
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 4, 2021, 465-474.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Software Testing using an Adaptive Genetic Algorithm

Amirhossein Damia
1*

, Mehdi Esnaashari
2
and Mohammadreza Parvizimosaed

3

1,3. Department of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2. Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Article Info Abstract

Article History:
Received 01 September 2020

Revised 07 May 2021

Accepted 14 July 2021

DOI:10.22044/JADM.2021.10018.2138

 In the structural software test, the test data generation is essential. The

problem of generating the test data is a search problem, and for

solving the problem, the search algorithms can be used. Genetic

algorithm is one of the most widely used algorithms in this field.

Adjusting the genetic algorithm parameters helps to increase the

effectiveness of this algorithm. In this paper, the adaptive genetic

algorithm is used in order to maintain the diversity of the population

to the test data generation based on the path coverage criterion, which

calculates the rate of recombination and mutation with the similarity

between the chromosomes and the amount of chromosome fitness

during and around each algorithm. The experiments performed show

that this method is faster for generating the test data than the other

versions of genetic algorithm used by the others.

Keywords:
Software Test, Test Data

Generation, Path Coverage,

Search Algorithms, Genetic

Algorithm.

*Corresponding author:
damiaa@email.kntu.ac.ir(A.H. Damia).

1. Introduction

Software testing is a process of identifying the

correctness of software by considering its all

attributes (reliability, scalability, portability, re-

usability, usability) and evaluating the execution

of the software components to find the software

bugs or errors or defects. Software testing

provides an independent view and objective of the

software, and gives surety of the software's

fitness. It involves testing all the components

under the required services to confirm that

whether it is satisfying the specified requirements

or not. The process also provides the client with

information about the quality of the software.

Once the software is produced, it must be tested.

According to the research work conducted by

NIST, the damage caused by software breaches is

massive [43].

The software test consumes many resources but

does not add any new functionality to the product.

Therefore, significant efforts have been made in

order to reduce the software development costs by

developing the automated software testing tools.

In the last decade, various methods have been

introduced for automatic software testing in order

to maximize error detection by producing the least

number of test data. In the process of test data

generation, we require a criterion such as a path

coverage criterion, the edge coverage criterion,

and the node coverage criterion to determine the

amount of program coverage by the data

generated. After selecting the quality criterion, the

amount of program coverage can be determined

by the generated data. The automated structural

testing methods are divided into two categories:

dynamic and static methods [2]. The generation

test data in static structural is based on the

analysis of the program's internal structure

without the need to run the program, and is

usually based on the symbolic execution. This

method has problems with the arrays and pointers

[1].

In the dynamic method, the program under test

(PUT) is required to be run, and the problems of

the static method are solved. In this method,

generating the test data is transformed into an

optimization problem to use the search

algorithms. In other words, parts of the test

program can be overwritten as a function, and

searched for the optimal value of the resulting

function. The data obtained covers the intended

purpose according to the quality criterion.

In generating the test data, we require a criterion

referred to as the coverage criterion in order to

determine the amount of program coverage by the

mailto:damiaa@email.kntu.ac.ir(A.H

Damia et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

466

generated data. These criteria are defined based on

the control flow graph (CFG) of the program. For

example, the branch coverage or edge coverage

criterion is one of the criteria in which the goal is

to cover all the branches of the program CFG.

Another quality criterion is the statement coverage

or node coverage criterion, which aims to execute

all nodes of CFG. Another criterion is the path

coverage criterion, which aims to cover all paths

within CFG. The branch coverage and node

coverage are subsets of the path coverage criteria

[44]. After selecting a coverage criterion, it is

possible to determine the program coverage based

on the selected criterion using the generated test

data.

Many previous dynamic methods have used meta-

heuristic or evolutionary algorithms such as

simulated annealing, genetic algorithm, and

particle swarm optimization [3,6]. Genetic

algorithm is one of the widely used algorithms in

the field of automation of software test data

generation [21-24].

The main problems with these methods are

scalability, premature convergence, and slow

speed. Scalability involves the size of the software

under the test, which could be addressed with the

method. Xiao et al. [45, 46] have reported that the

genetic algorithm (GA)-based approaches can

handle a larger number of branches with large

search spaces. However, they suffer from the

problem of slow convergence rate. This is mainly

due to the numerous parameters such as the

crossover rate (Pc) and mutation rate (Pm), which

must be tuned. In addition, attempts to speed up

GA usually results in premature convergence to

the local optima. The proposed method in this

paper tries to tune these parameters adaptively in

such a way that an acceptably good solution is

found with few number of evaluations, i.e. the

proposed method both speeds up GA and prevents

it from a premature convergence.

Many researchers have proposed the different

and Pm strategies. They can be categorized as

constant, random, deterministic, and adaptive

strategies [46, 50]. In constant to the Pc and Pm

strategies, if the value of Pc is too high, it will

cause the chromosome to lose its ability to adapt,

and if it is too small, the number of children

produced will not be enough. In mutation, if the

rate of this operator is high, the algorithm acts as a

random search, and if the rate of this operator is

low, the algorithm may be caught in local

optimizations, which can delay the convergence.

The random Pc and Pm strategies increase the

convergence of GA in an early stage of the

algorithm. In the time-varying Pc and Pm

strategies, Pc and Pm are defined as a function of

time. However, all these strategies have the

weakness of a premature convergence to the local

minimum. In order to overcome this weakness,

the adaptive Pc and Pm strategies have been

proposed in this method, and the search status is

taken during the execution of the feedback

algorithm. It is used in order to improve the

searching capability, and to maintain the diversity

of the population by adjusting Pc and Pm.

GA has difficulties in giving stable results (stuck

up at local optima); the convergence is slow and

has a non-explicit memorization of the best

individuals. In order to overcome this problem, in

this paper, one adjusts the cross-over rate and

mutation rate by maintaining the population

diversity. This paper employs measures of the

population diversity in order to adapt cross-over

and mutation rate: standard population diversity

(SPD). SPD is pure to the solution space diversity

with no regard to the health/fitness of the

individuals [4].

In general, in this method, the chromosomes that

have a better fitness and diversity than the other

members of the population are considered to have

a lower rate of mutation and recombination rate,

and in contrast, the chromosomes that have less

fitness and diversity have a higher rate of

mutation and recombination. In order to evaluate

the efficiency of the proposed method, this

method is used to automatically generate the test

data on many different programs, and the results

obtained are compared with the results the other

versions of GA and the other work done by the

others. The results obtained show the obvious

superiority of the proposed method.

2. Related Works

Much research work has been done on automating

the generation of an efficient test data. The

following are some of these studies and their

achievements.

GA has been very successful. An improved GA

optimization has been proposed to overcome the

traditional controller needs like stability and

control speed [34, 19-24]. The hybrid of GA and

asexual reproduction optimization is used to

impute the missing values [35]. A predictive

model in polymers has been designed using GA

[36]. Another work has implemented GA in order

to find the unpredicted thermal conductivity

improvement in disarranged nano-porous

graphene [37]. A method has used GA integer-

valued optimization to improve the machine

learning models' feature configuration and

architecture [38]. A model has been proposed

Software Testing using an Adaptive Genetic Algorithm

467

based on an adaptive genetic algorithm with fuzzy

logic (AGAFL) in order to predict heart disorder

[41]. GA is used for imputing the missing values

to predict the hospital length od stay using the

NICU datasets [49, 50]. GA has been

implemented on an IoT platform for the customer

needs [52, 53].

GA in the software test has been able to succeed

in both the parameter and structural optimizations

[5]. GA [6-8] and the combination of GA with

other algorithms are the most common methods

that the researchers have used in the recent years

[9-11, 53, 55]. Gupta and Gupta have focused on

the use of GA for generating the test data that can

cover the most error-prone path so that emphasis

can be given to test these paths first [12]. Suresh

has used GA to generate the test data for feasible

basis paths. Their results showed that GA was

more effective and efficient than a random testing

method [13]. A novel method has been designed

methodology for the test data generation using

GA to cover the most critical path of a program

[14].

Singh has used GA to automate the generated test

data based on the path coverage criteria. Their

results showed that the quality of the test data was

higher than the quality of the test data generation

at random [15].

A novel method of particle swarm optimization

(PSO) algorithm has been proposed to generate

the test data automatically [51].

A method has been presented for path testing by

automatically generating the test data and

optimizing the test data to test the critical paths

for the software under the test using a real-coded

GA. In the proposed approach, a one-to-one

injective mapping scheme is used to map the test

data to the corresponding path, and the most

critical path is covered during path testing of a

specific software. The proposed method can

reduce the number of test data generation required

for path testing, and is faster than the traditional

GA in covering a critical path [28].

GA is used to achieve both the path and branch

coverage of the program in the test data

generation [16]. In another method for test data

generation, a dynamic test is based on the PSO

algorithm used. The performance of this method

was better than the random search and tabu search

[17].

In [18], a method for test data generation has been

performed using GA. The efficiency of the

proposed method is based on the dependence of

the program data and in comparison with the

random search method, the results of which

showed that their proposed method is better than

the random search. Mack Mann and Pradeep

Tamar have introduced a GA-based method for

generating software test data, and their results

were compared with the stochastic method. In this

paper, the impact of the early population on the

efficiency of GA is investigated. Their

experiments showed that their proposed method

was more efficient than the random method, and

required less time to generate the software test

data, and by increasing the initial population size,

more search space could be created by increasing

diversity, making it a less likely algorithm [25,

26].

Sahoo et al. have proposed a method using a PSO

algorithm to cover the critical paths in CFG. It is

called a critical path if the probability of its

coverage is low. One of the well-known fitness

functions for the test data generation problems is

the branch distance and approach level function,

which has been used in many works. In this paper,

the problems related to this function are

investigated, and instead of the approach level, the

path distance is used [27].

Manikumar et al. have presented an incremental

GA for branch coverage testing. Initially, a

classical GA is used to construct the population

with the best parents. The incremental GA starts

with these parents as the initial population. This

work aims to solve the problem of a large

population. Hence, it is unnecessary to maintain a

huge population size and many iterations to cover

all the branches. The experimental results

obtained indicate that the proposed incremental

GA search technique outperforms the other meta-

heuristic search techniques in memory usage and

scalability [47]. Kumar et al. have proposed an

approach to automatically generate the test data

for data flow testing based on a hybrid adaptive

PSO-GA algorithm. The hybrid APSO-GA is

developed to conquer the weaknesses of the GA

and PSO algorithms, especially in data flow

testing. The results obtained show that hybrid

adaptive PSO-GA gives better results as compared

to the other algorithms that are used in the field of

test data generation [48].

Mishra et al. have presented a method for path

testing by automatically generating the test data

and optimizing the test data to test the critical

paths for software under the test using a real-

coded GA. In the proposed approach, a one-to-one

injective mapping scheme is used to map the test

data to the corresponding path, and the most

critical path is covered during path testing of a

specific software. The proposed method can

reduce the number of test data generation required

Damia et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

468

for path testing, and is faster than the traditional

GA in covering a critical path [28].

One of the main problems in the firefly algorithm

is getting stuck in the local minima, and

consequently, a poor exploration. Poor

exploration and population diversity are directly

related. In order to solve this problem, Damia et

al. have used the asexual reproduction

optimization algorithm in the structure of the

firefly algorithm to diversify the population of this

algorithm. The results of their experiments show

that their proposed hybrid method is better than

each one of these algorithms [7-9].

In [13], the ant colony optimization algorithm is

used to generate the test data. Their proposed

method is an evolutionary strategy to improve the

search performance of ants in local movements

and increase the exploitation of the search. The

results of their experiments show that their

proposed method is more efficient than the

existing test data generation techniques in terms

of branch coverage and convergence speed.

3. Problem Formulation

The path test method executes all the control path

method paths under test at least once in order to

execute all the program commands. To perform

this test, the current control structure of the

method under the test is considered as a control

flow graph (CFG).

In this paper, the problem is to automatically

generate the test cases for a given software under

the test (SUT). The coverage criterion is

considered to be the path coverage, i.e. a perfect

test method has to traverse every execution path

within SUT. In order to perform this, first, the

control structure of SUT is transferred into a

control flow graph (CFG). For example, CFG of

the following SUT is shown in Fig. 1.

1: void main ()

2: {

 int x ;

 x = scanf (“d”);

3: if (x > 0)

4: x++

5: else if (x <= 0)

6: x - -

7: print (x)

8: }

The problem here is to automatically determine

the set of inputs to test a specific method that can

cover all paths. For this purpose, a search on the

input parameters of the method is used. A method

is generally defined as [return type] method_name

([input parameter list]). Next, the cyclomatic

complexity of CFG is determined [54, 55].

Figure 1. An example program and its CFG.

The Cyclomatic complexity is equal to the

number of linearly independent paths within the

control structure of SUT. As a result, a perfect

path test method has to find a test set that is able

to cover all of these linearly independent paths. In

order to be able to generate such a test set, a

comprehensive search over the input parameter

space of SUT is used. Note that a SUT is

generally defined as:

[return type] method_name ([input parameter

list])

Thus the input space of SUT is the Cartesian

product of its input parameter list. For example, if

the method has two input parameters, the input

space will be a pair <i1, i2>, where i1 and i2

indicate the values assigned to the first and the

second parameters, respectively. The main goal of

the search is to minimize the number of

calculations required to find the suitable test set.

This goal is important because a typical program

usually consists of many SUTs. Therefore, the

amount of time and calculations required for

generating a suitable test set for a single SUT

within the program, significantly affect the overall

time and processing needs of generating the test

sets for the whole program.

The main goal of the search work is to minimize

the number of calculations required to identify the

inputs because as the program grows and the

number of functions in it increases, it will take a

long time to generate these test items, and the

faster the automatic solution with fewer

calculations, it would be better to cover the paths.

4. Proposed Method

In this work, we used GA with its tuned

parameters for testing the software. Early

convergence is one of the significant problems in

GA, and there is a direct relationship between

early convergence and lack of population

diversity. A population is diverse if the distance

between its chromosomes is large; otherwise, it is

small. The similarity between the chromosomes

Software Testing using an Adaptive Genetic Algorithm

469

can be calculated based on the distance between

them.

4.1. Calculating SPD

SPD is calculated by finding the site of the mean

chromosome within the population according to

Equation (1) and the sum of inputs (genes)

Euclidean distances from this mean point to the

site of each chromosome according to Equation

(2) [4].

,

1

1 P
avg

n i n

i

G G
P

(1)

2

,

1

()
N

avg

i i n n

n

SPD G G

 (2) (2)

The population size is (1)G toGP where each

chromosome consists of N gene. Gin is the nth

gene of chromosome i ;

(,1, , 2,..., ,)Gi Gi Gi Gi N .The mean

chromosome in the population is
meanG , and is

calculated as the gene mean overall

chromosomes.
mean

nG is the mean of all genes

in the population. SPDi is the chromosome

the portion to SPD . It is calculated as the

Euclidean distances between chromosome and
meanG [4].

SPDi can be used to determine SPD . In order to

calculate SPD, the standard deviation of the

population is calculated aaccording to Equation

(3) ()mean

nG , and SPD is calculated according

to Equation (3) [4].

2

,

1

1
() ()

p
avg avg

n i n n

i

G G G
P

(3)

1

()1
()

avgN
javg

v avg
j j

G
SPD C G

N G

(4)

4.2. Adaptive Cross-over

This operator is applied to a pair of chromosomes

and in the form of different are introduced, the

most important of which are one-point, two-point,

multi-point, and uniform. This operator is set

based on a probability of Pc . If the probability of

Pc is high, the good chromosomes may be easily

damaged, and if this probability is low, the new

chromosomes may not be formed. Therefore, it is

better to calculate Pc based on the fitness of each

chromosome during the search [4]. The proposed

method for calculating Pc is according to

Equation (5) [4]. In this work, the uniform cross-

over is used.

max

[(*(2 1) 1]
SPD

Pc k k k
SPD

(5)

In this work, Pc is in the range of 0.5 and 0.85.

4.3. Adaptive Mutation

The purpose of this mutation operator is to escape

the algorithm from local optimization and

maintain the population diversity. This operator

occurs based on a probability Pm.

If the value of probability Pm is high, the

algorithm acts as a random search, and if this

value is low, the algorithm gets stuck in the local

minimum so a suitable method is to parameterize

this probability [4].

Therefore, the adaptive mutation is used in this

work, which is calculated to be a probability of

Pm while executing the algorithm.

The adaptive mutation is combined with the

following two methods [4]:

 Impact of diversity

 Impact of fitness

Equation (6) proposes the impact of diversity
diversity

mp and Equation (7) proposes the impact of

fitness
Fitness

mp [4].

max
*

max

Diversity

m

SPD SPD
p k

SPD

(6)

max
*()

max min

Fitness

m

f f
p k

f f

(7)

In Equation (7), f is the parent fitness, maxf ,

and minf are the best and worst fitness

chromosomes in the population, respectively (k is

0.5).

Equation (8) defines the proposed method for

calculating Pm for each chromosome [4].

2

Fitness Diversity

m mP P
Pm

(8)

4.4. Population Initialization

After generating the CFG program, we then obtain

the paths of this graph.

In order to start searching throughout the state

space of the problem, a random population is

initially generated. Each chromosome in this

population represents a test set for PUT. Suppose

Damia et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

470

the number of input parameters of the PUT to be

Nv and the number of finite paths within the

corresponding CFG to be Np .Then each

chromosome ti would be of the form

[(1), (2),..., ()]ti ti ti ti Np , where each ti(b)

represents a test data for evaluating PUT with a

specific set of input parameters. Let

() [xib(1), xib(2),..., xib(Nv)]ti b . Here, xib(l)

specifies the lth input parameter for PUT in the

test data ti(b).

In this work, chromosome representation is

integers.

4.5. Fitness Function

After generating the initial random population, in

order to determine the fitness of each population

member, it is necessary to run the test method

times to determine which paths are covered by the

input test set. The fitness of each chromosome is

calculated according to Equation (9).

()
()i

SatsifiedPath i
fitness chromosome

Np
 (9)

4.6. Selection

The selection operator is used to determine the

chromosomes to be used as the parents in the

creation of the off-spring that population the

subsequent generation. The rank-based selection

method is one of the widely used in GA [31] [32]

[33].

In the Rank-based selection method, instead of

using the absolute fitness value, the fitness rank of

the members in the population is used to

determine the selection. In this method, the fitness

of the best member of the population equal to ns

is considered. The second-best member of the

population is assigned a fitness of 1ns and this

continues until the weakest member of the

population is reached (it is a debt that the fitness

of the weakest member will be equal to 1). Note

that in a common GA, if the fitness of two

members in the population is the same, we must

randomly attribute one fitness R and the other

fitness 1R . In the proposed method, if the

fitness of the two members is equal, their rank

will be determined based on the diversity of each

member.

4.7. Stopping condition

The termination conditions in AGA specify the

stopping criteria after the desired solution is

obtained in few numbers of iterations. The

termination condition in AGA can occur due to

the following reasons:

 A finite number of generations (in this

paper is 100000).

 The optimized solution is obtained.

 Implementation of algorithm

 The implementation of the pseudo-code of

improved genetic algorithm (IGA) is

given in Algorithm 1.

Algorithm 1. Test data generation based on improved genetic
algorithm (IGA).

1: Input: instrumented version of a program to be tested

2: number of variants program under test (NV)

3: number of paths program under test (NP)
4: max iteration

5: ps
6: Output: set of test data

7: Begin

8: chromosome size = NP * NV
9: population = GenerateRandomSolutions(population size,

chromosome size)

10: iteration = 0
11: while iteration < max iteration do

12: Evaluate(population)

13: selection result = SelectParents ()

14: Update according to Equation (5)

15: Recombination ()

16: Update according to Equation (8)
17: Mutation ()

18: population = new population

19: iteration = iteration + 1
20: end while

21: return output

22: End

5. Experiment

This experiment aims to show the superiority of

the proposed method compared with the works

done by the others in Table 1. Each algorithm was

executed 50 times. For each execution, the

algorithms were performed with the same range of

input variables; these programs are listed in Table

2.

The decision for the termination criteria is that if

at least one test datum has been found to traverse

the paths or the number of iterations of the

evolution is reached the present value (maximum

iteration), the evolution will stop.

The decision for the termination criteria is that if

at least one test datum has been found to traverse

the target path or the number of iterations of the

evolution reaches the present value, the evolution

will stop. The evaluation criteria to test the

effectiveness of different methods are listed as

follow:

Evals: Number of evaluations for individual

evaluation of each method.

In order to ensure that the number of

chromosomes has no effect on the performance of

the compared methods, all methods have adopted

the same population size and the same initial

population. Each experiment was repeated 50

Software Testing using an Adaptive Genetic Algorithm

471

times, and the results obtained were reported as

the average of all repetitions. The comparison

results are given in Tables 4, 5, and 6. In all

tables, the mean, standard deviation, P-value (t-

test with α = .05), and percentage of covered paths

are summarized for each algorithm per benchmark

program. The results obtained confirm that the

proposed IGA method outperforms the other

existing state-of-the-art methods in terms of the

number of fitness evaluations. The main reason

for the superiority of IGA over the existing

algorithms is its ability to escape from the local

optima. This ability is due to the suitable setting

of recombination and mutation rates considering

the fitness of each chromosome and its degree of

diversity in the population. In [39], [40], [47], [1],

and [28], these rates are constant, and thus no

feedback is available from the search space.

Therefore, the algorithm is easily trapped into the

local optima. This problem is less severe in

[10,11], where a combination of GA and PSO are

utilized. However, the method is more complex,

and thus takes much more time to achieve suitable

results. The method of [29] places great emphasis

on the population diversity. However, increasing

the population diversity leads to a slower

convergence speed. The problem with the method

given in [4] is that even though it varies the values

of its parameters in time, it considers no feedback

from the search space for adjusting its parameter

variation scheme.

6. Conclusions and Future Work

In this paper, we proposed an automatic test data

generation method based on an adaptive genetic

algorithm. The method improves the search

efficiency by maintaining the population diversity.

The experimental results obtained show that the

proposed method is more effective than the

existing similar to path testing. Although the

subjects selected in this work are Python

language, the thought of this method can be used

for reference in other languages as the

experimental objects. For the future work, we

will use this method for the object-oriented

programming and classes.

Table 1 shows the parameters of genetic algorithm

used in the previous works. The value of each

parameter varies based on the nature of the

datasets that are used. The cross-over rate is

generally more than 0.5, and the mutation rate is

between 0.01 and 0.15. Different selection

algorithms can also be used for each work.

Table 1. Work of others.

Algorithm Cross-over

rate

Mutation

rate

Selection

Suresh [39] 0.5 0.05 Elitism

Shimin [40] 0.8 0.01 Ranking

Ghiduk [42] 0.8 0.15 Roulette

wheel

Manikumar [47] 1.0 0.01 Tournament

Mishra [28] 0.8 0.02, 0.03,

0.07

Ranking

Bao [29] Adaptive Adaptive Roulette
wheel

The value of each parameter was set based on the

experiment in Table 2. The range of the input

variables was between -50 and 50. The maximum

iteration of the algorithm was 100000, and ps was

30.

Table 2. Selected programs for experiments.

PUT Description

Triangle classification [29] Find the type of triangle

Fibonacci [30] Find Fibonacci sequence

Quadratic equation [41] Equation of the second degree

The algorithms apply the same values of

parameters, which are listed in Table 3.

Table 3. Parameters of algorithm.

Parameter Value

 30

Maximum iteration (stop condition) 100000
Range of input variables (it is a search space

and is an option that can be defined in any

interval according to the user's needs)

[-50, 50]

Table 4 compares the proposed method with the

other methods based on the mean, std, ttest,

pvalue, and percentage path coverage. The pvalue

of AGA is higher than the other methods. The

ttest of AGA is 0, while the average of other

methods ttest is 3. (Tables 5 and 6 are like Table 4

but I do not have any idea about the title of them.

Please write the details about the other two tables.

Table 4. Triangle classification program.

Algorithm Mean std ttest pvalue Percentage

path

coverage

Suresh [39] 21245.2 20528.1 5.131 0.0 100 %

Shimin [40] 13651.6 17205.6 3.078 0.002 100 %

Ghiduk [42] 10510.6 9727.0 3.047 0.002 100 %

Manikumar

[47]

15294.4 13297.5 3.483 0.0 100%

Kumar [10] 6481.0 5743.9 0.444 0.657 100%

Mishra [28] 16649.8 12359.2 5.708 0.0 100%

Sahoo [27] 12923.4 10094.1 2.002 0.048 100%

Bao [29] 7140.4 6081.2 1.022 0.308 100%

AGA 5806.7 4701.9 0.0 1.0 100 %

https://stackoverflow.com/questions/15398427/solving-quadratic-equation

Damia et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

472

Table 5. Quadratic equation.

Algorithm Mean std ttest pvalue Percentage

path

coverage

Suresh [39] 6897.98 5395.9 3.243 0.001 100 %

Shimin

[40]

9603.36 8974.9 4.123 0.0 100 %

Ghiduk

[42]

6376.54 4910.2 2.849 0.005 100 %

Manikumar
[47]

5236.8 4507.5 1.133 0.259 100%

Kumar

[10]

4921.2 3833.3 0.525 0.600 100%

Mishra
[28]

8068.4 8590.8 1.025 0.107 100%

Sahoo [27] 6659.0 5224.0 1.525 0.160 100%

Bao [29] 4083.4 3544.4 0.223 0.823 100%

AGA 3984.0 3230.1 0.0 1.0 100 %

Table 6. Fibonacci program.

Algorithm Mean std ttest pvalue Percentage

path coverage

Suresh [39] 4228.7 1811.4 5.619 0.009 100 %

Shimin
[40]

1772.3 1021.0 3.132 0.003 100 %

Ghiduk

[42]

1420.1 743.1 2.413 0.029 100 %

Manikumar

[47]

2111.9 1160.2 4.381 0.005 100%

Kumar

[10]

1188.3 334.2 0.835 0.405 100%

Mishra

[28]

4392.62 1689.7 6.342 0.0 100%

Sahoo [27] 1826.4 1174.9 3.415 0.004 100%

Bao [29] 1275.26 358.6 1.211 0.328 100%

AGA 933.68 301.9 0.0 1.0 100 %

References
[1] McMinn, Phil. "Search‐based software test data

generation: a survey." Software testing, Verification

and reliability 14, no. 2 (2004): 105-156.

[2] Lonetti, Francesca, and Eda Marchetti. "Emerging

software testing technologies." In Advances in

computers, vol. 108, pp. 91-143. Elsevier, 2018.

[3] Civicioglu, Pinar, and Erkan Besdok. "A conceptual

comparison of the Cuckoo-search, particle swarm

optimization, differential evolution and artificial bee

colony algorithms." Artificial intelligence review 39,

no. 4 (2013): 315-346.

[4] McGinley, Brian, John Maher, Colm O'Riordan,

and Fearghal Morgan. "Maintaining healthy population

diversity using adaptive crossover, mutation, and

selection." IEEE Transactions on Evolutionary

Computation 15, no. 5 (2011): 692-714.

[5] Kim, Su Yong, Sungdeok Cha, and Doo-Hwan Bae.

"Automatic and lightweight grammar generation for

fuzz testing." Computers & Security 36 (2013): 1-11.

[6] Khan, Rijwan, Mohd Amjad, and Akhilesh Kumar

Srivastava. "Optimization of automatic generated test

cases for path testing using genetic algorithm." In 2016

Second International Conference on Computational

Intelligence & Communication Technology (CICT),

pp. 32-36. IEEE, 2016.

[7] Damia, Amir Hossein, and Mohammad Mehdi

Esnaashari. "Automated Test Data Generation Using a

Combination of Firefly Algorithm and Asexual

Reproduction Optimization Algorithm." International

Journal of Web Research 3, no. 1 (2020): 19-28.

[8] Pachauri, Ankur, and Gaurav Mishra. "A path and

branch based approach to fitness computation for

program test data generation using genetic algorithm."

In 2015 International Conference on Futuristic Trends

on Computational Analysis and Knowledge

Management (ABLAZE), pp. 49-55. IEEE, 2015.

[9] Jiang, Shujuan, Jiaojiao Shi, Yanmei Zhang, and

Han Han. "Automatic test data generation based on

reduced adaptive particle swarm optimization

algorithm." Neurocomputing 158 (2015): 109-116.

[10] Kumar, Sumit, Dilip Kumar Yadav, and Danish

Ali Khan. "A novel approach to automate test data

generation for data flow testing based on hybrid

adaptive PSO-GA algorithm." International Journal of

Advanced Intelligence Paradigms 9, no. 2-3 (2017):

278-312.

[11] Khan, Rijwan, Mohd Amjad, and Akhlesh Kumar

Srivastava. "Optimization of automatic test case

generation with cuckoo search and genetic algorithm

approaches." In Advances in Computer and

Computational Sciences, pp. 413-423. Springer,

Singapore, 2018.

[12] Gupta, Meenakshi, and Garima Gupta. "Effective

test data generation using genetic algorithms." Journal

of Engineering, Computers & Applied Sciences 1, no.

2 (2012): 17-21.

[13] Sharifipour, Hossein, Mojtaba Shakeri, and

Hassan Haghighi. "Structural test data generation

using a memetic ant colony optimization based on

evolution strategies." Swarm and Evolutionary

Computation 40 (2018): 76-91.

[14] Rao, K. Koteswara, G. S. V. P. Raju, and

Srinivasan Nagaraj. "Optimizing the software testing

efficiency by using a genetic algorithm: a design

methodology." ACM SIGSOFT Software Engineering

Notes 38, no. 3 (2013): 1-5.

[15] Singh, Bindhyachal Kumar. "Automatic efficient

test data generation based on genetic algorithm for

path testing." International Journal of Research in

Engineering & Applied Sciences 2, no. 2 (2012): 1460-

1472.

[16 Liu, Dan, Xuejun Wang, and Jianmin Wang.

"Automatic Test Case Generation based on Genetic

Algorithm." Journal of Theoretical & Applied

Information Technology 48, no. 1 (2013).

Software Testing using an Adaptive Genetic Algorithm

473

[17] Latiu, Gentiana Ioana, Octavian Augustin Cret,

and Lucia Vacariu. "Automatic test data generation for

software path testing using evolutionary algorithms."

In 2012 Third International Conference on Emerging

Intelligent Data and Web Technologies, pp. 1-8. IEEE,

2012.

[18] Varshney, Sapna, and Monica Mehrotra.

"Automated software test data generation for data flow

dependencies using genetic algorithm." International

Journal of Advanced Research in Computer Science

and Software Engineering 4, no. 2 (2014): 472-479.

[19] Zhu, Xiao-mei, and Xian-feng Yang. "Software

test data generation automatically based on improved

adaptive particle swarm optimizer." In 2010

International Conference on Computational and

Information Sciences, pp. 1300-1303. IEEE, 2010.

[20] Noei, Shirin, Mohammadreza Parvizimosaed, and

Mohammadreza Noei. "Longitudinal Control for

Connected and Automated Vehicles in Contested

Environments." Electronics 10, no. 16 (2021): 1994.

[21] Aleti, Aldeida, and Lars Grunske. "Test data

generation with a Kalman filter-based adaptive genetic

algorithm." Journal of Systems and Software 103

(2015): 343-352.

[22] Yang, Shunkun, Tianlong Man, Jiaqi Xu, Fuping

Zeng, and Ke Li. "RGA: A lightweight and effective

regeneration genetic algorithm for coverage-oriented

software test data generation." Information and

Software Technology 76 (2016): 19-30.

[23] Yang, Shunkun, Tianlong Man, Jiaqi Xu, Fuping

Zeng, and Ke Li. "RGA: A lightweight and effective

regeneration genetic algorithm for coverage-oriented

software test data generation." Information and

Software Technology 76 (2016): 19-30.

[24] Pachauri, Ankur, and Gursaran Srivastava.

"Automated test data generation for branch testing

using genetic algorithm: An improved approach using

branch ordering, memory and elitism." Journal of

Systems and Software 86, no. 5 (2013): 1191-1208.

[25] Mann, Mukesh, Pradeep Tomar, and Om Prakash

Sangwan. "Test Data Generation Using Optimization

Algorithm: An Empirical Evaluation." In Soft

Computing: Theories and Applications, pp. 679-686.

Springer, Singapore, 2018.

[26] Myers, Glenford J., Corey Sandler, and Tom

Badgett. The art of software testing. John Wiley &

Sons, 2011.

[27] Sahoo, Rashmi Rekha, and Mitrabinda Ray. "PSO

based test case generation for critical path using

improved combined fitness function." Journal of King

Saud University-Computer and Information

Sciences 32, no. 4 (2020): 479-490.

[28] Mishra, Deepti Bala, Rajashree Mishra, Kedar

Nath Das, and Arup Abhinna Acharya. "Test case

generation and optimization for critical path testing

using genetic algorithm." In Soft computing for

problem solving, pp. 67-80. Springer, Singapore, 2019.

[29] Bao, Xiaoan, Zijian Xiong, Na Zhang, Junyan

Qian, Biao Wu, and Wei Zhang. "Path-oriented test

cases generation based adaptive genetic

algorithm." PloS one 12, no. 11 (2017): e0187471.

[30] Surendran, Anupama, and Philip Samuel.

"Evolution or revolution: the critical need in genetic

algorithm based testing." Artificial Intelligence

Review 48, no. 3 (2017): 349-395.

[31] Grefenstette, J., 2000. Rank-based selection.

Evolutionary computation, 1, pp.187-194.

[32] Razali, Noraini Mohd, and John Geraghty.

"Genetic algorithm performance with different

selection strategies in solving TSP." In Proceedings of

the world congress on engineering, vol. 2, no. 1, pp. 1-

6. Hong Kong: International Association of Engineers,

2011.

[33] Bullnheimer, Bernd, Richard F. Hartl, and

Christine Strauss. "A new rank based version of the Ant

System. A computational study." (1997).

[34] Liang, Haibo, Jialing Zou, Kai Zuo, and

Muhammad Junaid Khan. "An improved genetic

algorithm optimization fuzzy controller applied to the

wellhead back pressure control system." Mechanical

Systems and Signal Processing 142 (2020): 106708.

[35] Noei, Mohammadreza, and Mohammad Saniee

Abadeh. "A genetic asexual reproduction optimization

algorithm for imputing missing values." In 2019 9th

International Conference on Computer and Knowledge

Engineering (ICCKE), pp. 214-218. IEEE, 2019.

[36] Kim, Chiho, Rohit Batra, Lihua Chen, Huan Tran,

and Rampi Ramprasad. "Polymer design using genetic

algorithm and machine learning." Computational

Materials Science 186 (2021): 110067.

[37] Wei, Han, Hua Bao, and Xiulin Ruan. "Genetic

algorithm-driven discovery of unexpected thermal

conductivity enhancement by disorder." Nano

Energy 71 (2020): 104619.

[38] Hamdia, Khader M., Xiaoying Zhuang, and Timon

Rabczuk. "An efficient optimization approach for

designing machine learning models based on genetic

algorithm." Neural Computing and Applications 33,

no. 6 (2021): 1923-1933.

[39] Suresh, Yeresime, and Santanu Ku Rath. "A

genetic algorithm based approach for test data

generation in basis path testing." arXiv preprint

arXiv:1401.5165 (2014).

[41] Reddy, G. Thippa, M. Praveen Kumar Reddy,

Kuruva Lakshmanna, Dharmendra Singh Rajput,

Rajesh Kaluri, and Gautam Srivastava. "Hybrid genetic

algorithm and a fuzzy logic classifier for heart disease

diagnosis." Evolutionary Intelligence 13, no. 2 (2020):

185-196.

Damia et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

474

[42] Ghiduk, Ahmed S. "Automatic generation of basis

test paths using variable length genetic

algorithm." Information Processing Letters 114, no. 6

(2014): 304-316.

[43] Newman, Michael. "Software errors cost us

economy $59.5 billion annually." NIST Assesses

Technical Needs of Industry to Improve Software-

Testing (2002).

[44] Ammann, Paul, and Jeff Offutt. Introduction to

software testing. Cambridge University Press, 2016.

[45] Xiao, Man, Mohamed El-Attar, Marek Reformat,

and James Miller. "Empirical evaluation of

optimization algorithms when used in goal-oriented

automated test data generation techniques." Empirical

Software Engineering 12, no. 2 (2007): 183-239.

[46] Hinterding, Robert, Zbigniew Michalewicz, and

Agoston E. Eiben. "Adaptation in evolutionary

computation: A survey." In Proceedings of 1997 Ieee

International Conference on Evolutionary Computation

(Icec'97), pp. 65-69. IEEE, 1997.

[47] Manikumar, T., A. John Sanjeev Kumar, and R.

Maruthamuthu. "Automated test data generation for

branch testing using incremental genetic

algorithm." Sādhanā 41, no. 9 (2016): 959-976.

[48] Kumar, Sumit, Dilip Kumar Yadav, and Danish

Ali Khan. "A novel approach to automate test data

generation for data flow testing based on hybrid

adaptive PSO-GA algorithm." International Journal of

Advanced Intelligence Paradigms 9, no. 2-3 (2017):

278-312.

[49] Mansouri, Ardeshir, Mohammadreza Noei, and

Mohammad Saniee Abadeh. "Predicting Hospital

Length of Stay of Neonates Admitted to the NICU

Using Data Mining Techniques." In 2020 10th

International Conference on Computer and Knowledge

Engineering (ICCKE), pp. 629-635. IEEE, 2020.

[50] Damia, Amirhosein, Mehdi Esnaashari, and

Mohammadreza Parvizimosaed. "Adaptive Genetic

Algorithm Based on Mutation and Crossover and

Selection Probabilities." In 2021 7th International

Conference on Web Research (ICWR), pp. 86-90.

IEEE, 2021.

[51] Damia, Amirhosein, Mehdi Esnaashari, and

Mohammadreza Parvizimosaed. "Automatic Web-

Based Software Structural Testing Using an Adaptive

Particle Swarm Optimization Algorithm for Test Data

Generation." In 2021 7th International Conference on

Web Research (ICWR), pp. 282-286. IEEE, 2021.

[52] Parvizimosaed, Mohammadreza, Mohammadreza

Noei, Mohammadmostafa Yalpanian, and Javad

Bahrami. "A Containerized Integrated Fast IoT

Platform for Low Energy Power Management."

In 2021 7th International Conference on Web Research

(ICWR), pp. 318-322. IEEE, 2021.

[53] Esnaashari, Mehdi, and Amir Hossein Damia.

"Automation of Software Test Data Generation Using

Genetic Algorithm and Reinforcement

Learning." Expert Systems with Applications (2021):

115446.

[54] McCabe, Thomas J. "A complexity

measure." IEEE Transactions on software

Engineering 4 (1976): 308-320.

[55] Saadtjoo, M. A., and S. M. Babamir. "Optimizing

Cost Function in Imperialist Competitive Algorithm for

Path Coverage Problem in Software Testing." Journal

of AI and Data Mining 6, no. 2 (2018): 375-385.

 .0011سال ،چهارم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده و همکاران دمیا

 تطبیقی ژنتیک الگوریتم از استفاده با افزارنرم آزمون

 مساعد پرویزی محمدرضا و عشری اثنی مهدی ،*دمیا امیرحسین

 .ایران تهران، طوسی، الدین نصیر خواجه دانشگاه کامپیوتر، مهندسی دانشکده

 00/10/۰1۰0 پذیرش؛ 10/15/۰1۰0 بازنگری؛ 10/1۰/۰1۰1 ارسال

 چکیده:

 تووانمی مساله این حل برای و است جستجو مساله یک آزمون های داده تولید مساله. است ضروری آزمون های داده تولید ساختاری، افزار نرم آزمون در

 افوزای به ژنتیک الگوریتم پارامترهای تنظیم. است زمینه این در هاالگوریتم پرکاربردترین از یکی ژنتیک الگوریتم. کرد استفاده جستجو هایالگوریتم از

 معیوار اسوا بور آزموون هوای داده تولید در جمعیت تنوع حفظ منظور به تطبیقی ژنتیک الگوریتم مقاله، این در. کندمی کمک الگوریتم این اثربخشی

 انجوام آزمایشوا . کنودموی محاسبه کروموزوم برازندگی مقدار و هاکروموزوم بین شباهت با را جه و بازترکیبی نرخ که شود،می استفاده مسیر پوش

 .است دیگران توسط شده ارائه ژنتیک الگوریتم هاینسخه سایر از سریعتر آزمون هایداده تولید برای روش این که دهدمی نشان شده

 .ژنتیک الگوریتم ،جو و جست الگوریتم ،مسیر پوش آموزش، داده تولید افزار، نرم آزمون :کلمات کلیدی

