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Abstract

Stereo-machine vision can be used as a space sampling technique, and
the cameras parameters and configuration can effectively change the
number of samples in each volume of space called the space sampling
density (SSD). Using the concept of voxels, in this work, we presents a
method to optimize the geometric configuration of the cameras in order
to maximize SSD, which means minimizing the voxel volume and
reducing the uncertainty in localizing an object in a 3D space. Each
pixel’s field of view (FOV) is considered as a skew pyramid. The
uncertainty region will be created from the intersection of two
pyramids associated with any of the cameras. Then the mathematical

equation of the uncertainty region is developed based on the
;Ckoafrf(?;ﬁgg?ggma“comm aUthO}? correspondence field as a criterion for the localization error including
Ardakani). ' ' ' the depth error as well as the X and Y axes error. This field is
completely dependent on the internal and external parameters of the
cameras. Given the mathematical equation of the localization error, the
camera’s configuration optimization is addressed in a stereo-vision
system. Finally, the validity of the proposed method is examined by the
simulation and empirical results. These results show that the
localization error is significantly decreased in the optimized camera
configuration.

Article Info

Avrticle History:

Received 03 July 2020
Revised 06 April 2021
Accepted 14 May 2021

DOI:10.22044/jadm.2021.9855.2117

Keywords:

Computer  Vision,  Camera
Arrangement, Correspondence
Field, Geometric Optimization.

1. Introduction

In the area of machine vision, one of the most
important issues is finding the 3D position
estimation of objects [1]. A method for the semi-
dense monocular simultaneous localization and
mapping (SLAM) has been presented by Zhou, Y.
in [2]. In this method, a probabilistic depth map
model built on the Bayesian estimation is
combined with the main framework of the state-
of-the-art direct method LSD-SLAM. In most
research works, the 3D location of an object has
been determined by solving the geometrical
equations according to the camera configurations
after finding the corresponding pixels in each
image pairs [3]. Furthermore, we require the
camera parameters that are obtained through the
camera calibration [4]. The 3D location of the
object may be obtained from the intersection of
two corresponding rays crossing the center of

cameras and the center of the corresponding
pixels. Thus a more accurate estimation of this
intersection results in a more accurate 3D object
localization. Several methods have been proposed
in order to solve this problem [5-11]. Some of
these methods have studied the geometry of light
and rays [6-7].

The method presented in [6] moves the
probabilistic corresponding pixels to force the
rays to intersect each other at the desired object
surface. In [9], the mid-point of the common
perpendicular of these two rays is considered as
the intersection point. In order to improve this
method, some optimization techniques have been
proposed in [8, 10, 11]. Rafael Weilharter in [8]
has proposed an end-to-end deep learning
architecture for a 3D reconstruction from the
high-resolution images. While many approaches
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focus on improving the reconstruction quality
alone, he primarily focused on decreasing the
memory requirements in order to exploit the
abundant information provided by the modern
high-resolution cameras. The 3D  object
reconstruction from depth image streams using the
Kinect-style depth cameras has been extensively
studied in [10]. In [11], Zheng-Ning Liu et al.
have introduced a novel computation- and
memory-efficient cascaded 3D convolutional
network architecture, which learns to reconstruct
the implicit surface representations as well as the
corresponding color information from the noisy
and imperfect RGB-D maps. This proposed 3D
neural network performs reconstruction in a
progressive and coarse-to-fine manner, achieving
an unprecedented output resolution and fidelity.
Some works have considered the pixel
guantization in a CCD as an error source. In [1],
the intersection of pyramids originated from two
pixels has been used in order to estimate the
localization error. They have used the
approximate volume of the intersection region as
the localization error. In [12], a model has been
proposed in order to analyze the quantization error
in CCD of cameras using a geometrical method.
In this research work, it was assumed that each
pixel had a circular shape, and FOV of each pixel
was a conic. Therefore, in order to find the
object’s localization error using two cameras, the
intersection of two corresponding cones from the
cameras was used. Since finding the intersection
of two cones, specially two skew cones, is very
complex, three methods have been proposed in
order to simplify this problem. In the first
proposed method, all the points mapped to a pixel
have been considered. In the second method,
intersection of a ray and a cone has been used
instead of the intersection of two cones. In the
third method, using the Lagrange method, the
minimum and maximum points of the intersection
region of two cones have been calculated in all
three dimensions.

Many other research works have considered the
cameras arrangement in the multi-view and
stereo-vision systems. Since the distance between
the cameras (baseline length) in the stereo-vision
system is often constant, the error increases when
the object is further away from the camera. In
[13], a stereo-vision system has been proposed
with a variable camera distance, which is
constructed using a fast slide bar. In this system,
the distance between the cameras is varied by
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sliding them along this bar. In addition, a method
to control the distance between the cameras
(baseline) has been proposed based on the object
distance. In [14], a system with multiple cameras
and different baselines and resolutions has been
proposed in order to keep the localization error
constant. Malik and Bajcsy [15] have discussed
the configuration of the cameras in a stereo-vision
system. They positioned the cameras to improve
the image resolution and to reduce the localization
error. When two cameras are close to each other,
the depth perception error increases compared to
when the distance between the two cameras is
large. On the other hand, the depth resolution
increases as long as the distance between the
cameras and the object decreases. Therefore, in
this study, the authors have used the genetic
algorithm and gradient descent methods in order
to find proper locations for the cameras with
respect to each other and the object.

The statistical behavior of the 3D localization
error has been studied in [16, 17]. In [16], the
parameters of a stereo-vision system have been
studied in order to minimize the 3D reconstruction
error. They have obtained the error variance based
on the stereo-vision system parameters, and
classified the model error under two categories. In
the first category, the quantization error and the
worst-case analysis state have been considered in
order to obtain the upper and lower limits of error.
In the second category, the Gaussian error has
been studied in order to analyze the localization
error. In [17], Wenhardt has proposed 2D and 3D
models to find an analytical model for the
localization error and the stereo vision-system
parameters. In the 2D model, the distance between
the cameras and the optimum focal length is
obtained by minimizing the error, while in the 3D
model, a Monte Carlo simulation is applied.

The concept of Correspondence Filed (CF) has
been proposed in [18], which can represent this
problem in a mathematical model. CF describes
the spatial topology of the intersecting rays of the
cameras, arranged in a number of layers or
surfaces with same disparity values, referred to as
the iso-disparity layers [18]. This field is
completely dependent on the cameras’
configuration and position and their view angle
toward the scene as well as the external and
internal parameters of the cameras. Therefore, the
intersecting region of the cameras’ FOV depends
on the CF parameters. In reference [19], a
mathematical framework has been developed in
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order to investigate the geometrical variations of
these layers with respect to the camera intrinsic
and extrinsic parameters. In [20, 21], the
optimization of camera arrangement to reduce the
error of depth estimation has been addressed by
the application of CF. This research work has
employed the iterative calculations, and all the CF
parameters have not been assumed as variable.

In this study, the 3D Euclidean distance error has
been used as the error measure, and is simply
named as the localization error from now on. In
this method, each pixel is considered as a square,
and therefore its FOV will be in the form of a
skew pyramid. The uncertainty region will be
created from the intersection of the two pyramids
originated from each center of cameras. The
absolute value of the volume of this region is
proportional to the localization error. The CF
theory is utilized in order to obtain the required
mathematic for this calculation. The mathematical
equations obtained are then used to optimize the
parameters of the correspondence field in a stereo-
vision system including the configuration and
position of the cameras and their view angles
toward the scene and also the camera parameters.
The rest of this paper is organized as what
follows. In Section 2, the camera model and the
correspondence field are discussed. In Sections 3
and 4, the proposed mathematical model and
optimization are studied. In Section 5, the
simulation results are presented. In the final
section, the conclusions are presented.

2. Camera Model and Correspondence Field
Typically, a pin hole camera model is utilized for
camera modeling [18-21]. Equations (1-3) state
the mathematical relationship between the spatial
coordinates (X', Y’, Z') and the image coordinates
(x, ¥) in the pin hole camera model.

X f 0 x 0
)’] = [0 f v 0
‘1 0 0 10
R=Ry xRy X R, =

rl 0 0

0 cos(6,) — sin(Qx)l X
[0 sin(8,) cos(6,)

[ cos(6,) 0 sin(Qy)]

[RT);:
o 1M1z
1

1)

()

0 1 0
|—sin(6,) 0 cos(6,)
[cos(6,) —sin(8,) O

sin(6,) cos(6,) Ol
L 0 0 1
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where f is the camera focal length, R is the
rotation matrix, and T is the translation vector
with respect to space coordinate system. We will
consider that the f values are equal in the x and y
directions and that there is no lens distortion to
simplify the equations.

The topology of intersection of the camera rays
produce CF, which depends on the configuration,
location, and orientation of the cameras [18]. As it
is obvious in Figure 1, the intersection of the light
rays creates a number of layers in the
correspondence field associated with each
disparity, which shows the computable depth
layers in the scene. These layers are close to each
other in the vicinity of the cameras, and they
become farther when getting away from them.
The non-uniform distribution of these layers
causes the variability of accuracy in the estimation
of depth at different distances. However, as each
ray is actually a pyramid, and not a line in space,
the real intersection of two rays is an irregular
hexahedron, as shown in Figure 2. A voxel is used
in order to define a regular grid in a three
dimensional space, and as the volume in Figure 2
is irregular, we named it as 2 Pyramid Voxel or
2PV.

Rotation by «

a

az

Figure 1. Intersection of‘light réys appears'as layers in the
correspondence field [18].

Figure 2. 2PV as element of space sampling.
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3. Calculation of Uncertainty 3D Region: 2
Pyramid Voxel (2PV) Volume

In this section, the simple mathematic used to
calculate the volume of a 2PV is presented. In the
first step, the coordinates of vertices are calculated
based on the correspondence field parameters, and
then the volume of irregular hexahedron that is the
same as the 2PV volume is calculated.

3.1. Obtaining Vertices’ Spatial Coordinates of
2PV

Consider two rays from cameras that are on the
same epipolar plane. Supposing that there is no
tilt and that the pixels of the left and right cameras
are u X u, 2PV will be created, as in Figure 2,
where CL and CR are the centers of the left and
right cameras and D is the baseline length. 2PV
has 8 vertices, and we wish to calculate their
coordinate in 3D. Consider the point P, which is
the intersection of the line passing CL and one of
the corners of the pixel in the left image and the
similar line from the right camera.

In order to find the intersection of these two lines,
consider Figure 3, which is the top view of Figure
2 in more details.

0, A ta
\«/‘Xl
X1 €6 («P

— \‘.‘

£ X
N "

0 X 0

Figure 3. Top view of Figure 2.

In the ACP triangle it can be written that:

x; =D —X—x;")cos(6,) 4)
By re-writing Equation (4), we have:
x1 = (D — X) cos(6,) — Z sin(6,) (5)

In the OBC and ACP triangles it can be written
that:

0A = (D — X)sin(6;) + Z cos(6,)

By Equations (5) and (6) it can be written that:
X
(D — X)cos(8,) — Z sin(6,)
f

(6)

()

= (D = X)sin(6,) + Z cos(6,)

Similarly, for the camera on the right side, we
have:
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!

X
Xcos(8,) — Z sin(6,)

(8)

- Xsin(0,) + Z cos(0,)

Using Equation (7), we obtain the following
equation:

cos(6,) + f sin(6;)

D—X=Zf X 9)
Ecos(el) — sin(6,)

From Equation (8) it can be written that:

cos(8,) + %sin(@z)

X=2Z (10)

gcos(Gz) — sin(6,)
By dividing Equation (10) by Equation (9), we
have:

X =K
D—x 1

- x' cos(6,) + fsin(6,)

1= fcos(6,) — x'sin(6,)
fcos(0,) — xsin(6;)

xcos(6;) + fsin(6,)
where K; only depends on the parameters of the

correspondence field. Now, using Equation (11),
we may obtain X as follows:

_DxK
1+ K
Now, using Equation (10), Z may be calculated
as:
Z=XxK,
_ fcos(6y) — x' sin(6,)
27 x'cos(8,) + fsin(6,)

Figure 4 may also be drawn along Y. The
following equation is correct in the OAP triangle:

Y = yTI(Ysin(Gz) +Z c0s(65))

(11)
(12)

(13)

(14)
(15)

(16)

Figure 4. Drawn Figure 3 along Y.

Now, the coordinates of the intersection of two
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lines from the center of two cameras is available
based on the parameters of the correspondence
field. This point is one of the 8 vertices of 2PV.
Similarly one can calculate the coordinates of the
other vertices.

3.2. Calculating Volume of a 2PV Given Its
Vertex Point Coordinates

We may calculate the volume of the regular
hexahedron of Figure 5 giving it the vertex points,
as follows [22]:

Equation (17) may be written as:

a; a; as
V= det[bl b, bs (18)

i G C3

where a;, b;, and ¢; are the components of the
vectors ae, H)), and ai), respectively. Moreover,
we may obtain each vector by subtracting its end
point and starting point.

h g9

-9 /
L L
d {

e — Jo — » e=—y

‘r d Je - J f,c
e a b

al=— als b

Figure 5. A regular hexahedron divided to 6
tetrahedrons.

In order to obtain the volume of a 2PV, we may
divide it into 6 tetrahedrons (similar to Figure 5).
Each one of these tetrahedrons may be considered
as one-sixth of a regular hexahedron [22].
Therefore, we may calculate the volume of a
regular hexahedron as follows:

6
V= ZVl
i=1

where V; is the volume of tetrahedron i. Due to the
fact that each tetrahedron may be considered as
one-sixth of a regular hexahedron, the volume of
each tetrahedron may be calculated as follows:

(19)

1 %
V; = g det bi
Ci
1 aii Az; Az (20)
= |det bii by bs;
Cii  C2i C3j
where a;; , bj;, c; for j = 1 to 3 are the
components of the vectors a;, b;, and c;,

respectively. In this way, the volume of each
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irregular  hexahedron calculated
accurately.

According to Equation (17), it should be noticed
that if the order of vectors in this equation is
correct, the number inside the | | is always
positive. Numerically we may easily calculate the
volume using Equation (17) without considering
the order. However, parametrically, it is easier to
notice the order, so that we will not require the

absolute value operator.
V = |aé.(ab x ad)| = |ab. (@& x ad)|
= |ad. (ab x ae)|

may be

(17)

3.3. Calculating 2PV based on Parameters of
Correspondence Field

Using Equations (13, 14), and (16) with
differentx, x',andy’, we may obtain the
coordinates of the vertices of the non-regular
hexahedron, which is the 2PV.

In Figure 6, the coordinate system of the left side
and right side cameras are shown. The center of
the coordinate system is the center of the camera
(i, j, and k are the intended pixel numbers).

A

Figure 6. Coordinate system for the left side and right
side cameras.

If we consider each pixel as a square with
dimension u X u , then we may calculate x, x’,
and y' in order to find the vertex points of 2PV
(pixels i and k in the left-side camera and pixels j
and k in the right-side camera), as shown in Table
1.

Table 1. Vertex points of 2PV.

2PV vertices
Pixel
Vertices Py P, Py Py
x ixXu iXu (i+D)xp (+D)xp
, . —-G+1)  —(+1 .
x IXe X i Jxu
y' kX u kX u kX u kX u
2PV vertices
Pixel
Vertices Ps Ps Py Py
x ixXp ixXp (+Dxpu ((+1)xp
, » —-G+1)  —(+1) i
x j X X i X i jxu
y (Xk#“) (k+Dxp (k+Dxp (k+1)xp

Now, the coordinates of the vertex points of 2PV
(P;) may be calculated using Equations (13, 14),
and (16).
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PT=1[X; Y Z] (21)

Using Equations (19) and (20), one can easily
calculate the volume of a 2PV.

1 P6T _ PZT
V1 :gdet PlT_PZT (22)
p,T—p,"
while P;s are the 3D coordinates of the 2PV
vertices.
Results:
D3f2u®  hyhy?
v, = fu M ; (23)
6 hzhy“hs
in which:
hy = fcos(6;) + (j + Dusin(6;) (24)
h, = fcos(6;) — (i + 1)usin(6;) (25)
hs = (f2+i( + Du?)sin(8; + 6,) (26)
+fu(i—j—1)cos(6; + 6,)
hy = (f2+ @+ DG+ Du?)
. T (27)
sin(0; + 0,) + fu(i — j)cos(6, + 6,)
hs = (f? + (i + 1)jp*) sin(6; + 6,) (28)
+fu(i —j+ 1)cos(6; +06,)
Similarly:
D3f2u® hg(h,® —h
v, = fu he(hy 28) (29)
6 hyhshg
. D3f2u3  hghy? (30)
7 6 hyhshe
. D3f2u3  hyhy,? (31)
YT 6 hylhyhe
D3f2[13 h1h102 (32)
5 T hahahy?
3714479
y D2 he(hy® = ha) (33)
7 6 hshshshg
in which:
he = fcos(6;) + jusin6,) (34)
h, = fcos(6;) — (i + 0.5)usin(6;) (35)
23 2
hg — U Slr;(el) (36)
+fu( — j)cos(6, + 6,)
hio = fcos(0;) — iusin(6;) (38)

Substituting Equation (23, 29-33) in (19), 2PV
can be calculated.

4. Optimization of 2PV Volume
Looking more at the h; equations show that we
can neglect the 1 and 0.5 terms compared to the
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values of i and j, which are the pixel numbers,
and take a value between 0 and the maximum
resolution. This assumption reduces Equation (19)
into a more compact one of Equation (39):

h6h102
ho*

Solving Equation (9) and (10) for i and j, we
have:

fI(D = X) cos(6y) — Zsin(6,)]

L= ulZcos(6,) + (D — X)sin(6,)]

7 =D3f2u3 (39)

(40)

_ f[Xcos(8;) — Zsin(0,)]
~ u[Zcos(8,) + Xsin(6,)]

Now, substituting Equations (40) and (41) in
Equation (39):

(41)

+ Xsin(6,)]3[Zcos(6;) (42)

+ (D — X)sin(6;)]?
The derivative of 7 with respect to 6, is shown in

Equation (43), and can be used to find the
extremum value of equation V7.

% = [Zcos(6;) + (D — X)sin(6,)][(D
— X) cos(6,) — Zsin(6,)]

Equating the right side of Equation (43) to zero
yields two groups of answers as:

(43)

tan(8,) = %X (44)
tan(0,) = % (49)

The right side of Equation (44) is positive, so the
answer for 6, is either in the first or the third
quarter. When 6, is in first quarter, the object is
on the camera FOV, and the answer is accepted,
while for 6, on the 3th quarter, the object is
located behind the camera, and the answer is
rejected.

Considering Equation (45), one can see that the
right side of the equation is negative, which
means that 6, should be at the second or the
fourth quarter. This means that the object is
behind the camera or is not on its FOV, which is
not our answer.

The same process goes for the 6, value, and we
can use Equation (46) in order to find an
acceptable answer for 9,.

tan(6,) = )Z_( (46)
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Solving Equation (44) for the sine and cosine
values of 6, we have:

sin(6,) = bt (47)
VZ2+ (D - X)?

cos(6,) = z (48)
JZ+ @ -X7?

The same would be for 9, as:

sin(6,) = L (49)
@ (50)

cos(6,) = \/ﬁ

Using the trigonometric identities, we obtain:

ZD

sin(6; + 6;) = VZZ+X2/72 + (D — x)? (51)

Z2—X(D -X) (52)
cos(0, + 6,) =
VZ2+X%2/Z2 + (D — X)?
Now, substituting Equations (47-52) in the

Equation (29-33), we can re-write Equation (19)
as:

3

7 - Dud(X?+7Z%)2(Z% + (D — X)?)

o~ 6fF
F is itself a function of Z, D, and X(Appendix
shows the details of the F function). Using F will
simplify our next equations. In order to find the
optimum distance between the cameras (D),
which minimizes the V, value, we can obtain the
derivative of V, with respect to D as:

Vg [(2%+ (D —X)?+2D(D — X))F
oD F?
D(Z? + (D — X)>)F'
_ =

(53)

(54)

Setting the right side of Equation (54) to zero and
solving for D gives us the value of D, in which V
would have an extremum. However, it is very
difficult to find an analytic solution for D.
Suppose that D is such an answer. Now, Equation
(55) can guarantee that the right side of (54) is
zero.

F' 1 N 2(D - X)
F D z24(D-x)
Equation (55) is a differential equation with a

solution in the form of Equation (56), in which K
is an unknown constant.

(55)

F=kD(z?+ (D -Xx)%) (56)
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Re-arranging Equation (53) with the value of F as
in Equation (56) and D, we obtain:

v Dud(x? + ZZ)%(ZZ + (D - X)?)
o0 = 6fKD(Z2 + (D — X)?)

Considering the parameter X, we can do the same
for Equation (57) and arrive at Equation (58).

Vep
0X

(57)

=0 = (X2 +72?) (22 )

+(5—X)2)=0

The left side of Equation (58) is always a positive
number, so we can only minimize this value.
Again we compute the derivative of Equation (58)
with respect to X and equate the result to zero:

2X (22 +(D-X)") - 2(D

(59)
- X)(X*+27%) =0
Now we get:
(D-2x)(x(D-X)-z*)=0 (60)
Solving Equation (60) for X, we reach:
XZ%i %2—22,2 (61)

Considering Equation (61), we can conclude that:
1. If D < 2Z, then there is one real answer,
X = D/Z corresponding to minimum of V).

2. If D> 2Z, then there are three distinct
answers with D/2 pointing to a local maximum

for V,p and two other answers with respect to the
two local minima of V).

The result of X fitting into the second term of
Equation (60) would apply to Equation (62) too.

(E—X)zg
A X

The left side of Equation (62) is equal to the right
side of (44), and its right side is equal to the
inverse of the right side of Equation (46). Thus we
can say:

(62)

tan(68,) = cotan(6,) (63)
The solution for Equation (63) is:

s
0140, =5 +kt k=04142,.. (64)

In other words, the axes of the two cameras have
to be perpendicular to each other in the optimized
condition. Regarding the results of Equation (57),
it can be said that D at least has to be equal to 2Z.
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In such a condition, regarding Equations (42) and
(43), 6, = 6, = /4. Furthermore, if D > 2Z, the
perpendicularity of the cameras’ axes is enough,
and there will be two optimized states that are the
answers of Equation (61). However, in this
condition, the distance of the object from two
cameras is not the same and there is no geometric
symmetry. In addition, according to Equation
(57), the optimal camera focal length (f) will be
maximal. This maximum value should be
determined in a way that the required region is
within FOV of the two cameras. In this way, if the
distances of this spatial region to the cameras
differ, then the cameras’ focal lengths have to be
different as well. A larger focal length implies a
larger lens and more cost. Therefore, it can be said
that the optimum condition is D = 2Z.

w is the last parameter of the correspondence field
to be discussed. According to Equation (57), the
volume of each 2PV is proportional to the third
power of u, which is related to the CCD
technology used.

5. Simulation and Experimental Results

In this section, the validity of the proposed
method is examined by the simulation and
empirical results.

5.1. Simulation

In order to validate our analytical results, which
determine the condition of camera posing to have
the minimum voxel volume, we developed a
simulation setup. As the voxel size is directly
related to the localization error, we used an array
of 11 x 11 x 11 dotes located inside a 1 cubic
meter space as our test bed, as shown in Figure 7
(with X = 0). The cube center is at the coordinate
(0, X, 5). After setting the camera parameters and
X value, using Equations (13, 14), and (16), the
position of each point in the array is calculated,
and the mean RMS error with respect to the actual
value is obtained.

Starting with D = 2Z, the three values of 40, 45,
and 50 degrees are chosen for 6, and 6, is
changed from 30 to 60 degrees in 0.03 degree
steps. The mean RMS error value for each step is
calculated, and the total results are shown in
Figure 8. Equations (44) and (46) predict 39.95,
45, and 49.25 degrees as the optimum value for
6, according to the 8, values. Looking at Figure
8, we can see that this result is validated through
the simulation too. In addition 6; = 6, = 45
degrees corresponds to the best result.

For D > 2Z, D = 11 m, the simulation is repeated
for the 6, values of 32.69, 40, 47.73, 50, and

57.31 degrees. According to Equation (64), for
D = 11 m, the optimum values of 6, and 6, are
32.69 and 57.31 degrees.

Figure 7. An array of 11 x 11 x 11 dotes as our test
bed for X = 0.

10! - - - -

T
_(-)2:50Degree

0 2:45Degree
J— 62:40Degree

1 0-3 L I 1 L
30 35 40 45 50 55 60
0 ](Degree)

Figure 8. Mean RMS error versus variation of 6, for
D = 2Z and different values of 6,.

When X:D/Z, 6, and 6, would be 47.73

degrees as Equations (44) and (46) predict. 6, in
changed again from 30 to 60 degree in 0.03
degree steps, and the mean RMS error is
calculated for each step, Figure 9 shows the
results. As it can be seen, at 32.69 and 57.31
degree the minimum error is less than the other
cases.

10° T T
792:32_69 Degree
792:47.73 Degree
792:5731 Degree
2
2

——0.=40 Degree [
0_=50 Degree

]

. | .
30 35 40 45 50 55 60
()[(Degree)

Figure 9. Mean RMS error versus variation of 8, for
D > 2Z and different values of 6,.

Figure 10 shows the mean RMS error, while X is
changed from 0 to 14 m in step of 0.14 m, and 6,
and 8, chosen as Equations (44) and (46). Three
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different cases for D <2Z(D=7m), D=
2Z(D =10m), D > 2Z(D = 15m) are reported.
It is clean that for D < 2Z, the optimized value is
D/, =35m. When D =22, we have D/, =
5 m again as the optimum value.

x10™

—D=15m|
——D=10m
—D=8m | ]

2.6

251

2.4

Error

2371

221

21t ‘ e ‘ ‘ ‘
0 2 4 6 8 10 12 14
Y(m)
Figure 10. Mean RMS error versus X variation for
different values of D.

While D > 2Z, we have two minimum values at
1.91 and 13.09 m and a local maximum at

D/z = 7.5 m. Again, the simulation results are as
what Equation (61) is predicting. f and p are
evident and require no further investigation.

5.2. Experimental Results

In this section, the validity of the proposed
method is experimentally assessed. For this
purpose, the Stanford Scanning Models are
applied [23]. These models provide stereo-images
per any desired configuration of the camera and
object settings. Four statues of Bunny, Buddha,
Dragon, and Asian dragon in the Stanford datasets
are used for the test, as in Figure 11.

Five different camera setups are used for
comparison. In the first setup, the cameras are
arranged in a conventional rectified configuration.
Equations (44) and (46) are used in order to
choose the optimized value for 6, and 6, used as
setup 2. In setup 3, first, the optimum value for D
is chosen, and then the optimum values for 8, and
6, are calculated using Equations (44) and (46).
The setups 4 and 5 are the same as the setups 2
and 3, except that the focal length has been
optimized in a way that the object will fill the
entire FOV. Table 2 shows the setup

configurations in details.
Table 2. Five different camera setups details.

Camera

arrangement 01 & D(m) X(m) f
Setup 1 0 0 0.4 0.2 5300
Setup 2 2.86 2.86 04 0.2 5300
Setup 3 45 45 8 4 5300
Setup 4 2.86 2.86 0.4 0.2 5800
Setup 5 45 45 8 4 7500
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Asian Dragon
Figure 11. Examples of the applied datasets [23].

Dragon

Figures 12-a, 12-b, and 12-¢c show the
experimental results for the setups 1, 2, and 3,
respectively. Stereo-images of Bunny for setup 2
are shown in Figure 13.

Table 3 shows the mean absolute error for the
three configurations, in summary. Observing the
results, it is clear that the configuration of setup 3
has reduced the localization error about one order
of magnitude compared to the rectified settings of

setup 1.
Table 3. Mean absolute error for different camera
arrangements.
Setup 3 Setup 2 Setup 1
3.33e-5 3.27e-4 3.27e-4

The second experiment is very similar to the first
one, except that the focal length is increased to the
maximum value, so the object will fill the entire
FOV, and includes the setups 1, 4 and 5. Figures
14-a, 14-b, and 14-c show the experimental results
for setups 1, 4, and 5, respectively. Table 4 shows
the mean absolute error for the second
experiment, in summary. In comparison to the
rectified case of setup 1, we have almost a 96.7%
reduction in the localization error in setup 5.
Figure 15 shows the results of repeating the
experiment on Buddha, Dragon, and Asian
dragon. Again, Figures 15-a, 15-b, and 15-c show
the experimental results for setups 1, 4, and 5,
respectively. The columns 3 to 5 in Table 4 show
these results. A reduction of 30 to 40 times in the
localization error can be observed.
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Figure 13. Stereo-images of Bunny for setup 2. a) Right
0 camera, b) Left camera.
b
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Figure 12. Effect of different CF parameters’
Setup 1 Error 3.31e-4 1.60e-4 1.84e-4 1.09e-4

optimization on the localization error. a) Initial
b
Error [ 137e-4 6.71e-5 4.37e-5 5.08e-5
Setup 4 . 15
Reduction| 58606 58.1% 76.2% 53.4%
Setun 5 Error 7.53e-6 3.42e-6 1.99e-6 3.58e-6
P Reduction | 97.7% 97.8% 98.9% 96.7% 1
In order to evaluate the behaviour of our method,
the localization error around the obtained 05
optimum points is investigated through three
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Table 4. Comparison between mean absolute errors for
different camera arrangements.
Camera Error Asian
arrangement | reduction | BU™™Y Buddha Dragon Dragon
Reference

parallel cameras, b) 6; and 6, optimization, c)
optimization of 6,, 8,, and D.
experiments. In the first experiment, D = 2Z and
X is chosen as the optimum value according to :
E fi 61 hil P t of diff t ? Figure 14. Effect of different CF parameters’
quation (61), while a set o iterent values optimization on the localization error. a) Initial parallel

around the optimum points are assigned to 6; and cameras, b) 6;, 8,, and f optimization, c) optimization
0,. of 64, 6,,D, and f.
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Figure 15. Effect of different CF parameters’ optimization on the localization error for Buddha, Dragon, and Asian
Dragon. a) Initial parallel cameras, b) 6, 8,, and f optimization, c) optimization of 6,, 6, , D, and f.

Table 6 shows the mean absolute localization
error for the Bunny dataset at some combinations
for 6, and 6, around their optimum value (from
Table 5when D = 2Z = 8 m).

Table 5. Optimized 6, value per 6, values for D = 2Z.

6,(Degrees) 6, (Degrees)
42.0 47.7
43.0 46.9
44.0 46.0
45.0 45.0
46.0 44.0
47.0 42.8
48.0 41.6

Table 6. Mean absolute error (x 107%) versus
variation of 8, for D = 27 and different values of 9,.

6, 0,(Degrees)

(Degrees)| 41.6 428 440 450 460 469 477
42.0 [1.7996 1.6750 1.5552 1.4551 1.3546 1.2731 1.2058
430 [1.6392 1.5240 1.4108 1.3227 12340 1.1652 1.5422
44.0 [1.5370 1.4255 1.3221 1.2374 1.1634 1.6738 2.1081
45.0 [1.4411 1.3371 1.2394[1.1629]|1.6976 2.1244 2.6292
46.0 [1.3432 1.2462 1.1649 1.6938 2.3607 2.8886 3.1615
47.0 [1.2528 1.1668 1.7288 2.3711 2.9520 3.4738 3.6885
48.0 [1.1647 1.7058 2.4343 2.9849 3.5487 4.0668 4.7697

The bold value in Table 6 shows the minimum in
each row, and it is clear that they occur at the
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predicted 6; value. The global minimum is at
6, = 6, = 45 degrees.

The second experiment is essentially as the first
one, except that we have D > 2Z. Here, Table 8
shows the results for this case, and the three bold
numbers enclosed by squares are the three
answers of Equation (61), while Table 7 shows
the corresponding optimum pairs of 6, and 6, for
D > 27.

Table 7. Optimized 8, value per 8, values for D > 2z.

0,(Degrees) 6, (Degrees)
24.00 61
31.37 58.63
40.00 54.67
48.30 48.3
54.67 40
58.63 31.37
61.00 24

In the third experiment, 6, and 8, are chosen as
the optimum value according to Equations (44)
and (46), while a set of different values around the
optimized points are assigned to D and X.

Table 9 shows the forecasted values of optimum X
for some different D values. For each selected D
value from Table 9, a set of X values around its
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corresponding optimum value is selected.

Table 8. Mean absolute error (x 10™) versus

variation of 8; for D > 27 and different values of 6,.

0, 6, (Degrees)
(Degrees)| 24 3137 40 48.3 54.67 58.63 61
24.00 [(4.8788 4.8272 4.2207 3.2059 2.1660 1.5348 1.2087
31.37 |4.3134 4.2333 3.5902 2.5741 1.6720|1.1775|2.9528
40.00 (3.6626 3.4294 2.7298 1.8463 1.1832 3.8316 5.9459
48.30 |2.8517 2.4764 1.8426[1.1947]|5.0453 8.5946 9.3228
54.67 |2.0921 1.6848 1.1875 6.5011 10.057 11.274 11.815
58.63 [1.5138[1.1730]5.1793 9.4405 12.820 13.603 13.643
61.00 |1.2040 4.2688 7.9951 10.959 1.3200 13.434 13.995

The mean absolute localization error for all of
these combinations are calculated and shown in
Table 10. Again, the minima on each row are
bolded. As Equation (61) tells for D <2z =8m
we have one answer, and for D > 2Z, there are
two answers.

Table 9. Optimized X value per D values.

D(m) X (m)
7.0 35
75 375
8.0 4.0 -
85 2.82 5.68
9.0 244 6.56

Table 10. Mean absolute error (x 10™%) versus X
variation for different values of D.

X

D[200 244 282 350 375 400 568 656 7.00

7.0[1.218 1.209
7.5(1.220 1.203
8.0[1.203 1.197
8.5[1.178 1.175
9.0]1.175 1.167

1.201 1.183 1.183 1.185 1.218 1.252
1196 1.179 1.177 1178 1195 1.215
1190 1.173 1.165 1.163 1.163 1.178
1167 1.170 1.172 1.174 1166 1.172
1170 1.172 1.173 1174 1172 1.168

1.291
1.236
1.188
1.178
1.170

6. Conclusions

Spatial positioning of the objects is an important
issue in the machine vision application. Different
parameters can influence the positioning accuracy,
one of which is the cameras’ configuration and
their viewing angle toward the scene. This paper
presented a method for the geometric optimization
of cameras in order to minimize the localization
error. For this purpose, FOV of each pixel was
assumed as a skew pyramid, and the uncertainty
region was created from the intersection of these
two pyramids. Then the mathematical equation of
the uncertainty volume was calculated based on
the correspondence field parameters as a criterion
for the localization error. Then, given the
mathematical relation of the localization error, the
geometric optimization of camera configuration in
the stereo-vision system was addressed. This
meant that the cameras’ position and their viewing
angles and also camera parameters were
optimized, which was not possible till now, and
was determined according to the experience.
Finally, the validity of the results obtained was
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evaluated by simulation and the empirical results.
The empirical results indicated that in the
optimized state, a 40-fold reduction in the
localization error was possible. It must be noted
that the optimal configuration requires a larger
focal length, implying higher costs and
computational load.
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7. Appendix

7.1. Details of Function F

Parameters m, through m,, are defined as:

m, = X? + 72 (65)
m, = D?Z(Z* = D(D — X)) (66)

307

ms = —fD(3DX(D? + X?)
+m, (4Z% — 6D?))
my = —Zf%(4my(m; — DX)

+ D?(2D? + 7DX — 9X?
— 142%))
ms = 3Df3Z%(4m, — 2D? — 3DX)

me = 6D2f*Z?
m, = —DZ(m, — DX)
mg = f(2m,(m; — 2DX)
+ D2(2X* - Z%))
mg = 3Df?Z(m, — DX)
myo = D*f3Z?
Now, n, and n, can be calculated as:
ny = myp* + mau® + mup? + mou + my
ny = myu’ + mgu® + mopt + myg
The desired F function can be summarized as:

(67)

(68)

(69)
(70)
(71)

(72)

(73)
(74)

(75)
(76)

(77)
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