Software Testing using an Adaptive Genetic Algorithm
Amirhossein Damia1*, Mehdi Esnaashari2 and Mohammadreza Parvizimosaed3

1.3. Department of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran.
2. Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Article Info

Article History:
Received 01 September 2020
Revised 07 May 2021
Accepted 14 July 2021
DOI:10.22044/JADM.2021.10018.2138

Keywords:
Software Test, Test Data Generation, Path Coverage, Search Algorithms, Genetic Algorithm.

Abstract

In the structural software test, the test data generation is essential. The problem of generating the test data is a search problem, and for solving the problem, the search algorithms can be used. Genetic algorithm is one of the most widely used algorithms in this field. Adjusting the genetic algorithm parameters helps to increase the effectiveness of this algorithm. In this paper, the adaptive genetic algorithm is used in order to maintain the diversity of the population to the test data generation based on the path coverage criterion, which calculates the rate of recombination and mutation with the similarity between the chromosomes and the amount of chromosome fitness during and around each algorithm. The experiments performed show that this method is faster for generating the test data than the other versions of genetic algorithm used by the others.

1. Introduction

Software testing is a process of identifying the correctness of software by considering its all attributes (reliability, scalability, portability, reusability, usability) and evaluating the execution of the software components to find the software bugs or errors or defects. Software testing provides an independent view and objective of the software, and gives surety of the software's fitness. It involves testing all the components under the required services to confirm that whether it is satisfying the specified requirements or not. The process also provides the client with information about the quality of the software. Once the software is produced, it must be tested. According to the research work conducted by NIST, the damage caused by software breaches is massive [43].

The software test consumes many resources but does not add any new functionality to the product. Therefore, significant efforts have been made in order to reduce the software development costs by developing the automated software testing tools. In the last decade, various methods have been introduced for automatic software testing in order to maximize error detection by producing the least number of test data. In the process of test data generation, we require a criterion such as a path coverage criterion, the edge coverage criterion, and the node coverage criterion to determine the amount of program coverage by the data generated. After selecting the quality criterion, the amount of program coverage can be determined by the generated data. The automated structural testing methods are divided into two categories: dynamic and static methods [2]. The generation test data in static structural is based on the analysis of the program's internal structure without the need to run the program, and is usually based on the symbolic execution. This method has problems with the arrays and pointers [1].

In the dynamic method, the program under test (PUT) is required to be run, and the problems of the static method are solved. In this method, generating the test data is transformed into an optimization problem to use the search algorithms. In other words, parts of the test program can be overwritten as a function, and searched for the optimal value of the resulting function. The data obtained covers the intended purpose according to the quality criterion.

In generating the test data, we require a criterion referred to as the coverage criterion in order to determine the amount of program coverage by the
generated data. These criteria are defined based on
the control flow graph (CFG) of the program. For
example, the branch coverage or edge coverage
criterion is one of the criteria in which the goal is
to cover all the branches of the program CFG.
Another quality criterion is the statement coverage
or node coverage criterion, which aims to execute
all nodes of CFG. Another criterion is the path
coverage criterion, which aims to cover all paths
within CFG. The branch coverage and node
coverage are subsets of the path coverage criteria
[44]. After selecting a coverage criterion, it is
possible to determine the program coverage based
on the selected criterion using the generated test
data.

Many previous dynamic methods have used meta-
heuristic or evolutionary algorithms such as
simulated annealing, genetic algorithm, and
particle swarm optimization [3,6]. Genetic
algorithm is one of the widely used algorithms in
the field of automation of software test data
generation [21-24].

The main problems with these methods are
scalability, premature convergence, and slow
speed. Scalability involves the size of the software
under the test, which could be addressed with the
method. Xiao et al. [45, 46] have reported that the
genetic algorithm (GA)-based approaches can
handle a larger number of branches with large
search spaces. However, they suffer from the
problem of slow convergence rate. This is mainly
due to the numerous parameters such as the
crossover rate (P_c) and mutation rate (P_m), which
must be tuned. In addition, attempts to speed up
GA usually results in premature convergence to
the local optima. The proposed method in this
paper tries to tune these parameters adaptively in
such a way that an acceptably good solution is
found with few number of evaluations, i.e. the
proposed method both speeds up GA and prevents
it from a premature convergence.

Many researchers have proposed the different P_c
and P_m strategies. They can be categorized as
constant, random, deterministic, and adaptive
strategies [46, 50]. In constant to the P_c and P_m
strategies, if the value of P_c is too high, it will
cause the chromosome to lose its ability to adapt,
and if it is too small, the number of children
produced will not be enough. In mutation, if the
rate of this operator is high, the algorithm acts as a
random search, and if the rate of this operator is
low, the algorithm may be caught in local
optimizations, which can delay the convergence.
The random P_c and P_m strategies increase the
convergence of GA in an early stage of the
algorithm. In the time-varying P_c and P_m
strategies, P_c and P_m are defined as a function of
time. However, all these strategies have the
weakness of a premature convergence to the local
minimum. In order to overcome this weakness,
the adaptive P_c and P_m strategies have been
proposed in this method, and the search status is
taken during the execution of the feedback
algorithm. It is used in order to improve the
searching capability, and to maintain the diversity
of the population by adjusting P_c and P_m.

GA has difficulties in giving stable results (stuck
up at local optima); the convergence is slow and
has a non-explicit memorization of the best
individuals. In order to overcome this problem, in
this paper, one adjusts the cross-over rate and
mutation rate by maintaining the population
diversity. This paper employs measures of the
population diversity in order to adapt cross-over
and mutation rate: standard population diversity
(SPD). SPD is pure to the solution space diversity
with no regard to the health/fitness of the
individuals [4].

In general, in this method, the chromosomes that
have a better fitness and diversity than the other
members of the population are considered to have
a lower rate of mutation and recombination rate,
and in contrast, the chromosomes that have less
fitness and diversity have a higher rate of
mutation and recombination. In order to evaluate
the efficiency of the proposed method, this
method is used to automatically generate the test
data on many different programs, and the results
obtained are compared with the results the other
versions of GA and the other work done by the
others. The results obtained show the obvious
superiority of the proposed method.

2. Related Works
Much research work has been done on automating
the generation of an efficient test data. The
following are some of these studies and their
achievements.

GA has been very successful. An improved GA
optimization has been proposed to overcome the
traditional controller needs like stability and
control speed [34, 19-24]. The hybrid of GA and
asexual reproduction optimization is used to
impute the missing values [35]. A predictive
model in polymers has been designed using GA
[36]. Another work has implemented GA in order
to find the unpredicted thermal conductivity
improvement in disarranged nano-porous
graphene [37]. A method has used GA integer-
valued optimization to improve the machine
learning models’ feature configuration and
architecture [38]. A model has been proposed
Based on an adaptive genetic algorithm with fuzzy logic (AGAF) in order to predict heart disorder [41]. GA is used for imputing the missing values to predict the hospital length of stay using the NICU datasets [49, 50]. GA has been implemented on an IoT platform for the customer needs [52, 53].

GA in the software test has been able to succeed in both the parameter and structural optimizations [5]. GA [6-8] and the combination of GA with other algorithms are the most common methods that the researchers have used in the recent years [9-11, 53, 55]. Gupta and Gupta have focused on the use of GA for generating the test data that can cover the most error-prone path so that emphasis can be given to test these paths first [12]. Suresh has used GA to generate the test data for feasible basis paths. Their results showed that GA was more effective and efficient than a random testing method [13]. A novel method has been designed methodology for the test data generation using GA to cover the most critical path of a program [14].

Singh has used GA to automate the generated test data based on the path coverage criteria. Their results showed that the quality of the test data was higher than the quality of the test data generation at random [15].

A novel method of particle swarm optimization (PSO) algorithm has been proposed to generate the test data automatically [51]. A method has been presented for path testing by automatically generating the test data and optimizing the test data to test the critical paths for the software under the test using a real-coded GA. In the proposed approach, a one-to-one injective mapping scheme is used to map the test data to the corresponding path, and the most critical path is covered during path testing of a specific software. The proposed method can reduce the number of test data generation required for path testing, and is faster than the traditional GA in covering a critical path [28].

GA is used to achieve both the path and branch coverage of the program in the test data generation [16]. In another method for test data generation, a dynamic test is based on the PSO algorithm used. The performance of this method was better than the random search and tabu search [17].

In [18], a method for test data generation has been performed using GA. The efficiency of the proposed method is based on the dependence of the program data and in comparison with the random search method, the results of which showed that their proposed method is better than the random search. Mack Mann and Pradeep Tamar have introduced a GA-based method for generating software test data, and their results were compared with the stochastic method. In this paper, the impact of the early population on the efficiency of GA is investigated. Their experiments showed that their proposed method was more efficient than the random method, and required less time to generate the software test data, and by increasing the initial population size, more search space could be created by increasing diversity, making it a less likely algorithm [25, 26].

Sahoo et al. have proposed a method using a PSO algorithm to cover the critical paths in CFG. It is called a critical path if the probability of its coverage is low. One of the well-known fitness functions for the test data generation problems is the branch distance and approach level function, which has been used in many works. In this paper, the problems related to this function are investigated, and instead of the approach level, the path distance is used [27].

Manikumar et al. have presented an incremental GA for branch coverage testing. Initially, a classical GA is used to construct the population with the best parents. The incremental GA starts with these parents as the initial population. This work aims to solve the problem of a large population. Hence, it is unnecessary to maintain a huge population size and many iterations to cover all the branches. The experimental results obtained indicate that the proposed incremental GA search technique outperforms the other meta-heuristic search techniques in memory usage and scalability [47]. Kumar et al. have proposed an approach to automatically generate the test data for data flow testing based on a hybrid adaptive PSO-GA algorithm. The hybrid APSO-GA is developed to conquer the weaknesses of the GA and PSO algorithms, especially in data flow testing. The results obtained show that hybrid adaptive PSO-GA gives better results as compared to the other algorithms that are used in the field of test data generation [48].

Mishra et al. have presented a method for path testing by automatically generating the test data and optimizing the test data to test the critical paths for software under the test using a real-coded GA. In the proposed approach, a one-to-one injective mapping scheme is used to map the test data to the corresponding path, and the most critical path is covered during path testing of a specific software. The proposed method can reduce the number of test data generation required.
for path testing, and is faster than the traditional GA in covering a critical path [28]. One of the main problems in the firefly algorithm is getting stuck in the local minima, and consequently, a poor exploration. Poor exploration and population diversity are directly related. In order to solve this problem, Damia et al. have used the asexual reproduction optimization algorithm in the structure of the firefly algorithm to diversify the population of this algorithm. The results of their experiments show that their proposed hybrid method is better than each one of these algorithms [7-9].

In [13], the ant colony optimization algorithm is used to generate the test data. Their proposed method is an evolutionary strategy to improve the search performance of ants in local movements and increase the exploitation of the search. The results of their experiments show that their proposed method is more efficient than the existing test data generation techniques in terms of branch coverage and convergence speed.

3. Problem Formulation

The path test method executes all the control path method paths under test at least once in order to execute all the program commands. To perform this test, the current control structure of the method under the test is considered as a control flow graph (CFG).

In this paper, the problem is to automatically generate the test cases for a given software under the test (SUT). The coverage criterion is considered to be the path coverage, i.e. a perfect test method has to traverse every execution path within SUT. In order to perform this, first, the control structure of SUT is transferred into a control flow graph (CFG). For example, CFG of the following SUT is shown in Fig. 1.

```c
1: void main ()
2: {
3:     int x;
4:     x = scanf (“d”);
5:     if (x > 0)
6:         x++;
7:     else if (x <= 0)
8:         x --;
9:     print (x)
10: }
```

The problem here is to automatically determine the set of inputs to test a specific method that can cover all paths. For this purpose, a search on the input parameters of the method is used. A method is generally defined as [return type] method_name ([input parameter list]). Next, the cyclomatic complexity of CFG is determined [54, 55].

![Figure 1. An example program and its CFG.](image)

The Cyclomatic complexity is equal to the number of linearly independent paths within the control structure of SUT. As a result, a perfect path test method has to find a test set that is able to cover all of these linearly independent paths. In order to be able to generate such a test set, a comprehensive search over the input parameter space of SUT is used. Note that a SUT is generally defined as:

```
[return type] method_name ([input parameter list])
```

Thus the input space of SUT is the Cartesian product of its input parameter list. For example, if the method has two input parameters, the input space will be a pair <i₁, i₂>, where i₁ and i₂ indicate the values assigned to the first and the second parameters, respectively. The main goal of the search is to minimize the number of calculations required to find the suitable test set. This goal is important because a typical program usually consists of many SUTs. Therefore, the amount of time and calculations required for generating a suitable test set for a single SUT within the program, significantly affect the overall time and processing needs of generating the test sets for the whole program.

The main goal of the search work is to minimize the number of calculations required to identify the inputs because as the program grows and the number of functions in it increases, it will take a long time to generate these test items, and the faster the automatic solution with fewer calculations, it would be better to cover the paths.

4. Proposed Method

In this work, we used GA with its tuned parameters for testing the software. Early convergence is one of the significant problems in GA, and there is a direct relationship between early convergence and lack of population diversity. A population is diverse if the distance between its chromosomes is large; otherwise, it is small. The similarity between the chromosomes
can be calculated based on the distance between them.

4.1. Calculating SPD

SPD is calculated by finding the site of the mean chromosome within the population according to Equation (1) and the sum of inputs (genes) Euclidean distances from this mean point to the site of each chromosome according to Equation (2) [4].

\[
G_{n}^{avg} = \frac{1}{P} \sum_{i=1}^{P} G_{i,n} \quad (1)
\]

\[
SPD_{i} = \sqrt{\sum_{n=1}^{N} (G_{i,n} - G_{n}^{avg})^2} \quad (2)
\]

The population size is \((GltoGP)\) where each chromosome consists of \(N\) gene. \(G_{i,n}\) is the \(n^{th}\) gene of chromosome \(i\); \(Gi = (Gi,1, Gi, 2, ..., Gi, N)\). The mean chromosome in the population is \(G^{mean}\), and is calculated as the gene mean overall \(P\) chromosomes. \(G_{n}^{mean}\) is the mean of all \(n^{th}\) genes in the population. \(SPDi\) is the chromosome \(i^{th}\) is the portion to SPD. It is calculated as the Euclidean distances between chromosome \(i\) and \(G^{mean}\) [4].

\(SPDi\) can be used to determine SPD. In order to calculate SPD, the standard deviation of the population is calculated according to Equation (3) \(\sigma(G_{n}^{avg})\), and SPD is calculated according to Equation (3) [4].

\[
\sigma(G_{n}^{avg}) = \sqrt{\frac{1}{P} + \sum_{i=1}^{P} (G_{i,n} - G_{n}^{avg})^2} \quad (3)
\]

\[
SPD = C_{v}(G^{avg}) = \frac{1}{N} \sum_{j=1}^{N} \frac{\sigma(G_{j}^{avg})}{G_{j}} \quad (4)
\]

4.2. Adaptive Cross-over

This operator is applied to a pair of chromosomes and in the form of different are introduced, the most important of which are one-point, two-point, multi-point, and uniform. This operator is set based on a probability of \(Pc\). If the probability of \(Pc\) is high, the good chromosomes may be easily damaged, and if this probability is low, the new chromosomes may not be formed. Therefore, it is better to calculate \(Pc\) based on the fitness of each chromosome during the search [4]. The proposed method for calculating \(Pc\) is according to Equation (5) [4]. In this work, the uniform crossover is used.

\[
Pc = [\frac{SPD}{SPD_{max}}*(k-2-k1)+k1] \quad (5)
\]

In this work, \(Pc\) is in the range of 0.5 and 0.85.

4.3. Adaptive Mutation

The purpose of this mutation operator is to escape the algorithm from local optimization and maintain the population diversity. This operator occurs based on a probability \(Pm\).

If the value of probability \(Pm\) is high, the algorithm acts a random search, and if this value is low, the algorithm gets stuck in the local minimum so a suitable method is to parameterize this probability [4].

Therefore, the adaptive mutation is used in this work, which is calculated to be a probability of \(Pm\) while executing the algorithm.

The adaptive mutation is combined with the following two methods [4]:

- Impact of diversity
- Impact of fitness

Equation (6) proposes the impact of diversity \(p_{m}^{diversity}\) and Equation (7) proposes the impact of fitness \(p_{m}^{fitness}\) [4].

\[
p_{m}^{diversity} = \frac{SPD_{max} - SPD}{SPD_{max}} * k \quad (6)
\]

\[
p_{m}^{fitness} = k * \left(\frac{f_{max} - f}{f_{max} - f_{min}} \right) \quad (7)
\]

In Equation (7), \(f\) is the parent fitness, \(f_{max}\), and \(f_{min}\) are the best and worst fitness chromosomes in the population, respectively \((k\) is 0.5).

Equation (8) defines the proposed method for calculating \(Pm\) for each chromosome [4].

\[
Pm = \frac{p_{m}^{Fitness} + p_{m}^{Diversity}}{2} \quad (8)
\]

4.4. Population Initialization

After generating the CFG program, we then obtain the paths of this graph.

In order to start searching throughout the state space of the problem, a random population is initially generated. Each chromosome in this population represents a test set for PUT. Suppose
the number of input parameters of the PUT to be N_v and the number of finite paths within the corresponding CFG to be N_p. Then each chromosome t_i would be of the form $t_i = [t_i(1), t_i(2), \ldots, t_i(N_p)]$, where each $t_i(b)$ represents a test data for evaluating PUT with a specific set of input parameters. Let $t_i(b) = [xib(1), xib(2), \ldots, xib(N_v)]$. Here, $xib(l)$ specifies the l-th input parameter for PUT in the test data $t_i(b)$.

In this work, chromosome representation is integers.

4.5. Fitness Function

After generating the initial random population, in order to determine the fitness of each population member, it is necessary to run the test method N_p times to determine which paths are covered by the input test set. The fitness of each chromosome is calculated according to Equation (9).

$$ \text{fitness(chromosome)} = \frac{\text{SatsifiedPath}(i)}{N_p} \quad (9) $$

4.6. Selection

The selection operator is used to determine the chromosomes to be used as the parents in the creation of the off-spring that populate the subsequent generation. The rank-based selection method is one of the widely used in GA [31] [32] [33].

In the Rank-based selection method, instead of using the absolute fitness value, the fitness rank of the members in the population is used to determine the selection. In this method, the fitness of the best member of the population equal to n_s is considered. The second-best member of the population is assigned a fitness of $n_s - 1$, and this continues until the weakest member of the population is reached (it is a debt that the fitness of the weakest member will be equal to 1). Note that in a common GA, if the fitness of two members in the population is the same, we must randomly attribute one fitness R and the other fitness $R - 1$. In the proposed method, if the fitness of the two members is equal, their rank will be determined based on the diversity of each member.

4.7. Stopping condition

The termination conditions in AGA specify the stopping criteria after the desired solution is obtained in few numbers of iterations. The termination condition in AGA can occur due to the following reasons:

- A finite number of generations (in this paper is 100000).
- The optimized solution is obtained.
- Implementation of algorithm
- The implementation of the pseudo-code of improved genetic algorithm (IGA) is given in Algorithm 1.

<table>
<thead>
<tr>
<th>Algorithm 1. Test data generation based on improved genetic algorithm (IGA).</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Input: instrumented version of a program to be tested</td>
</tr>
<tr>
<td>2: number of variants program under test (NV)</td>
</tr>
<tr>
<td>3: number of paths program under test (NP)</td>
</tr>
<tr>
<td>4: max iteration</td>
</tr>
<tr>
<td>5: ps</td>
</tr>
<tr>
<td>6: Output: set of test data</td>
</tr>
<tr>
<td>7: Begin</td>
</tr>
<tr>
<td>8: chromosome size = NP * NV</td>
</tr>
<tr>
<td>9: population = GenerateRandomSolutions(population size, chromosome size)</td>
</tr>
<tr>
<td>10: iteration = 0</td>
</tr>
<tr>
<td>11: while iteration < max iteration do</td>
</tr>
<tr>
<td>12: Evaluate(population)</td>
</tr>
<tr>
<td>13: selection result = SelectParents ()</td>
</tr>
<tr>
<td>14: Update p_s according to Equation (5)</td>
</tr>
<tr>
<td>15: Recombination ()</td>
</tr>
<tr>
<td>16: Update p_n according to Equation (8)</td>
</tr>
<tr>
<td>17: Mutation ()</td>
</tr>
<tr>
<td>18: population = new population</td>
</tr>
<tr>
<td>19: iteration = iteration + 1</td>
</tr>
<tr>
<td>20: end while</td>
</tr>
<tr>
<td>21: return output</td>
</tr>
<tr>
<td>22: End</td>
</tr>
</tbody>
</table>

5. Experiment

This experiment aims to show the superiority of the proposed method compared with the works done by the others in Table 1. Each algorithm was executed 50 times. For each execution, the algorithms were performed with the same range of input variables; these programs are listed in Table 2.

The decision for the termination criteria is that if at least one test datum has been found to traverse the paths or the number of iterations of the evolution is reached the present value (maximum iteration), the evolution will stop.

The decision for the termination criteria is that if at least one test datum has been found to traverse the target path or the number of iterations of the evolution reaches the present value, the evolution will stop. The evaluation criteria to test the effectiveness of different methods are listed as follow:

Evals: Number of evaluations for individual evaluation of each method.

In order to ensure that the number of chromosomes has no effect on the performance of the compared methods, all methods have adopted the same population size and the same initial population. Each experiment was repeated 50
times, and the results obtained were reported as the average of all repetitions. The comparison results are given in Tables 4, 5, and 6. In all tables, the mean, standard deviation, P-value (t-test with α = .05), and percentage of covered paths are summarized for each algorithm per benchmark program. The results obtained confirm that the proposed IGA method outperforms the other existing state-of-the-art methods in terms of the number of fitness evaluations. The main reason for the superiority of IGA over the existing algorithms is its ability to escape from the local optima. This ability is due to the suitable setting of recombination and mutation rates considering the fitness of each chromosome and its degree of diversity in the population. In [39], [40], [47], [1], and [28], these rates are constant, and thus no feedback is available from the search space. Therefore, the algorithm is easily trapped into the local optima. This problem is less severe in [10,11], where a combination of GA and PSO are utilized. However, the method is more complex, and thus takes much more time to achieve suitable results. The method of [29] places great emphasis on the population diversity. However, increasing the population diversity leads to a slower convergence speed. The problem with the method given in [4] is that even though it varies the values of its parameters in time, it considers no feedback from the search space for adjusting its parameter variation scheme.

6. Conclusions and Future Work
In this paper, we proposed an automatic test data generation method based on an adaptive genetic algorithm. The method improves the search efficiency by maintaining the population diversity. The experimental results obtained show that the proposed method is more effective than the existing similar to path testing. Although the subjects selected in this work are Python language, the thought of this method can be used for reference in other languages as the experimental objects. For the future work, we will use this method for the object-oriented programming and classes.

Table 1 shows the parameters of genetic algorithm used in the previous works. The value of each parameter varies based on the nature of the datasets that are used. The cross-over rate is generally more than 0.5, and the mutation rate is between 0.01 and 0.15. Different selection algorithms can also be used for each work.

The value of each parameter was set based on the experiment in Table 2. The range of the input variables was between -50 and 50. The maximum iteration of the algorithm was 100000, and ps was 30.

Table 2. Selected programs for experiments.

<table>
<thead>
<tr>
<th>PUT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle classification [29]</td>
<td>Find the type of triangle</td>
</tr>
<tr>
<td>Fibonacci [30]</td>
<td>Find Fibonacci sequence</td>
</tr>
<tr>
<td>Quadratic equation [41]</td>
<td>Equation of the second degree</td>
</tr>
</tbody>
</table>

The algorithms apply the same values of parameters, which are listed in Table 3.

Table 3. Parameters of algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_v</td>
<td>50</td>
</tr>
<tr>
<td>Maximum iteration (stop condition)</td>
<td>100000</td>
</tr>
<tr>
<td>Range of input variables (it is a search space and is an option that can be defined in any interval according to the user's needs)</td>
<td>[-50, 50]</td>
</tr>
</tbody>
</table>

Table 4 compares the proposed method with the other methods based on the mean, std, ttest, pvalue, and percentage path coverage. The pvalue of AGA is higher than the other methods. The ttest of AGA is 0, while the average of other methods ttest is 3. (Tables 5 and 6 are like Table 4 but I do not have any idea about the title of them. Please write the details about the other two tables.)

Table 4. Triangle classification program.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mean</th>
<th>std</th>
<th>ttest</th>
<th>pvalue</th>
<th>Percentage path coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suresh [39]</td>
<td>21245.2</td>
<td>20528.1</td>
<td>5.131</td>
<td>0.0</td>
<td>100 %</td>
</tr>
<tr>
<td>Shinin [40]</td>
<td>13651.6</td>
<td>17205.6</td>
<td>3.078</td>
<td>0.002</td>
<td>100 %</td>
</tr>
<tr>
<td>Ghiduk [42]</td>
<td>10510.6</td>
<td>9727.0</td>
<td>3.047</td>
<td>0.002</td>
<td>100 %</td>
</tr>
<tr>
<td>Manikumar [47]</td>
<td>15294.4</td>
<td>13297.5</td>
<td>3.483</td>
<td>0.0</td>
<td>100%</td>
</tr>
<tr>
<td>Kumar [10]</td>
<td>6481.0</td>
<td>5743.9</td>
<td>0.444</td>
<td>0.657</td>
<td>100%</td>
</tr>
<tr>
<td>Mishra [28]</td>
<td>16649.8</td>
<td>12359.2</td>
<td>5.708</td>
<td>0.0</td>
<td>100%</td>
</tr>
<tr>
<td>Sahoo [27]</td>
<td>12923.4</td>
<td>10094.1</td>
<td>2.002</td>
<td>0.048</td>
<td>100%</td>
</tr>
<tr>
<td>Bao [29]</td>
<td>7140.4</td>
<td>6081.2</td>
<td>1.022</td>
<td>0.308</td>
<td>100%</td>
</tr>
<tr>
<td>AGA</td>
<td>5806.7</td>
<td>4701.9</td>
<td>0.0</td>
<td>1.0</td>
<td>100 %</td>
</tr>
</tbody>
</table>
Table 5. Quadratic equation.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mean</th>
<th>std</th>
<th>ttest</th>
<th>pvalue</th>
<th>Percentage path coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suresh [39]</td>
<td>6897.98</td>
<td>5395.9</td>
<td>3.243</td>
<td>0.001</td>
<td>100 %</td>
</tr>
<tr>
<td>Shimin [40]</td>
<td>9603.36</td>
<td>8974.9</td>
<td>4.123</td>
<td>0.0</td>
<td>100 %</td>
</tr>
<tr>
<td>Ghiduk [42]</td>
<td>6376.54</td>
<td>4910.2</td>
<td>2.849</td>
<td>0.005</td>
<td>100 %</td>
</tr>
<tr>
<td>Manikumar [47]</td>
<td>5236.8</td>
<td>4507.5</td>
<td>1.133</td>
<td>0.259</td>
<td>100 %</td>
</tr>
<tr>
<td>Kumar [10]</td>
<td>4921.2</td>
<td>3833.3</td>
<td>0.525</td>
<td>0.600</td>
<td>100 %</td>
</tr>
<tr>
<td>Mishra [28]</td>
<td>8068.4</td>
<td>8590.8</td>
<td>1.025</td>
<td>0.107</td>
<td>100 %</td>
</tr>
<tr>
<td>Sahoo [27]</td>
<td>6659.0</td>
<td>5224.0</td>
<td>1.525</td>
<td>0.160</td>
<td>100 %</td>
</tr>
<tr>
<td>Bao [29]</td>
<td>4083.4</td>
<td>3544.4</td>
<td>0.223</td>
<td>0.823</td>
<td>100 %</td>
</tr>
<tr>
<td>AGA</td>
<td>3984.0</td>
<td>3230.1</td>
<td>0.0</td>
<td>1.0</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Table 6. Fibonacci program.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mean</th>
<th>std</th>
<th>ttest</th>
<th>pvalue</th>
<th>Percentage path coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suresh [39]</td>
<td>4228.7</td>
<td>1811.4</td>
<td>5.619</td>
<td>0.009</td>
<td>100 %</td>
</tr>
<tr>
<td>Shimin [40]</td>
<td>1772.3</td>
<td>1021.0</td>
<td>3.132</td>
<td>0.003</td>
<td>100 %</td>
</tr>
<tr>
<td>Ghiduk [42]</td>
<td>1420.1</td>
<td>743.1</td>
<td>2.413</td>
<td>0.029</td>
<td>100 %</td>
</tr>
<tr>
<td>Manikumar [47]</td>
<td>2111.9</td>
<td>1160.2</td>
<td>4.381</td>
<td>0.005</td>
<td>100 %</td>
</tr>
<tr>
<td>Kumar [10]</td>
<td>1188.3</td>
<td>334.2</td>
<td>0.835</td>
<td>0.405</td>
<td>100 %</td>
</tr>
<tr>
<td>Mishra [28]</td>
<td>4392.62</td>
<td>1689.7</td>
<td>6.342</td>
<td>0.0</td>
<td>100 %</td>
</tr>
<tr>
<td>Sahoo [27]</td>
<td>1826.4</td>
<td>1174.9</td>
<td>3.415</td>
<td>0.004</td>
<td>100 %</td>
</tr>
<tr>
<td>Bao [29]</td>
<td>1275.26</td>
<td>358.6</td>
<td>1.211</td>
<td>0.328</td>
<td>100 %</td>
</tr>
<tr>
<td>AGA</td>
<td>933.68</td>
<td>301.9</td>
<td>0.0</td>
<td>1.0</td>
<td>100 %</td>
</tr>
</tbody>
</table>

References
Software Testing using an Adaptive Genetic Algorithm

آزمون نرم افزار با استفاده از الگوریتم زنتیک تطبیقی

امیرحسین دمیا، مهندس این اعیان و محمدرضا پرویزی مسعود
دانشکده مهندسی کامپیوتر، دانشگاه خواجه نصيرالدین طوسی، تهران، ایران
ارسال: 10/1/1390؛ بازرسی: 15/5/1390؛ پذیرش: 10/1/1390

چکیده:
در آزمون نرم افزار ساختاری، تولید داده های آزمون ضروری است. مسئله تولید داده های آزمون یک مسئله جستجو است و برای حل این مسئله می توان از الگوریتم های جستجو استفاده کرد. الگوریتم زنتیک یکی از پرکاربردترین الگوریتم ها در این زمینه است. تنظیم پارامترهای الگوریتم زنتیک به افرادی از الگوریتم های جستجو استفاده کرد. الگوریتم زنتیک به عنوان یک الگوریتم زنتیک تطبیقی به منظور حفظ تنوع جمعیت در تولید داده های آزمون بر اساس معیار گروه سوی استفاده می گردد که تعداد بار تغییری و تشکیل را با شش تا هدایت بین گروه و مقدار پرداختگی گروه مربوط به معیار می کند. آزمایشات انجام شده نشان می دهد که این روش برای تولید داده های آزمون سریعتر از سایر نسخه های الگوریتم زنتیک از نظر شده توسط دیگران است.

کلمات کلیدی: آزمون نرم افزار، تولید داده های آزمون سریعتر از سایر نسخه های الگوریتم زنتیک