, which can delay the convergence. 

The random Pc and Pm strategies increase the 

convergence of GA in an early stage of the 

algorithm. In the time-varying Pc and Pm 

strategies, Pc and Pm are defined as a function of 

time. However, all these strategies have the 

weakness of a premature convergence to the local 

minimum. In order to overcome this weakness, 

the adaptive Pc and Pm strategies have been 

proposed in this method, and the search status is 

taken during the execution of the feedback 

algorithm. It is used in order to improve the 

searching capability, and to maintain the diversity 

of the population by adjusting Pc and Pm. 

GA has difficulties in giving stable results (stuck 

up at local optima); the convergence is slow and 

has a non-explicit memorization of the best 

individuals. In order to overcome this problem, in 

this paper, one adjusts the cross-over rate and 

mutation rate by maintaining the population 

diversity. This paper employs measures of the 

population diversity in order to adapt cross-over 

and mutation rate: standard population diversity 

(SPD). SPD is pure to the solution space diversity 

with no regard to the health/fitness of the 

individuals [4]. 

In general, in this method, the chromosomes that 

have a better fitness and diversity than the other 

members of the population are considered to have 

a lower rate of mutation and recombination rate, 

and in contrast, the chromosomes that have less 

fitness and diversity have a higher rate of 

mutation and recombination. In order to evaluate 

the efficiency of the proposed method, this 

method is used to automatically generate the test 

data on many different programs, and the results 

obtained are compared with the results the other 

versions of GA and the other work done by the 

others. The results obtained show the obvious 

superiority of the proposed method. 

 

2. Related Works 

Much research work has been done on automating 

the generation of an efficient test data. The 

following are some of these studies and their 

achievements. 

GA has been very successful. An improved GA 

optimization has been proposed to overcome the 

traditional controller needs like stability and 

control speed [34, 19-24]. The hybrid of GA and 

asexual reproduction optimization is used to 

impute the missing values [35]. A predictive 

model in polymers has been designed using GA 

[36]. Another work has implemented GA in order 

to find the unpredicted thermal conductivity 

improvement in disarranged nano-porous 

graphene [37]. A method has used GA integer-

valued optimization to improve the machine 

learning models' feature configuration and 

architecture [38]. A model has been proposed 
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based on an adaptive genetic algorithm with fuzzy 

logic (AGAFL) in order to predict heart disorder 

[41]. GA is used for imputing the missing values 

to predict the hospital length od stay using the 

NICU datasets [49, 50]. GA has been 

implemented on an IoT platform for the customer 

needs [52, 53]. 

GA in the software test has been able to succeed 

in both the parameter and structural optimizations 

[5]. GA [6-8] and the combination of GA with 

other algorithms are the most common methods 

that the researchers have used in the recent years 

[9-11, 53, 55]. Gupta and Gupta have focused on 

the use of GA for generating the test data that can 

cover the most error-prone path so that emphasis 

can be given to test these paths first [12]. Suresh 

has used GA to generate the test data for feasible 

basis paths. Their results showed that GA was 

more effective and efficient than a random testing 

method [13]. A novel method has been designed 

methodology for the test data generation using 

GA to cover the most critical path of a program 

[14]. 

Singh has used GA to automate the generated test 

data based on the path coverage criteria. Their 

results showed that the quality of the test data was 

higher than the quality of the test data generation 

at random [15]. 

A novel method of particle swarm optimization 

(PSO) algorithm has been proposed to generate 

the test data automatically [51]. 

A method has been presented for path testing by 

automatically generating the test data and 

optimizing the test data to test the critical paths 

for the software under the test using a real-coded 

GA. In the proposed approach, a one-to-one 

injective mapping scheme is used to map the test 

data to the corresponding path, and the most 

critical path is covered during path testing of a 

specific software. The proposed method can 

reduce the number of test data generation required 

for path testing, and is faster than the traditional 

GA in covering a critical path [28]. 

GA is used to achieve both the path and branch 

coverage of the program in the test data 

generation [16]. In another method for test data 

generation, a dynamic test is based on the PSO 

algorithm used. The performance of this method 

was better than the random search and tabu search 

[17].  

In [18], a method for test data generation has been 

performed using GA. The efficiency of the 

proposed method is based on the dependence of 

the program data and in comparison with the 

random search method, the results of which 

showed that their proposed method is better than 

the random search. Mack Mann and Pradeep 

Tamar have introduced a GA-based method for 

generating software test data, and their results 

were compared with the stochastic method. In this 

paper, the impact of the early population on the 

efficiency of GA is investigated. Their 

experiments showed that their proposed method 

was more efficient than the random method, and 

required less time to generate the software test 

data, and by increasing the initial population size, 

more search space could be created by increasing 

diversity, making it a less likely algorithm [25, 

26]. 

Sahoo et al. have proposed a method using a PSO 

algorithm to cover the critical paths in CFG. It is 

called a critical path if the probability of its 

coverage is low. One of the well-known fitness 

functions for the test data generation problems is 

the branch distance and approach level function, 

which has been used in many works. In this paper, 

the problems related to this function are 

investigated, and instead of the approach level, the 

path distance is used [27].  

Manikumar et al. have presented an incremental 

GA for branch coverage testing. Initially, a 

classical GA is used to construct the population 

with the best parents. The incremental GA starts 

with these parents as the initial population. This 

work aims to solve the problem of a large 

population. Hence, it is unnecessary to maintain a 

huge population size and many iterations to cover 

all the branches. The experimental results 

obtained indicate that the proposed incremental 

GA search technique outperforms the other meta-

heuristic search techniques in memory usage and 

scalability [47]. Kumar et al. have proposed an 

approach to automatically generate the test data 

for data flow testing based on a hybrid adaptive 

PSO-GA algorithm. The hybrid APSO-GA is 

developed to conquer the weaknesses of the GA 

and PSO algorithms, especially in data flow 

testing.  The results obtained show that hybrid 

adaptive PSO-GA gives better results as compared 

to the other algorithms that are used in the field of 

test data generation [48].   

Mishra et al. have presented a method for path 

testing by automatically generating the test data 

and optimizing the test data to test the critical 

paths for software under the test using a real-

coded GA. In the proposed approach, a one-to-one 

injective mapping scheme is used to map the test 

data to the corresponding path, and the most 

critical path is covered during path testing of a 

specific software. The proposed method can 

reduce the number of test data generation required 
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for path testing, and is faster than the traditional 

GA in covering a critical path [28]. 

One of the main problems in the firefly algorithm 

is getting stuck in the local minima, and 

consequently, a poor exploration. Poor 

exploration and population diversity are directly 

related. In order to solve this problem, Damia et 

al. have used the asexual reproduction 

optimization algorithm in the structure of the 

firefly algorithm to diversify the population of this 

algorithm. The results of their experiments show 

that their proposed hybrid method is better than 

each one of these algorithms [7-9]. 

In [13], the ant colony optimization algorithm is 

used to generate the test data. Their proposed 

method is an evolutionary strategy to improve the 

search performance of ants in local movements 

and increase the exploitation of the search. The 

results of their experiments show that their 

proposed method is more efficient than the 

existing test data generation techniques in terms 

of branch coverage and convergence speed. 

3. Problem Formulation 

The path test method executes all the control path 

method paths under test at least once in order to 

execute all the program commands. To perform 

this test, the current control structure of the 

method under the test is considered as a control 

flow graph (CFG).  

In this paper, the problem is to automatically 

generate the test cases for a given software under 

the test (SUT). The coverage criterion is 

considered to be the path coverage, i.e. a perfect 

test method has to traverse every execution path 

within SUT. In order to perform this, first, the 

control structure of SUT is transferred into a 

control flow graph (CFG). For example, CFG of 

the following SUT is shown in Fig. 1. 

1: void main () 

2:   { 

      int x ; 

      x = scanf (“d”); 

3:      if (x > 0) 

4:           x++ 

5:      else if (x <= 0) 

6:           x - - 

7:      print (x) 

8:    } 

The problem here is to automatically determine 

the set of inputs to test a specific method that can 

cover all paths. For this purpose, a search on the 

input parameters of the method is used. A method 

is generally defined as [return type] method_name 

([input parameter list]). Next, the cyclomatic 

complexity of CFG is determined [54, 55]. 

 
Figure 1. An example program and its CFG. 

The Cyclomatic complexity is equal to the 

number of linearly independent paths within the 

control structure of SUT. As a result, a perfect 

path test method has to find a test set that is able 

to cover all of these linearly independent paths. In 

order to be able to generate such a test set, a 

comprehensive search over the input parameter 

space of SUT is used. Note that a SUT is 

generally defined as: 

[return type] method_name ([input parameter 

list]) 

Thus the input space of SUT is the Cartesian 

product of its input parameter list. For example, if 

the method has two input parameters, the input 

space will be a pair <i1, i2>, where i1 and i2 

indicate the values assigned to the first and the 

second parameters, respectively. The main goal of 

the search is to minimize the number of 

calculations required to find the suitable test set. 

This goal is important because a typical program 

usually consists of many SUTs. Therefore, the 

amount of time and calculations required for 

generating a suitable test set for a single SUT 

within the program, significantly affect the overall 

time and processing needs of generating the test 

sets for the whole program. 

The main goal of the search work is to minimize 

the number of calculations required to identify the 

inputs because as the program grows and the 

number of functions in it increases, it will take a 

long time to generate these test items, and the 

faster the automatic solution with fewer 

calculations, it would be better to cover the paths. 

4. Proposed Method  

In this work, we used GA with its tuned 

parameters for testing the software. Early 

convergence is one of the significant problems in 

GA, and there is a direct relationship between 

early convergence and lack of population 

diversity. A population is diverse if the distance 

between its chromosomes is large; otherwise, it is 

small. The similarity between the chromosomes 
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can be calculated based on the distance between 

them. 

4.1. Calculating SPD 

SPD is calculated by finding the site of the mean 

chromosome within the population according to 

Equation (1) and the sum of inputs (genes) 

Euclidean distances from this mean point to the 

site of each chromosome according to Equation 

(2) [4].  
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nG  is the mean of all     genes 

in the population. SPDi  is the chromosome     

the portion to SPD . It is calculated as the 

Euclidean distances between chromosome   and 
meanG  [4]. 

SPDi can be used to determine SPD . In order to 

calculate SPD, the standard deviation of the 

population is calculated aaccording to Equation 

(3) ( )mean

nG , and SPD  is calculated according 

to Equation (3) [4].   
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4.2. Adaptive Cross-over  

This operator is applied to a pair of chromosomes 

and in the form of different are introduced, the 

most important of which are one-point, two-point, 

multi-point, and uniform. This operator is set 

based on a probability of Pc . If the probability of  

Pc  is high, the good chromosomes may be easily 

damaged, and if this probability is low, the new 

chromosomes may not be formed. Therefore, it is 

better to calculate Pc  based on the fitness of each 

chromosome during the search [4]. The proposed 

method for calculating Pc  is according to 

Equation (5) [4]. In this work, the uniform cross-

over is used. 

max

[( *( 2 1) 1]
SPD

Pc k k k
SPD

    
(5) 

 

In this work, Pc is in the range of 0.5 and 0.85. 

4.3. Adaptive Mutation 

The purpose of this mutation operator is to escape 

the algorithm from local optimization and 

maintain the population diversity. This operator 

occurs based on a probability Pm. 

If the value of probability Pm is high, the 

algorithm acts as a random search, and if this 

value is low, the algorithm gets stuck in the local 

minimum so a suitable method is to parameterize 

this probability [4].  

Therefore, the adaptive mutation is used in this 

work, which is calculated to be a probability of  

Pm  while executing the algorithm. 

The adaptive mutation is combined with the 

following two methods [4]: 

 Impact of diversity 

 Impact of fitness  

Equation (6) proposes the impact of diversity 
diversity

mp  and Equation (7) proposes the impact of 

fitness 
Fitness

mp  [4]. 

max
*

max
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In Equation (7), f  is the parent fitness, maxf , 

and minf are the best and worst fitness 

chromosomes in the population, respectively (k is 

0.5). 

Equation (8) defines the proposed method for 

calculating Pm  for each chromosome [4]. 

2

Fitness Diversity

m mP P
Pm


  

(8) 

4.4. Population Initialization 

After generating the CFG program, we then obtain 

the paths of this graph. 

In order to start searching throughout the state 

space of the problem, a random population is 

initially generated. Each chromosome in this 

population represents a test set for PUT. Suppose 
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the number of input parameters of the PUT to be 

Nv  and the number of finite paths within the 

corresponding CFG to be Np .Then each 

chromosome ti would be of the form 

[ (1), (2),..., ( )]ti ti ti ti Np , where each ti(b) 

represents a test data for evaluating PUT with a 

specific set of input parameters. Let 

( ) [xib(1), xib(2),..., xib(Nv)]ti b  . Here, xib(l) 

specifies the lth input parameter for PUT in the 

test data ti(b). 

In this work, chromosome representation is 

integers. 

4.5. Fitness Function 

After generating the initial random population, in 

order to determine the fitness of each population 

member, it is necessary to run the test method    

times to determine which paths are covered by the 

input test set. The fitness of each chromosome is 

calculated according to Equation (9). 

( )
( )i

SatsifiedPath i
fitness chromosome

Np
      (9) 

4.6. Selection 

The selection operator is used to determine the 

chromosomes to be used as the parents in the 

creation of the off-spring that population the 

subsequent generation. The rank-based selection 

method is one of the widely used in GA [31] [32] 

[33]. 

In the Rank-based selection method, instead of 

using the absolute fitness value, the fitness rank of 

the members in the population is used to 

determine the selection. In this method, the fitness 

of the best member of the population equal to ns  

is considered. The second-best member of the 

population is assigned a fitness of 1ns   and this 

continues until the weakest member of the 

population is reached (it is a debt that the fitness 

of the weakest member will be equal to 1). Note 

that in a common GA, if the fitness of two 

members in the population is the same, we must 

randomly attribute one fitness R and the other 

fitness 1R . In the proposed method, if the 

fitness of the two members is equal, their rank 

will be determined based on the diversity of each 

member. 

4.7. Stopping condition 

The termination conditions in AGA specify the 

stopping criteria after the desired solution is 

obtained in few numbers of iterations. The 

termination condition in AGA can occur due to 

the following reasons: 

 A finite number of generations (in this 

paper is 100000). 

 The optimized solution is obtained. 

 Implementation of algorithm 

 The implementation of the pseudo-code of 

improved genetic algorithm (IGA) is 

given in Algorithm 1. 

Algorithm 1. Test data generation based on improved genetic 
algorithm (IGA). 

1:  Input: instrumented version of a program to be tested 

2:             number of variants program under test (NV) 

3:             number of paths program under test (NP) 
4:             max iteration 

5:            ps 
6: Output: set of test data 

7: Begin 

8: chromosome size = NP * NV 
9: population = GenerateRandomSolutions(population size, 

chromosome size) 

10: iteration = 0 
11:     while iteration < max iteration  do 

12:            Evaluate(population) 

13:            selection result = SelectParents ( ) 

14:            Update    according to Equation (5) 

15:            Recombination ( ) 

16:            Update    according to Equation (8) 
17:            Mutation ( ) 

18:            population = new population   

19:            iteration = iteration + 1             
20:     end while 

21: return output 

22: End 

 

5. Experiment  

This experiment aims to show the superiority of 

the proposed method compared with the works 

done by the others in Table 1. Each algorithm was 

executed 50 times. For each execution, the 

algorithms were performed with the same range of 

input variables; these programs are listed in Table 

2. 

The decision for the termination criteria is that if 

at least one test datum has been found to traverse 

the paths or the number of iterations of the 

evolution is reached the present value (maximum 

iteration), the evolution will stop.  

The decision for the termination criteria is that if 

at least one test datum has been found to traverse 

the target path or the number of iterations of the 

evolution reaches the present value, the evolution 

will stop.  The evaluation criteria to test the 

effectiveness of different methods are listed as 

follow: 

Evals: Number of evaluations for individual 

evaluation of each method. 

In order to ensure that the number of 

chromosomes has no effect on the performance of 

the compared methods, all methods have adopted 

the same population size and the same initial 

population. Each experiment was repeated 50 



Software Testing using an Adaptive Genetic Algorithm 

471 

 

times, and the results obtained were reported as 

the average of all repetitions. The comparison 

results are given in Tables 4, 5, and 6. In all 

tables, the mean, standard deviation, P-value (t-

test with α = .05), and percentage of covered paths 

are summarized for each algorithm per benchmark 

program. The results obtained confirm that the 

proposed IGA method outperforms the other 

existing state-of-the-art methods in terms of the 

number of fitness evaluations. The main reason 

for the superiority of IGA over the existing 

algorithms is its ability to escape from the local 

optima. This ability is due to the suitable setting 

of recombination and mutation rates considering 

the fitness of each chromosome and its degree of 

diversity in the population. In [39], [40], [47], [1], 

and [28], these rates are constant, and thus no 

feedback is available from the search space. 

Therefore, the algorithm is easily trapped into the 

local optima. This problem is less severe in 

[10,11], where a combination of GA and PSO are 

utilized. However, the method is more complex, 

and thus takes much more time to achieve suitable 

results. The method of [29] places great emphasis 

on the population diversity. However, increasing 

the population diversity leads to a slower 

convergence speed. The problem with the method 

given in [4] is that even though it varies the values 

of its parameters in time, it considers no feedback 

from the search space for adjusting its parameter 

variation scheme. 

6. Conclusions and Future Work 

In this paper, we proposed an automatic test data 

generation method based on an adaptive genetic 

algorithm. The method improves the search 

efficiency by maintaining the population diversity. 

The experimental results obtained show that the 

proposed method is more effective than the 

existing similar to path testing. Although the 

subjects selected in this work are Python 

language, the thought of this method can be used 

for reference in other languages as the 

experimental objects.  For the future work, we 

will use this method for the object-oriented 

programming and classes. 

Table 1 shows the parameters of genetic algorithm 

used in the previous works. The value of each 

parameter varies based on the nature of the 

datasets that are used. The cross-over rate is 

generally more than 0.5, and the mutation rate is 

between 0.01 and 0.15. Different selection 

algorithms can also be used for each work.  

 

 

Table 1. Work of others. 

Algorithm Cross-over 

rate 

Mutation 

rate 

Selection 

Suresh [39] 0.5 0.05 Elitism  

 

Shimin [40] 0.8 0.01 Ranking 

Ghiduk [42] 0.8 0.15 Roulette 

wheel 

Manikumar [47] 1.0 0.01 Tournament  

Mishra [28] 0.8 0.02, 0.03, 

0.07 

Ranking 

Bao [29] Adaptive Adaptive Roulette 
wheel 

 

The value of each parameter was set based on the 

experiment in Table 2. The range of the input 

variables was between -50 and 50. The maximum 

iteration of the algorithm was 100000, and ps was 

30. 

Table 2. Selected programs for experiments. 

PUT Description 

Triangle classification [29] Find the type of triangle 

Fibonacci [30] Find Fibonacci sequence 

Quadratic equation [41] Equation of the second degree 
 

The algorithms apply the same values of 

parameters, which are listed in Table 3. 

Table 3. Parameters of algorithm. 

Parameter Value 

   30 

Maximum iteration (stop condition) 100000 
Range of input variables (it is a search space 

and is an option that can be defined in any 

interval according to the user's needs) 

[-50, 50] 

 

Table 4 compares the proposed method with the 

other methods based on the mean, std, ttest, 

pvalue, and percentage path coverage. The pvalue 

of AGA is higher than the other methods. The 

ttest of AGA is 0, while the average of other 

methods ttest is 3. (Tables 5 and 6 are like Table 4 

but I do not have any idea about the title of them. 

Please write the details about the other two tables. 

Table 4. Triangle classification program. 

Algorithm Mean std ttest pvalue Percentage 

path 

coverage 

Suresh [39] 21245.2 20528.1 5.131 0.0 100 % 

Shimin [40] 13651.6 17205.6 3.078 0.002 100 % 

Ghiduk [42] 10510.6 9727.0 3.047 0.002 100 % 

Manikumar 

[47] 

15294.4 13297.5 3.483 0.0 100% 

Kumar [10] 6481.0 5743.9 0.444 0.657 100% 

Mishra [28] 16649.8 12359.2 5.708 0.0 100% 

Sahoo [27] 12923.4 10094.1 2.002 0.048 100% 

Bao [29] 7140.4 6081.2 1.022 0.308 100% 

AGA 5806.7 4701.9 0.0 1.0 100 % 

 

https://stackoverflow.com/questions/15398427/solving-quadratic-equation
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Table 5. Quadratic equation. 

Algorithm Mean std ttest pvalue Percentage 

path 

coverage 

Suresh [39] 6897.98 5395.9 3.243 0.001 100 % 

Shimin 

[40] 

9603.36 8974.9 4.123 0.0 100 % 

Ghiduk 

[42] 

6376.54 4910.2 2.849 0.005 100 % 

Manikumar 
[47] 

5236.8 4507.5 1.133 0.259 100% 

Kumar 

[10] 

4921.2 3833.3 0.525 0.600 100% 

Mishra 
[28] 

8068.4 8590.8 1.025 0.107 100% 

Sahoo [27] 6659.0 5224.0 1.525 0.160 100% 

Bao [29] 4083.4 3544.4 0.223 0.823 100% 

AGA 3984.0 3230.1 0.0 1.0 100 % 

 

Table 6. Fibonacci program. 

Algorithm Mean std ttest pvalue Percentage 

path coverage 

Suresh [39] 4228.7 1811.4 5.619 0.009 100 % 

Shimin 
[40] 

1772.3 1021.0 3.132 0.003 100 % 

Ghiduk 

[42] 

1420.1 743.1 2.413 0.029 100 % 

Manikumar 

[47] 

2111.9 1160.2 4.381 0.005 100% 

Kumar 

[10] 

1188.3 334.2 0.835 0.405 100% 

Mishra 

[28] 

4392.62 1689.7 6.342 0.0 100% 

Sahoo [27] 1826.4 1174.9 3.415 0.004 100% 

Bao [29] 1275.26 358.6 1.211 0.328 100% 

AGA 933.68 301.9 0.0 1.0 100 % 
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 .0011سال  ،چهارم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده                                               و همکاران                                                     دمیا

 

 تطبیقی  ژنتیک الگوریتم از استفاده با افزارنرم آزمون

 

 مساعد پرویزی محمدرضا و عشری اثنی مهدی ،*دمیا امیرحسین

 .ایران تهران، طوسی، الدین نصیر خواجه دانشگاه کامپیوتر، مهندسی دانشکده

 00/10/۰1۰0 پذیرش؛ 10/15/۰1۰0 بازنگری؛ 10/1۰/۰1۰1 ارسال

 چکیده:

 تووانمی مساله این حل برای و است جستجو مساله یک آزمون های داده تولید مساله. است ضروری آزمون های داده تولید ساختاری، افزار نرم آزمون در

 افوزای  به ژنتیک الگوریتم پارامترهای تنظیم. است زمینه این در هاالگوریتم پرکاربردترین از یکی ژنتیک الگوریتم. کرد استفاده جستجو هایالگوریتم از

 معیوار اسوا  بور آزموون هوای داده تولید در جمعیت تنوع حفظ منظور به تطبیقی ژنتیک الگوریتم مقاله، این در. کندمی کمک الگوریتم این اثربخشی

 انجوام آزمایشوا . کنودموی محاسبه کروموزوم برازندگی مقدار و هاکروموزوم بین شباهت با را جه  و بازترکیبی نرخ که شود،می استفاده مسیر پوش 

 .است دیگران توسط شده ارائه ژنتیک الگوریتم هاینسخه سایر از سریعتر آزمون هایداده تولید برای روش این که دهدمی نشان شده

 .ژنتیک الگوریتم ،جو و جست الگوریتم ،مسیر پوش  آموزش، داده تولید افزار، نرم آزمون :کلمات کلیدی

 


