
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 3, 2021, 309-320.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

 An Efficient Approach to Solve Software-defined Networks based Virtual

Machines Placement Problem using Moth-Flame Optimization in the

Cloud Computing Environment

Amir hossein Safari-Bavil
1
, Sam Jabbehdari

1*
 and Mostafa Ghobaei-Arani

3

1. Department of Electrical and Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2. Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran.

Article Info Abstract

Article History:
Received 28 May 2020
Revised 26 January 2021

Accepted 21 April 2021

DOI:10.22044/jadm.2021.9737.2106

 Generally, the issue of quality assurance is a specific assurance in the

computer networks. The conventional computer networks with

hierarchical structures that are used in organizations are formed using

some nodes of Ethernet switches within a tree structure. Open flow is

one of the main fundamental protocols of software-defined networks

that provides a direct access and changes in the program of sending the

network equipment such as switches and routers, physically and

virtually. The lack of an open interface in the data sending program has

led to the advent of integrated and close equipment similar to CPU in

the current networks. In this work, we suggest a solution to reduce the

traffic using a correct placement of virtual machines, while their

security is maintained. The proposed solution is based on the moth-

flame optimization, which is evaluated. The results obtained indicate

the priority of the proposed method.

Keywords:
Cloud Computing, Virtual

Machine Placement, Software-

Defined Networks, Moth-Flame

Algorithm.

*Corresponding author:
S_Jabbehdari@ iau-tnb.ac.ir(S.
Jabbehdari).

 Introduction 1.

Generally, the issue of quality assurance is a

specific assurance in the computer networks.

Nowadays, most of the organizations, companies,

and administrations use the computer networks

due to their availability. However, the lack of a

serious and new change in the computer networks

has made the users of these networks to customize

them and use new capacities. Moreover, these

users are not willing to add new structures and

pay more attention to the hardware [1].

Disconformity between the market and network

capacities would lead to a deviation in the

information technology. According to the given

explanations about the server and communicative

companies in order to prevent from recession, the

software-defined architecture has been introduced,

and its relevant standards have been developed.

The idea of software-defined networks (SDNs) is

not a new one as this idea has been existing for a

decade, adding new parts to it. It should be noted

that SDNs could still be discussed in research

scopes. Straum has defined SDN as a method to

separate the data and control the performances of

the routers and other infrastructures of the second

layer of ordinary networks using a programming

interface [2] [3].

SDNs can affect the ideal placement by changing

the traffic circulation throughout the network.

Traffic may be done by the hypervisor itself

instead of passing through a physical router for

crossing between the segments of layer 2. This

means that rather than placing two virtual

machines (VMs), which have a strong connection

between the boundaries of layer 2 close to each

other and a router, they should be placed as shown

in Figure 1, presented by the hypervisors, not

physical switches [4] [5].

As the quality of the provided services in SDNs is

a specific necessity in presenting the goals and

services for the users, assurance of such a quality

is a big challenge. Accordingly, the distributed

protocols should be used. Open flow is one of the

main fundamental protocols of SDNs that

provides a direct access and changes in the

Jabbehdari et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

310

program of sending the network equipment such

as the switches and routers, physically and

virtually. The lack of an open interface in the data

sending program has led to the advent of

integrated and close equipment similar to CPU in

the current networks. There is not any other

standard protocol in network performing the tasks

of the open flow protocol [6]. Hence, in this work,

we propose a solution to reduce traffic using a

correct placement of VMs, while their security is

maintained. In this research work, the moth-flame

algorithm was used to select the best place for

VMs trying to consider them with security and

some other parameters such as the hardware

values of machine and traffic. Achievements of

this work include a correct placement of VMs in

order to reduce traffic, and propose a solution for

placement of machines by maintaining the

security level of VMs to protect the security of the

whole system and reduce the security problems.

This work has been organized in a way that the

background knowledge is explained to understand

the proposed method, and the fundamental

concepts are discussed. Then the relevant studies

will be reviewed, and then the proposed method

will be introduced, evaluated, and compared with

the other methods. At the end, the conclusions

will be expressed and some recommendations will

be presented.

2. Technical Work Preparation

2.1. VM Placement

The cloud service providers are becoming larger

and numerous; meanwhile, the data centers that

provide hosting services tend to reduce their costs.

The clouds run a big part of their computational

workloads in the form of VMs on top of physical

machines (PMs) or hosts that have an installed

hypervisor. These hosts are then connected using

a network that links the protocol stack of TCP/IP

to several layers of physical switches and routers.

An effective placement of VMs on the host leads

to cost reduction due to a more useful application

of resources and reduction in the overall demand.

SDNs change the transporting method through

network by providing both the switching and

routing services. In the conventional model, the

data center of traffic travels through the following

three layers of switching infrastructure:

 An edge layer that connects directly to all the

hosts.

 A distribution layer that brings the edge

switches together.

 A core layer that provides the routing services

and connectivity between the distribution

switches.

Today, SDNs are used in large data centers and

cloud environments in order to facilitate the

network management and its data flow [6]. This

technology explains how the data flowing within

the intermediate tools of network such as router is

determined through a central server. To this end,

the layers that control and manage the

intermediate functions of network are separated

from the data transfer layer, and the management

layer can control some of the network tools such

as the provincial routers based on its

comprehensive view of online situation of

network.

THE VMS’ security is one of the significant and

effective parameters in case of SDNs. On the

other hand, the VM placement is an influential

factor in the traffic of SDNs. Hence, a secure VM

placement with a low traffic is an important issue

that has been discussed in paper [6], and is called

Software-defined Network based Virtual

Machines Placement (SDNVMP).

In paper [7], the VM placement has been

examined comprehensively, and then more than

12 open issues have been discussed, which can be

studied in details. Among these options, the

research question is based on the consuming

energy reduction. Hence, this work was conducted

in order to find a solution for SDNVMP

(expressed in paper [6]) based on the moth-flame

algorithm to promote the solution presented in

paper [6], reduce the traffic, and maintain the

security.

1.1.1. Pros and Cons of SDNVMP

The most important advantages of the VM

displacement include:

 The utilization of SDNVMP can lead to the

traffic reduction, while VMs that tend to

create more connection with each other are

placed close to each other in a way that the

traffic does not travel to the upper layer so

that the traffic is not transferred to the upper

layer, and so the traffic load will be reduced.

 Reduction in the hardware as the traffic will

not travel to the upper layer using SDNVMP;

in this case, some hardware such as the

routers and switches are less required since

the routing of the lower layers is done by a

correct placement of VMs, and the traffic is

reduced.

 The most important disadvantage of VMP is

the possible reduction in the security level

because VMs with different security levels

may be placed close to each other, which

An Efficient Approach for Software-defined Networks based Virtual Machines Placement Problem using Moth-Flame Optimization

in the Cloud Computing Environment

311

reduces the traffic but the security may be

under question.

 Open Flow Protocol 1.2.

The open flow protocol is now the most

acceptable and applicable programming interface

for SDNs in the world that provides three

information sources for the operating systems of

the network, including:

 When the port or linking situation is

changing, a message is sent to the controller

by the forwarding device.

 Flowing statistics created by the forwarding

devices are collected by the controller.

 Input packages into the forwarding devices,

which are not matched with none of the

conformity rules of the flow tables’ records.

These informational channels are highly

important for providing the network operating

systems with the flow-based data.

Although open flow is the most popular

programming interface for SDN, it is not the only

one, and some other interfaces can be named

including ForCES, OVSDB, OpFlex, ROFL,

HAL, and PAD [16][17].

2.3. Moth-flame Algorithm

The moth-flame optimization (MFO) algorithm,

which is also called the candle and butterfly

algorithm, is one of the heuristic and optimization

algorithms that finds the solution based on the

behaviors of the moths flying around the flame or

fire. This algorithm was introduced in 2015 by

Seyyed Ali Mirjalili, who wrote a paper entitled

“Moth-flame optimization algorithm: a novel

nature-inspired heuristic paradigm” that was

published in the Journal of Knowledge-based

Systems. The MFO algorithm is also known as the

moth-fire algorithm, flame algorithm, and candle-

butterfly algorithm. This algorithm is a novel

exploratory model inspired by the nature and

behavior of butterflies and their interest in the

flame of fire. The inspiring factor in this optimizer

is the navigation method used by moths in nature,

which is called the transverse orientation. The

moths can fly at night and travel to a long distance

by keeping a fixed angle with respect to the moon.

However, these fantasy insects are trapped in a

useless and deadly spiral path around the artificial

flames [18].

Optimization is defined as a process in which the

best solution(s) for a certain problem are found.

Increasing the complexity of problems in the

recent decades has made it essential to find new

optimization techniques. The mathematical

optimization methods had been the only tools for

the optimization of problems before proposing the

exploratory optimization methods. A majority of

the mathematical optimization methods suffer

from the local optimums. The meta-heuristic

algorithms start with a series of initial solutions,

and become closer to the solution after the next

iterations. The genetic algorithm, evolutionary

differential algorithm, ant colony algorithm, bee

colony algorithm, firefly algorithm, gray wolf

algorithm, and whaling algorithm are the most

popular algorithms in this case [18].

The moth-flame algorithm uses the behavior of

these butterflies mathematically for optimization.

The MFO algorithm is similar to the other known

algorithms inspired by the nature, and the

statistical results of standard functions indicate

that this algorithm can achieve hopeful and

competitive results.

Moths are fancy insects, and are highly similar to

the family of butterflies. Basically, there are over

160,000 various species of this insect in the

nature. They have two main milestones in their

lifetime: larvae and adult. The larvae are

converted to moth by cocoons. The most

interesting fact about moths is their special

navigation methods at night. They have been

evolved to fly in night using the moon light. They

utilize a mechanism called the transverse

orientation for navigation. In this method, a moth

flies by maintaining a fixed angle with respect to

the moon, a very effective mechanism for

travelling long distances in a straight path [18].

1,1 1,2 1,d 1

2,1 2,2 2,d 2

,1 ,2 ,d

1,1 1,2 1,d

2,1 2,2 2,d

,1 ,2 ,d

... ...

... ...

...

... ...

... ...

... ...

...

... ...

n n n n

n n n

m m m OM

m m m OM
M OM

m m m OM

F F F OF

F F F
F OF

F F F

   
   
     
   
   

  

 
 
   
 
 
 

1

2

...

n

OF

OF

 
 
 
 
 
 

(1)

In the MFO algorithm, it is assumed that the

candidate solutions are moths, and the problem’s

variables are the position of moths in the space.

Therefore, the moths can fly in a 1-D, 2-D or 3-D

space with changing their position vectors. Since

the MFO algorithm is a population-based

algorithm, the set of moths can be illustrated in a

matrix (for instance, matrix M). An array (OM)

also exists for all of moths to store the fitness

values. Another key component in this algorithm

is a matrix similar to the matrix of moths, which is

flame or flag matrix (F), and an array of OF is

used to store the fitness function value [18].

Jabbehdari et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

312

 Review of Relevant Studies 2.

Nowadays, services are increasing, and SDNs

have been created to reduce the traffic load. The

article [6] published in 2017 has proposed a

solution that is based on the idea of grouping

virtual machines because a correct placement of

VM leads to a substantial reduction in the network

traffic. On the other hand, the VMP position can

affect the security of VMs since they have

different security levels. Anderson et al. [7] have

proposed a solution in which VMs are grouped in

way that not only VMs with similar security levels

are placed but also the network traffic is

decreased.

Zhang et al. [8] have presented a constraint

programming-based virtual cloud resource

allocation (CP-VCRA) model that can meet the

service quality requirements, and reduce the

resources of consumption cost. The authors have

considered the performance of the application

programs’ goals and different kinds of workloads

in their study.

Dupont et al. [9] have introduced a flexible and

expandable framework based on the re-scheduling

problem of virtual machines (VSRP) that is used

for the allocation of resources in data centers

based on an energy aware method considering

SLA limits for VMP. This approach allows the

user to find the SLA constraints and reduce the

energy consumption.

Dong et al. [10] have applied a few constraints

such as the network connectivity capacity and

physical machine size on the VM scheduling

using the two-step VMS algorithm. At the first

step, they combined the best-fit exploratory

algorithm from the bin packing algorithm with

cluster-minimal hierarchical clustering. This

minimizes the number of activated physical

machines and prevents from the traffic in the

network using the MLU optimization (maximum

link productivity), and this goal can be achieved

by modeling the network traffic as a QAP

(quadratic assignment problem). At the second

step, the allocated VMs are re-optimized.

Song et al. [11] have formulated a dynamic

resource allocation algorithm based on the bin

packing, in which the number of performing and

active servers is optimized. They created a minor

change in the possible online bin packing [12],

and named it as VISB (bin packing with variable

item size). They implemented this algorithm using

the extensible detector-based simulation, and then

compared it with three known algorithms for

server integration including Black Box & Gray

Box [13], VectorDot algorithm [14], and Offline

Bin Packing Algorithm [15]. In fact, the VISBP

core is the capability of this algorithm in

considering the size change of an item (VM) at

the running time. This “changing” process

supports the dynamic and demand-based

allocation. VISBP performs well in terms of load

balance and hotspot detection but it violates the

service level to some extent, so it requires

improving the VM to physical machine ratio.

Li et al. [25] have proposed adaptive hyper-sphere

(AdaHS), an adaptive incremental classifier, and

its kernelized version: Nys-AdaHS. The classifier

incorporates competitive training with a border

zone. With adaptive hidden layer and tunable radii

of hyper-spheres, AdaHS has a strong capability

of local learning like instance-based algorithms

but free from slow searching speed and excessive

memory consumption.

Kou et al. [26] have proposed an approach to

resolve disagreements among the multiple criteria

decision-making (MCDM) methods based on the

Spearman's rank correlation coefficient. The

experimental results prove that the proposed

approach can resolve the conflicting MCDM

rankings and reach an agreement among different

MCDM methods.

Various types of VM placement algorithms have

been proposed in the literature [20]. Such

algorithms largely aim to minimize the amount of

unused CPU cycles and RAM on the host. One

solution technique is to solve the classic bin

packing problem, in which the variably-sized

objects must be put into a minimum number of

fixed-sized bins. Another technique is to treat the

resources required by a particular VM as dynamic,

and use the stochastic integer programming in

order to make intelligent placement decisions

[21]. Some techniques consider a single heuristic

at a time, while the others combine several

limitations into a single value to determine the

appropriate placement. The First Fit (FF)

algorithm proposes placing a VM in the first host

that has an available capacity to host it, while

adding a new host if no such host exists [21]

Wang et al. [22] have proposed the energy-

efficient and QoS-aware virtual machine

placement algorithm, namely EQVMP. In

EQVMP, VMs are placed in a scheme designed to

minimize the network traffic between VMs.

EQVMP is very similar to our proposed

algorithm; however, our work differs from

EQVMP in that our algorithm allows a variable

number of VMs to be assigned to each cluster

based on the network closeness and VM resource

sizing at the same time.

Table 1 reports a comparison between different

approaches considered in this work.

An Efficient Approach for Software-defined Networks based Virtual Machines Placement Problem using Moth-Flame Optimization

in the Cloud Computing Environment

313

Table 1. A comparison between previous studies.
Author(s) Description

Anderson et al. [7] VMs are grouped in a way that not only VMs with similar security level are placed but also the network traffic is reduced.
Zhang et al. [8] Service quality was examined in this research work without considering security of VMs for grouping.

Dupont et al. [9] The main goal in this research work is energy reduction, trying to maintain the security while many of machines have

security problems since ports and machines are not grouped.
Dong et al. [10] In this research work, grouping was done well in terms of service quality but security and energy did not receive any

attention.

Song et al. [11] Like the researches [12], [13], and [14], energy has been considered in this work with a specific attention toward service
quality, while VM security has not been considered in this approach so some machines with different security levels may

be placed close to each other.

 Proposed Method 3.

The proposed method for VM placement using the

moth-flame algorithm has been investigated in

this section.

 Objective Function and Constraints 4.

The moth-flame algorithm-based placement

method makes it possible to apply different

objective functions. Moreover, the introduced

constraints in this section include the probable

change and development.

The closer the highly used VMs to each other, the

lower the network traffic will be. Meanwhile,

security should be maintained in a way that VMs

with high security levels should not be placed

close to the machines with highly low security

levels. In general, a parameter should be

considered herein as these two objectives can be

integrated. Consider w for the importance degree

for network traffic and s for the importance degree

of network security. Thus we have:

(1)F s w    (2)

Here, the coefficient is a real number, and the

formula shows that a number should be given to α

in order to keep a balance between the security

maintenance and the network traffic reduction,

and find which one is more important. F is the

final output. Therefore, the α coefficient should be

determined at first.

To this end, some constraints exist:

2 2

:

Mem_ _

(() ())
Mem_cap _cap

1

,

_ (_) ,

_ (_) ,

_ (_

i

i

j ij j ij

j j

i
i i

ij

i

i ij

ij i

i

i i ij ji

i i ij ji

i i ij

Minimizing Y k

usage x cpu usage x

cpu

X j

Y X i j

X Y j

Y cpu cap X cpu usage i j

Y Mem cap X Mem usage i j

F F cap X F usag

 

 



 

 

 

   

   

  



 









) ,ji

e i j

(3)

The symbols used in these constraints are

described in Table 2.

Table 2. Symbols used in the constraints.
symbol Description

j VMs’ index

i PMs’ index

ijX
Binary variable; it equals 1 if VM j

corresponds to PM i

iY
Binary variable; it equal 1 if PM i is used

_ iMem cap
Initial memory capacity of PM i

_ icpu cap
Initial CPU capacity of PM i

_ iF cap
Initial F value related to VM i

_ jMem usage
Memory requested by VM j

cpu_ jusage
Requested CPU by VM j

F_ jusage
Requested F value by VM j

The responses have been coded with the method

used in the proposed method in paper [19]. In

order to describe this method, Figure 1 can be

considered. This figure illustrates a proposed

solution for the placement of 5 VMs.

Figure 1. A solution for VMP.

As it can be seen in Figure 1, each solution is an

array whose elements are equal to the number of

VMs requested for placement. The index of each

element of this array indicates the number of VM

and the corresponding value is the PM index

considered for running that VM. For instance, in

Figure 1, PM A corresponds to two VMs 1 and 4

running, PM C for VM 2 running, and VMs 3 and

5 corresponding to PM B.

 Initialization 4.1.

In order to generate the initial solutions and to

calculate the fit values for each solution, any

stochastic distribution can be used. The following

method was used as a suitable one in this work:

Jabbehdari et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

314

Table 3. Calculating fitness value.

for i = 1:n

 for j = 1:d

 M(j,j)=(ub(i)-lb(i))*rand()+lb(i);

 end

end

OM = FitnessFunction(M);

where ub is the upper bound and lb is the lower

bound of variable 1. Thus the n×d initial solutions

can be generated. After initialization, the fitness

of each solution can be calculated; therefore, the

OM value indicates the fitness function of matrix

M or matrix of moths. The proposed MFO-based

VMP algorithm has introduced a modern method

for the moths move and generation of new

solutions. A new concept- named agent- has been

added to the MFO algorithm. This concept will be

introduced, and then its display will be presented

in this section. In this research work, d indicates 9

dimensions and n shows the number of moths that

are VMs here. Flames are also shareware

machines in which VMs are placed. In this work,

d equals 9 because we have 8 constraints and one

objective function. Therefore, the general solution

of this work includes 9 dimensions.

 Agent and How to Displays It 4.2.

As it was discussed earlier, each solution is an

array whose size equals the number of VMs

required for placement. Considering the

introduced objective function in the previous

section, the required items for fitting a solution

include the number of PMs used, utilization rate

of each PM, and security level of each machine

existing in the solution. Hence, a structure is

introduced in order to collect the mentioned data.

The agent of each solution is an array whose size

is equal to the number of physical and virtual

machines used in a certain solution. The value of

each element is the index of each used PM. The

index of such PM is used to compare its

utilization rate.

Consider the solution shown in Figure 1 again for

more clarification. In total, this solution uses the

three PMs of A, B, and C. Assume that the traffic

for these three machines equals 70, 40, and 30,

respectively. Accordingly, the agent of this

solution can be shown as Figure 2.

Figure 2. Agent of the solution shown in Figure 1.

 Problem formulation 4.3.

The MFO algorithm was used in this research

work in order to find the correct place for VM. To

this end, the MFO algorithm has been applied in

this research work. According to the pre-

determined parameters of this algorithm, the best

place should be chosen for VM, and also the

security level should be maintained while

considering the computational overload and the

required resources. To this end, a function is

presented in which the best place is determined

for machine, and its general algorithm has been

illustrated in Figure 3.

Algorithm 1: choosing best place

1: Begin

2: for each (Time interval in execution time) do

3: inputs = CheckStatus()

4: allocationMap = MFO(inputs)

5: Allocate VMs to right places

6: end for each

7: End

Figure 3. Algorithm of choosing best place for VM.

MFO chooses the best place for machines in each

iteration. In this algorithm, the required machine

receives the system situation considering the

CheckStatus function, and then the best place is

chosen for that machine based on the pre-

determined parameters. As the pseudo-code

shows, the best hardware machine is determined

for placement at the first step for each machine at

each time interval using the MFO algorithm. The

system situation is determined with respect to

Figure 4. This means that the status of machines is

determined, and then the best place is chosen for

the input machine until the best placement is done

for machine.

Algorithm 2: Monitoring status of system

1: inputs: VMS

2:outputs: status of VMs

3:Begin

2: for each (vm in inputs) do

3: outputs = Monitor 〖Mem_usag, CPU_usage, F, N)

4: end for each

5: End

Figure 4. Algorithm of examining the status of system.

As it can be seen, the machines are checked at

each iteration, and their security level, CPU

capacity, memory capacity, and number of

existing machines are determined so all the

machines are under the supervision; then the MFO

algorithm is used in order to find the best place for

the considered input machine.

In this algorithm, moths are the search agents, and

flames are the best places chosen for the machines

An Efficient Approach for Software-defined Networks based Virtual Machines Placement Problem using Moth-Flame Optimization

in the Cloud Computing Environment

315

at the time. In general, the MFO algorithm

includes a set of moths in the following form:

1,1 1,

,1 ,

...

...

...

d

n n d

M M

M

M M

 
 

  
 
 

(3)

In this matrix, indicates the moths, d is the

number of all the input parameters, and n is the

total number of used moths. In fact, indicates

VM and n indicates the total number of input

VMs. In this work, d equals 9 dimensions; the

first dimension relates to the objective function

and the rest of dimensions correspond to the

parameters mentioned in the constraint part.

Various solutions are obtained in the algorithm;

the fitness value (MO) of this solution can be

illustrated as follows:

1 2[, ,...,]TnOM OM OM OM (4)

The flames that are the problem’s solutions are

shown in another matrix. There are various

solutions for the problem since various places can

be chosen for one machine but the best solution

should be selected; hence, a matrix is designed for

solutions in order to find the best solution at the

end. The matrix of flames (Matrix F) is shown as

follows:

1,1 1,

,1 ,

...

...

...

d

n n d

F F

F

F F

 
 

  
 
 

(5)

Similar to the matrix of moths, in this matrix, also

d is the number of parameters and n is the total

number of moths, and so n solutions should be

achieved.

Matrices F and M are the dimensions. Since the

fitness matrix was determined for Matrix M, the

simila matrix (OF) should also be designed for F.

It is obvious that OM and OF are both

dimensions.

1 2[, ,...,]TnOF OF OF OF (6)

Generally, the MFO algorithm applies the three

parameters of I, P, and T; I includes the initial

inputs:

: { , }I M OM  (7)

P refers to the motion function that causes

movement of moths, and it will be explained that

this motion is done in a spiral form.

:P M M (8)

Function T is designed for the finishing condition

of the algorithm; if this function is satisfied, a true

value is obtained, meaning that the algorithm has

finished, and the best solution has been obtained.

: { , }T M true false (9)

 Algorithm Iteration 4.4.

After the initialization, the moths’ motion or

function P is run repetitively until the T

performance (convergence limit to flame) returns

to a true value. The P performance is the main

performance that moves the moths in the search

space. As it was mentioned earlier, this algorithm

is inspired by a transverse orientation.

 Updating Moths 4.5.

The logarithmic spiral has been chosen as the

main mechanism for updating moths in the

proposed method for VMP using the moth-flame

algorithm:

(,) D .e .cos(2)bt

i j i jS M F t F  (10)

 Spiral’s initial point should start from the

moth.

 Spiral’s final point should be the position of

the flame.

 Fluctuation of the range of spiral should not

exceed the search space.

Considering these points, a logarithmic spiral can

be defined for the MFO algorithm, as follows:

i j iD F M  (11)

In the logarithmic spiral equation, the spiral-flying

path of moths can be simulated in the moth-flame

algorithm. As it can be seen in the equation, the

next position of moth is defined based on the

flame. The t parameter in the spiral equation

defines how much the next position of the moth

should be close to the flame (t = -1 is the closest

position to the flame, while t = 1 shows the

farthest), which is finding the best value in this

research work.

 Evaluation 5.

The implemented system in this research work

includes the specifications reported in Table 4.

Table 4. Specifications of the implemented system.

Specification Value

Operating system Windows 10 64 bit

Ram 8G

Cpu Corei7

HDD 256SSD

The two programming languages of Python and

MATLAB have been used in this implementation;

these two languages are popular and common in

the implementation field, which have been

Jabbehdari et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

316

employed in this research work. The

implementation environments of mininet and

Matlab R2017b have been used in this work.

In the simulation experiment, a single network

switch is allowed to connect γ = 12 hosts together

in addition to the necessary uplinks into the core

network. The fixed number of hosts used for

EQVMP is m = 20, which matches the average

values observed in the proposed algorithm and FF.

The total number of VMs is set to n = 1000. In

this work, we demonstrated the performance

results under two environments: simulated

networks and real networks. Under the simulated

network, we used randomly generated 100

networks based on the uniform distribution. The

edge weights are given as the integer numbers

based on the uniform distribution with the range

of [1, 1000]. The results obtained are the average

values of the given metrics based on 100

simulation realizations. Under the real networks,

the packet captures from several data center

environments were used in order to evaluate the

performance of the algorithms. Two of these

packet captures are taken from an earlier study on

data center traffic [24], while the third one is the

packet captures of a month of network traffic from

a hosting provider conducted by the SimpleWeb

project [23]. Each one of these datasets was pre-

processed to build the network model using each

IP address as a single vertex in the network

representing a VM. An edge is created between

two IP addresses when a packet is sent between

the two addresses. This edge is weighted by the

sum of the lengths of all packets going between

the two addresses. Each vertex also has the source

ports and protocols associated with it in the

traffic.

In order to examine the proposed approach, this

method was compared with the method presented

in reference [6], and SDNVMP and analyses were

carried out based on such a comparison in

simulated networks.

The number of hosts used at the first step of

simulation was equal to 40; however, this is the

initial value, and the required value can be added

to it, and 1000 VMs were considered to see the

results in a better way.

In this research work, VMs have different security

levels based on the following risks:

 Risk 4: a high number of 5 allocated ports at

the threshold segment is changeable, while the

VM with 5 or more ports is the most

important one.

 Risk 3: some ports are specific such as the

UDP/TCP 20, TCP 21, and TCP 23 ports,

which do not have encrypted protocols.

 Risk 2: a high number of links in one virtual

machine has been considered as a security

state in this research work; this means a VM

with a high number of links and a high-level

popularity.

 Risk 1: low-risk machines that are considered

as ordinary machines.

Therefore, four security levels have been chosen

and classified (from 4 to 1), as mentioned above.

In this research work, some parameters have also

been determined that indicate the capabilities of a

specific solution:

 The number of applied hosts: the minimum

number of hosts required to cover all VMs in

a way that algorithm works without any

problem. The fewer the number of this

parameter, the better the situation will be; in

this case, less resources are required, and

energy consumption is reduced.

 Total network traffic for each host; the fewer

the number of this parameter, the lesser the

traffic load will be. Distribution of traffic on

different hosts leads to a higher speed in the

users’ requests without any accident.

 Standard deviation of security risk that is

calculated using formula (11). This parameter

is used in order to see how each algorithm has

done the categorization.

0 0
()

:
1

HN n

j ij jj i
SD j

H

sd r r
R where sd

N n

 


 


 

(12)

 Cumulative sum of edge weights (Ĉ) is the

average cumulative sum of the edge weights

to measure the network traffic between hosts

on different network switches. Lower is

better, incurring less network traffic. Ĉ is

obtained by:

, , , , , ,

ˆ 2
i j x i x j y x y i x j y x y

ij ij

v v T v h v h h h v h v T T T

C w w
      

    (13)

Recall that
ijw  is a raw integer weight

indicating the degree of network traffic flow.

xT refers to a set of hosts connected to the

same network switch.

Figure 5 indicates that increasing the rate of α

(that is the ratio between the security risk and the

traffic) leads to a higher importance of the

security risk. Obviously, with an increase in the

importance of security level in VMP, the

machines with similar security risks are put in one

category, and this, in turn, leads to an increase in

the number of required hosts. In this diagram of

the proposed method, the number of hosts is a

little greater than SDNVMP [6] at first because of

considering the hardware specifications at the first

An Efficient Approach for Software-defined Networks based Virtual Machines Placement Problem using Moth-Flame Optimization

in the Cloud Computing Environment

317

step of the proposed method. Therefore, this

specification indicates that more categorizations

are done at the first step but then the number of

hosts is slowly reduced due to use of the moth-

flame method to select the proper hosts; therefore,

α~1 in the proposed method indicates that fewer

number of hosts are required compared to the

SDNVMP approach, and this approves the better

situation of the proposed method. In this case, the

proposed algorithm has used fewer hosts with a

higher accuracy considering the security levels, so

it requires less resources compared to the

SDNVMP approach.

Figure 5. Number of hosts in various α values of the

proposed algorithm and approach used in [6].

Figure 6. Total number of applied traffics considering

alpha value of the proposed algorithm and SDNVMP.

Figure 6 indicates that an increase in the alpha

value leads to increase in traffic, which is one of

reasons for the increase in number of hosts while

this value becomes less gradual in the proposed

algorithm due to more suitable leveling. It can be

concluded that a better categorization has been

done by the proposed algorithm leading to a less

traffic and an out-of-switch traffic; this means that

traffic exists just in the relevant switch. It is

obvious that smaller alpha values in the proposed

algorithm have acted worsen compared to

SDNVMP, and an increase in the alpha value has

led to a better performance of the proposed

algorithm compared to SDNVMP. Therefore, the

proposed algorithm has performed better in the

alpha values between 0.8 and 1, and this is the

optimal value for the proposed algorithm as the

better performance of the proposed method relates

to this value range.

Figure 7. SD diagram considering alpha value of the

proposed algorithm and SDNVMP.

According to Figure 7, the standard deviation of

the proposed algorithm is smaller than the

SDNVMP method due to the utilization of more

efficient algorithm in categorizing these VMs on

optimal hosts. In this case, the security level in the

proposed algorithm is higher than the other

approaches. It can be seen that an increase in the

alpha value in the proposed algorithm has led to a

better leveling, categorizing, and results due to

more attention paid to the security leveling part.

Therefore, better results have been achieved

showing the superiority of the proposed method

compared to the SDNVMP method.

For a better comparison of the proposed

algorithm, the out algorithm has been compared

with the FF method [21] and EQVMP [22] in the

simulated and real networks.

 Simulated Networks 5.1.

Figures 8 to 10 show the performance comparison

of the three VM placement algorithms, FF,

EQVMP, and the proposed algorithm, in the

simulated networks. Figure 8 shows the

comparison of the three algorithms in terms of the

average number of hosts, NH. Overall, FF and the

proposed algorithm perform roughly the same,

while EQVMP requires only a few more hosts. As

α is close to 1, the proposed algorithm begins to

trend upwards; when α = 1, substantially more

hosts are required. This implies that using the

proposed algorithm with a high α provides a less

efficient host clustering.

Figure 9 shows the average cumulative sum of

edge weights, Ĉ , of the three algorithms. In

Figure 9, the proposed algorithm significantly

performs well compared to FF and EQVMP even

when the VM risk is weighted above the network

clustering up to α = 0.7. As α is close to 1, Ĉ

approaches the performance of FF. This is

Jabbehdari et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

318

because the network characteristics are no longer

taken into account in this configuration. This

implies that the performance of the network

efficiency will be equivalent to that of FF, which

is not traffic-aware.

Figure 8. Comparison of the three algorithms in terms of

the average number of hosts, NH in the simulated

networks.

Figure 9. Average cumulative sum of edge weights of FF,

EQVMP, and proposed algorithms in the simulated

networks.

Figure 10. Average of the standard deviation of the

security risk of FF, EQVMP, and proposed algorithms in

the simulated networks.

Figure 10 shows the average of the standard

deviation of the security risk, RSD, of each VM

on a per-host basis for each placement algorithm.

For α = 1, RSD is very close to 0, a significantly

higher performance compared to those of FF and

EQVMP or the proposed algorithm with lower α.

However, as shown in Figures 8 and 9, a higher α

is not always preferred in terms of the number of

hosts required to handle the given VMs and

network traffic generated from the placement. In

order to achieve the conflicting goals of

minimizing high network/resource cost and

minimizing the VM security risk, we suggest

choosing an optimal α (e.g. 0.6 in this case study),

which can best balance between the imposed

system requirements associated with these two

goals.

 Real Network 5.2.

We also conducted the experiment on the real

networks [24], [23] in order to investigate the

performance of the three algorithms, as shown

in Figures 11 to 13. Figure 11 shows the

number of hosts used by the three algorithms.

While EQVMP does outperform FF, the

proposed algorithm provides a better

placement when α = 0 and α = 0.5. Figure 12

shows the cumulative sum of edge weights,

Ĉ , of the three algorithms in the real

networks.

Figure 11. Comparison of the three algorithms in terms of

the average number of hosts, NH in the real networks.

Notice that EQVMP does indeed outperform FF

but the proposed algorithm performs far better,

particularly for lower α ≤ 0.7. As α is close to 1,

the performance does slip to worse than EQVMP,

as the grouping decisions are being made based on

the security risk rather than the network

communication.

Figure 12. Average cumulative sum of edge weights of the

FF, EQVMP, and proposed algorithms in the real

networks.

Figure 13 shows the average standard deviation of

the security risk, RSD, of each VM on a per-host

An Efficient Approach for Software-defined Networks based Virtual Machines Placement Problem using Moth-Flame Optimization

in the Cloud Computing Environment

319

basis for each placement algorithm on the three

real networks. As α rises, RSD decreases; the

effect is not nearly as obvious as in the random

networks generated, and appears to be much less

effective. This is due to the differences between

the randomly generated risk measurements and

those calculated for the actual network traffic,

which generate different patterns of risk. Despite

this behavior, the proposed algorithm still

outperforms the other two algorithms, as they do

not make security-aware decisions.

Figure 13. Average of the standard deviation of the

security risk of the FF, EQVMP, and proposed

algorithms in the real networks.

 Conclusions 6.

The VMs’ security is one of the most influential

and significant parameters involved in the field of

software-defined networks. On the other hand, the

VM placement is a highly important factor for the

SDN traffic. Hence, a VM placement with a

proper placement and a low traffic is an important

issue that has been discussed in reference [6]

under the title of SDNVMP (software-defined

network virtual machine placement). The previous

approaches did not examine this case; so it is a

new subject without many solutions and

approaches regarding it. This paper proposed a

solution based on the moth-flame optimization

algorithm in order to consider the best host for a

VM. In the proposed algorithm, the presented

approach not only considers the security risks but

also classifies the risks based on the hardware

specifications. The alpha parameter was used in

this approach in order to indicate the importance

level of the network traffic and security risk. All

the implementation and conclusion processes are

based on the alpha parameter. In this research

work, the proposed algorithm was compared with

the SDNVMP method that was similar to the

proposed algorithm in this work. The results

obtained indicated that the proposed algorithm

could perform better than the approach used in

reference [6] in terms of the classification and

achievement.

In addition to the considered parameters in this

research work, other parameters can be used in

further studies. For instance, the amount of energy

consumed in hosts was not considered, so it could

be added to the alpha value as a new option.

References
[1] A. Beloglazov, R. Buyya, Y. C. Lee, and A.

Zomaya (2011). “A Taxonomy and Survey of Energy-

Efficient Data Centers and Cloud Computing

Systems”, pp. 47–111.

[2] Tajamolian, M., Ghasemzadeh, M. (2019).

Analytical evaluation of an innovative decision-making

algorithm for VM live migration. Journal of AI and

Data Mining, vol. 7, no. 4, pp. 589-596. doi:

10.22044/jadm.2018.7178.1847.

[3] Mabhoot, N., Momeni, H. (2021). An Energy-

aware Real-time Task Scheduling Approach in a Cloud

Computing Environment. Journal of AI and Data

Mining, (), -. doi: 10.22044/jadm.2021.10344.2171.

[4] Donyagard Vahed, N., Ghobaei‐Arani, M., & Souri,

A. (2019). Multiobjective virtual machine placement

mechanisms using nature‐inspired metaheuristic

algorithms in cloud environments: A comprehensive

review. International Journal of Communication

Systems, 32(14), e4068.

[5] Masdari, M., Gharehpasha, S., Ghobaei-Arani, M.,

& Ghasemi, V. (2019). Bio-inspired virtual machine

placement schemes in cloud computing environment:

taxonomy, review, and future research directions.

Cluster Computing, 1-31.

[6] J. Anderson and J.-H. Cho (2017). “Software

Defined Network Based Virtual Machine Placement in

Cloud Systems,” in MILCOM 2017 IEEE Military

Communications Conference (MILCOM), pp. 876–

881.

[7] M.C. Silva Filho, C.C. Monteiro, P.R.M. Inácio,

and M. M. Freire (2018). “Approaches for optimizing

virtual machine placement and migration in cloud

environments: A survey,” J. Parallel Distrib Comput,

vol. 111, pp. 222–250.

[8] L. Zhang, Y. Zhuang, and W. Zhu (2013).

“Constraint Programming based Virtual Cloud

Resources Allocation Model,” Int. J. Hybrid Inf.

Technol., vol. 6, no. 6, pp. 333–344.

[9] C. Dupont, T. Schulze, G. Giuliani, A. Somov, and

F. Hermenier (2012). “An energy aware framework for

virtual machine placement in cloud federated data

centres,” in Proceedings of the 3rd International

Conference on Future Energy Systems Where Energy,

Computing and Communication Meet- e-Energy’12,

pp. 1–10.

[10] J. Dong, H. Wang, and S. Cheng (2015). “Energy-

performance tradeoffs in IaaS cloud with virtual

machine scheduling,” China Commun., vol. 12, no. 2,

pp. 155–166.

Jabbehdari et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

320

[11] W. Song, Z. Xiao, Q. Chen, and H. Luo (2014).

“Adaptive Resource Provisioning for the Cloud using

Online Bin Packing,” IEEE Trans. Comput., vol. 63,

no. 11, pp. 2647–2660.

[12] G. Gambosi, A. Postiglione, and M. Talamo

(2000). “Algorithms for the Relaxed Online Bin-

Packing Model,” SIAM J. Comput., vol. 30, no. 5, pp.

1532–1551.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M.

Yousif (2009). “Sandpiper: Black-box and gray-box

resource management for virtual machines,” Comput.

Networks, vol. 53, no. 17, pp. 2923–2938.

[14] A. Singh, M. Korupolu, and D. Mohapatra (2008).

“Server-storage virtualization: Integration and load

balancing in data centers,” in 2008 SC-International

Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1–12.

[15] N. Bobroff, A. Kochut, and K. Beaty (2007).

“Dynamic Placement of Virtual Machines for

Managing SLA Violations,” in 2007 10th IFIP/IEEE

International Symposium on Integrated Network

Management, pp. 119–128.

[16] R. Enns. NETCONF Configuration Protocol. RFC

4741 (Proposed Standard), Dec. 2006. Obsoleted by

RFC 6241.

[17] Brent Salisbury (2012). The Northbound API- a

Big Little Problem, www.networkstatic.net.

[18] Seyedali Mirjalili (2015). “Moth-flame

optimization algorithm: A novel nature-inspired

heuristic paradigm”, Knowledge-based Systems 89,

228–249.

[19] S. Agrawal, S. Bose, and S. Sundarrajan (2009).

“Grouping genetic algorithm for solving the server

consolidation problem with conflicts,” Proceedings of

the first ACM/SIGEVO Summit on Genetic and

Evolutionary Computation, pp. 1-8.

[20] Ghobaei‐Arani, M., Rahmanian, A. A., Shamsi,

M., & Rasouli‐Kenari, A. (2018). A learning‐based

approach for virtual machine placement in cloud data

centers. International Journal of Communication

Systems, 31(8), e3537.

[21] R.K. Gupta and R. Pateriya (2019). “Survey on

virtual machine placement techniques in cloud

computing environment,” International Journal on

Cloud Computing: Services and Architecture

(IJCCSA), Vol. 4, No. 4, pp. 1–7.

[22] S.-H. Wang, P.P.W. Huang, C.H.P. Wen, and L.-

C. Wang (2020). “EQVMP: Energy-efficient and qos-

aware virtual machine placement for software defined

datacenter networks,” in IEEE International

Conference on Information Networking.

[23] R.R.R. Barbosa, R. Sadre, A. Pras, and R.V.D.

Meent (2010). “Simpleweb/university of twente traffic

traces data repository,” Tech. Rep. [Online]. Available:

http://eprints.eemcs.utwente.nl/17829/

[24] T. Benson, A. Akella, and D. Maltz (2010).

“Network traffic characteristics of data centers in the

wild,” in ACM Proceedings of the 10th ACM

SIGCOMM conference on Internet measurement, pp.

267–280.

[25] Tie Li; Gang Kou; Yi Peng; Yong Shi (2017).

“Classifying With Adaptive Hyper-Spheres: An

Incremental Classifier based on Competitive

Learning”, IEEE Transactions on Systems, Man, and

Cybernetics.

[26] Gang Kou, Yanqun Lu, Yi Peng, and Yong Shi

(2012). “Evaluation of Classification Algorithms using

MCDM and Rank Correlation, International Journal of

Information Technology & Decision Making”, Vol. 11,

Issue: 1, 197-225.

http://www.networkstatic.net/
http://eprints.eemcs.utwente.nl/17829/

 .0011سال ،سوم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده و همکاران جبه داری

 طیدر مح افزار محورنرم یهابر شبکه یمبتن یمجاز نیماش یابیمساله جا یبرا افتهیبهبود یکردیرو

 یابر انشیرا

 3یآران یبائق یمصطفو *2یسام جبه دار، 1لیباو یصفر نیرحسیام

 .رانی، ا، تهرانی، دانشگاه آزاد اسلام، واحد تهران شمالوتریکامپ یگروه مهندس 2و1

 .رانی، ا، قمی، دانشگاه آزاد اسلام، واحد قموتریکامپ یگروه مهندس 3

 80/10/8180 پذیرش؛ 82/10/8180 بازنگری؛ 82/10/8181 ارسال

 چکیده:

ه ا ک ه در س ازمان یوتریک امپ یباش .. ش بکه ه ایضرورت خاص م کی یدارا تیفیک نیمسئله تضم ،یوتریکامپ یهاشبکه نهیدر زم یبه صورت کل

 یس اختار درخت کیاترنت در یهاچیاز سوئ ییباش. که با استفاده از گره هایم یسلسله مراتب یساختار یبوده و دارا یشود، به صورت سنتیاستفاده م

در برنام ه ریی تغ ج ادیو ا میمستق یاست که امکان دسترس Open Flow، پروتکل SDN یهاپروتکل نیتر یادیو بن نیتر یاز اصل یکی. ردیگیشکل م

باع اده،واسط باز در برنامه ارسال د کیکن.. نبود یفراهم م یو هم مجاز یکیزیها را، هم به صورت فابیریها و مسچیسوئ ریشبکه نظ زاتیارسال تجه

توان . یارائه ش.ه است که م یمقاله راهکار نیش.ه باش.. در ا یپردازن.ه مرکز هیبسته و شب کپارچه،یبه صورت یامروز یهاشبکه زاتیش.ه است تا تجه

 یش نهادینکن .. راهک ار پ لدچار مش ک زیها را ننیماش نیا تینکاهش ده. و در کنار آن ام یمجاز یهانیدرست ماش یابیرا با استفاده از مکان کیتراف

روش یاز برت ر یح اک جیق رار گرفت ه اس ت و نت ا یابی م ورد ارز زین یشنهادیمشابه با روش پ یباش. و با راهکارهایشعله و پروانه م تمیبر الگور یمبتن

 .دارد یشنهادیپ

 .شعله و پروانه تمینرم افزار محور، الگور یهاشبکه ،یمجاز یهانیماش یابیجا ت،یحفظ امن :کلمات کلیدی

