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 Stereo-machine vision can be used as a space sampling technique, and 

the cameras parameters and configuration can effectively change the 

number of samples in each volume of space called the space sampling 

density (SSD). Using the concept of voxels, in this work, we presents a 

method to optimize the geometric configuration of the cameras in order 

to maximize SSD, which means minimizing the voxel volume and 

reducing the uncertainty in localizing an object in a 3D space. Each 

pixel’s field of view (FOV) is considered as a skew pyramid. The 

uncertainty region will be created from the intersection of two 

pyramids associated with any of the cameras. Then the mathematical 

equation of the uncertainty region is developed based on the 

correspondence field as a criterion for the localization error including 

the depth error as well as the X and Y axes error. This field is 

completely dependent on the internal and external parameters of the 

cameras. Given the mathematical equation of the localization error, the 

camera’s configuration optimization is addressed in a stereo-vision 

system. Finally, the validity of the proposed method is examined by the 

simulation and empirical results. These results show that the 

localization error is significantly decreased in the optimized camera 

configuration. 
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1. Introduction 

In the area of machine vision, one of the most 

important issues is finding the 3D position 

estimation of objects [1]. A method for the semi-

dense monocular simultaneous localization and 

mapping (SLAM) has been presented by Zhou, Y. 

in [2]. In this method, a probabilistic depth map 

model built on the Bayesian estimation is 

combined with the main framework of the state-

of-the-art direct method LSD-SLAM. In most 

research works, the 3D location of an object has 

been determined by solving the geometrical 

equations according to the camera configurations 

after finding the corresponding pixels in each 

image pairs [3]. Furthermore, we require the 

camera parameters that are obtained through the 

camera calibration [4]. The 3D location of the 

object may be obtained from the intersection of 

two corresponding rays crossing the center of 

cameras and the center of the corresponding 

pixels. Thus a more accurate estimation of this 

intersection results in a more accurate 3D object 

localization. Several methods have been proposed 

in order to solve this problem [5-11]. Some of 

these methods have studied the geometry of light 

and rays [6-7]. 

The method presented in [6] moves the 

probabilistic corresponding pixels to force the 

rays to intersect each other at the desired object 

surface. In [9], the mid-point of the common 

perpendicular of these two rays is considered as 

the intersection point. In order to improve this 

method, some optimization techniques have been 

proposed in [8, 10, 11]. Rafael Weilharter in [8] 

has proposed an end-to-end deep learning 

architecture for a 3D reconstruction from the 

high-resolution images. While many approaches 
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focus on improving the reconstruction quality 

alone, he primarily focused on decreasing the 

memory requirements in order to exploit the 

abundant information provided by the modern 

high-resolution cameras. The 3D object 

reconstruction from depth image streams using the 

Kinect-style depth cameras has been extensively 

studied in [10]. In [11], Zheng-Ning Liu et al. 

have introduced a novel computation- and 

memory-efficient cascaded 3D convolutional 

network architecture, which learns to reconstruct 

the implicit surface representations as well as the 

corresponding color information from the noisy 

and imperfect RGB-D maps. This proposed 3D 

neural network performs reconstruction in a 

progressive and coarse-to-fine manner, achieving 

an unprecedented output resolution and fidelity. 

Some works have considered the pixel 

quantization in a CCD as an error source. In [1], 

the intersection of pyramids originated from two 

pixels has been used in order to estimate the 

localization error. They have used the 

approximate volume of the intersection region as 

the localization error. In [12], a model has been 

proposed in order to analyze the quantization error 

in CCD of cameras using a geometrical method. 

In this research work, it was assumed that each 

pixel had a circular shape, and FOV of each pixel 

was a conic. Therefore, in order to find the 

object’s localization error using two cameras, the 

intersection of two corresponding cones from the 

cameras was used. Since finding the intersection 

of two cones, specially two skew cones, is very 

complex, three methods have been proposed in 

order to simplify this problem. In the first 

proposed method, all the points mapped to a pixel 

have been considered. In the second method, 

intersection of a ray and a cone has been used 

instead of the intersection of two cones. In the 

third method, using the Lagrange method, the 

minimum and maximum points of the intersection 

region of two cones have been calculated in all 

three dimensions.  

Many other research works have considered the 

cameras arrangement in the multi-view and 

stereo-vision systems. Since the distance between 

the cameras (baseline length) in the stereo-vision 

system is often constant, the error increases when 

the object is further away from the camera. In 

[13], a stereo-vision system has been proposed 

with a variable camera distance, which is 

constructed using a fast slide bar. In this system, 

the distance between the cameras is varied by 

sliding them along this bar. In addition, a method 

to control the distance between the cameras 

(baseline) has been proposed based on the object 

distance. In [14], a system with multiple cameras 

and different baselines and resolutions has been 

proposed in order to keep the localization error 

constant. Malik and Bajcsy [15] have discussed 

the configuration of the cameras in a stereo-vision 

system. They positioned the cameras to improve 

the image resolution and to reduce the localization 

error. When two cameras are close to each other, 

the depth perception error increases compared to 

when the distance between the two cameras is 

large. On the other hand, the depth resolution 

increases as long as the distance between the 

cameras and the object decreases. Therefore, in 

this study, the authors have used the genetic 

algorithm and gradient descent methods in order 

to find proper locations for the cameras with 

respect to each other and the object.  

The statistical behavior of the 3D localization 

error has been studied in [16, 17]. In [16], the 

parameters of a stereo-vision system have been 

studied in order to minimize the 3D reconstruction 

error. They have obtained the error variance based 

on the stereo-vision system parameters, and 

classified the model error under two categories. In 

the first category, the quantization error and the 

worst-case analysis state have been considered in 

order to obtain the upper and lower limits of error. 

In the second category, the Gaussian error has 

been studied in order to analyze the localization 

error. In [17], Wenhardt has proposed 2D and 3D 

models to find an analytical model for the 

localization error and the stereo vision-system 

parameters. In the 2D model, the distance between 

the cameras and the optimum focal length is 

obtained by minimizing the error, while in the 3D 

model, a Monte Carlo simulation is applied.  

The concept of Correspondence Filed (CF) has 

been proposed in [18], which can represent this 

problem in a mathematical model. CF describes 

the spatial topology of the intersecting rays of the 

cameras, arranged in a number of layers or 

surfaces with same disparity values, referred to as 

the iso-disparity layers [18]. This field is 

completely dependent on the cameras’ 

configuration and position and their view angle 

toward the scene as well as the external and 

internal parameters of the cameras. Therefore, the 

intersecting region of the cameras’ FOV depends 

on the CF parameters. In reference [19], a 

mathematical framework has been developed in 

https://ieeexplore.ieee.org/author/37088562122
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order to investigate the geometrical variations of 

these layers with respect to the camera intrinsic 

and extrinsic parameters. In [20, 21], the 

optimization of camera arrangement to reduce the 

error of depth estimation has been addressed by 

the application of CF. This research work has 

employed the iterative calculations, and all the CF 

parameters have not been assumed as variable.  

In this study, the 3D Euclidean distance error has 

been used as the error measure, and is simply 

named as the localization error from now on. In 

this method, each pixel is considered as a square, 

and therefore its FOV will be in the form of a 

skew pyramid. The uncertainty region will be 

created from the intersection of the two pyramids 

originated from each center of cameras. The 

absolute value of the volume of this region is 

proportional to the localization error. The CF 

theory is utilized in order to obtain the required 

mathematic for this calculation. The mathematical 

equations obtained are then used to optimize the 

parameters of the correspondence field in a stereo-

vision system including the configuration and 

position of the cameras and their view angles 

toward the scene and also the camera parameters. 

The rest of this paper is organized as what 

follows. In Section 2, the camera model and the 

correspondence field are discussed. In Sections 3 

and 4, the proposed mathematical model and 

optimization are studied. In Section 5, the 

simulation results are presented. In the final 

section, the conclusions are presented. 

2. Camera Model and Correspondence Field 
Typically, a pin hole camera model is utilized for 

camera modeling [18-21]. Equations (1-3) state 

the mathematical relationship between the spatial 

coordinates (  ,   ,   ) and the image coordinates 

( ,  ) in the pin hole camera model. 
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where   is the camera focal length,   is the 

rotation matrix, and   is the translation vector 

with respect to space coordinate system. We will 

consider that the   values are equal in the   and   

directions and that there is no lens distortion to 

simplify the equations. 

The topology of intersection of the camera rays 

produce CF, which depends on the configuration, 

location, and orientation of the cameras [18]. As it 

is obvious in Figure 1, the intersection of the light 

rays creates a number of layers in the 

correspondence field associated with each 

disparity, which shows the computable depth 

layers in the scene. These layers are close to each 

other in the vicinity of the cameras, and they 

become farther when getting away from them. 

The non-uniform distribution of these layers 

causes the variability of accuracy in the estimation 

of depth at different distances. However, as each 

ray is actually a pyramid, and not a line in space, 

the real intersection of two rays is an irregular 

hexahedron, as shown in Figure 2. A voxel is used 

in order to define a regular grid in a three 

dimensional space, and as the volume in Figure 2 

is irregular, we named it as 2 Pyramid Voxel or 

2PV. 

 
Figure 1. Intersection of light rays appears as layers in the 

correspondence field [18]. 

D

Z

CL CR

P

 
Figure 2. 2PV as element of space sampling. 



Ardakani et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021 
 

298 
 

3. Calculation of Uncertainty 3D Region: 2 

Pyramid Voxel (2PV) Volume 

In this section, the simple mathematic used to 

calculate the volume of a 2PV is presented. In the 

first step, the coordinates of vertices are calculated 

based on the correspondence field parameters, and 

then the volume of irregular hexahedron that is the 

same as the 2PV volume is calculated.  
 

3.1. Obtaining Vertices’ Spatial Coordinates of 

2PV 
Consider two rays from cameras that are on the 

same epipolar plane.  Supposing that there is no 

tilt and that the pixels of the left and right cameras 

are 𝜇  𝜇, 2PV will be created, as in Figure 2, 

where CL and CR are the centers of the left and 

right cameras and D is the baseline length. 2PV 

has 8 vertices, and we wish to calculate their 

coordinate in 3D.  Consider the point P, which is 

the intersection of the line passing CL and one of 

the corners of the pixel in the left image and the 

similar line from the right camera.   

In order to find the intersection of these two lines, 

consider Figure 3, which is the top view of Figure 

2 in more details. 

D

Z

f

f

x

θ1 
θ2

θ1 

x1

X

x1´ 

O   

P

A

B
C

x´  

 
Figure 3. Top view of Figure 2. 

 

In the ACP triangle it can be written that: 

   (      
 )    (  ) (4) 

By re-writing Equation (4), we have: 

   (   )    (  )      (  ) (5) 

In the OBC and ACP triangles it can be written 

that: 

   (   )   (  )      (  ) (6) 

By Equations (5) and (6) it can be written that: 
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Similarly, for the camera on the right side, we 

have: 
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Using Equation (7), we obtain the following 

equation: 
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From Equation (8) it can be written that: 
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By dividing Equation (10) by Equation (9), we 

have: 
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where    only depends on the parameters of the 

correspondence field. Now, using Equation (11), 

we may obtain   as follows: 

  
    

    
 (13) 

Now, using Equation (10), Z may be calculated 

as: 

       (14) 

   
    (  )       (  )

     (  )      (  )
 

(15) 

Figure 4 may also be drawn along  . The 

following equation is correct in the OAP triangle: 

  
  

 
(    (  )      (  )) (16) 
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Figure 4. Drawn Figure 3 along  . 

 

Now, the coordinates of the intersection of two 
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lines from the center of two cameras is available 

based on the parameters of the correspondence 

field. This point is one of the 8 vertices of 2PV. 

Similarly one can calculate the coordinates of the 

other vertices. 
 

3.2. Calculating Volume of a 2PV Given Its 

Vertex Point Coordinates 

We may calculate the volume of the regular 

hexahedron of Figure 5 giving it the vertex points, 

as follows [22]: 

Equation (17) may be written as: 

  |   [

      

      

      

]| (18) 

where   ,   , and    are the components of the 

vectors   ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗ , and   ⃗⃗ ⃗⃗ , respectively. Moreover, 

we may obtain each vector by subtracting its end 

point and starting point.  

 
Figure 5. A regular hexahedron divided to 6 

tetrahedrons. 

In order to obtain the volume of a 2PV, we may 

divide it into 6 tetrahedrons (similar to Figure 5). 

Each one of these tetrahedrons may be considered 

as one-sixth of a regular hexahedron [22].  

Therefore, we may calculate the volume of a 

regular hexahedron as follows: 

  ∑  

 

   

 (19) 

where    is the volume of tetrahedron i. Due to the 

fact that each tetrahedron may be considered as 

one-sixth of a regular hexahedron, the volume of 

each tetrahedron may be calculated as follows: 
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]|

 
 

 
|   [

         

         

         

]| 

(20) 

where     ,    ,     for j = 1 to 3 are the 

components of the vectors   ,   , and   , 

respectively. In this way, the volume of each 

irregular hexahedron may be calculated 

accurately.  

According to Equation (17), it should be noticed 

that if the order of vectors in this equation is 

correct, the number inside the | | is always 

positive. Numerically we may easily calculate the 

volume using Equation (17) without considering 

the order. However, parametrically, it is easier to 

notice the order, so that we will not require the 

absolute value operator. 

 

3.3. Calculating 2PV based on Parameters of 

Correspondence Field 

Using Equations (13, 14), and (16) with 

different                we may obtain the 

coordinates of the vertices of the non-regular 

hexahedron, which is the 2PV.  

In Figure 6, the coordinate system of the left side 

and right side cameras are shown. The center of 

the coordinate system is the center of the camera 

( ,  , and   are the intended pixel numbers).  

i j

k k

 

Figure 6. Coordinate system for the left side and right 

side cameras. 

If we consider each pixel as a square with 

dimension  𝜇  𝜇 , then we may calculate  ,   , 
and    in order to find the vertex points of 2PV 

(pixels   and   in the left-side camera and pixels   
and   in the right-side camera), as shown in Table 

1.  

Table 1. Vertex points of 2PV. 

2PV vertices  

            
Pixel 

Vertices 

(   )  𝜇 (   )  𝜇   𝜇   𝜇   

   𝜇  (   )
 𝜇 

 (   )
 𝜇 

   𝜇    

  𝜇   𝜇   𝜇   𝜇    

2PV vertices  

            
Pixel 

Vertices 

(   )  𝜇 (   )  𝜇   𝜇   𝜇   

   𝜇  (   )
 𝜇 

 (   )
 𝜇    𝜇    

(   )  𝜇 (   )  𝜇 (   )  𝜇 (   )
 𝜇 

   

Now, the coordinates of the vertex points of 2PV 

(Pi) may be calculated using Equations (13, 14), 

and (16).  

  |  ⃗⃗⃗⃗  (  ⃗⃗⃗⃗    ⃗⃗ ⃗⃗ )|  |  ⃗⃗⃗⃗  (  ⃗⃗⃗⃗    ⃗⃗ ⃗⃗ )|

 |  ⃗⃗ ⃗⃗  (  ⃗⃗⃗⃗    ⃗⃗⃗⃗ )| 
(17) 
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  [      ] (21) 

 Using Equations (19) and (20), one can easily 

calculate the volume of a 2PV.  
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] (22) 

while Pis are the 3D coordinates of the 2PV 

vertices. 

Results: 
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in which: 
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in which: 

       (  )   𝜇      ) (34) 

       (  )  (     )𝜇    (  ) (35) 

   
𝜇     (  )

 

 
 (36) 

   (     𝜇 )    (     ) 

                       𝜇(   )   (     ) 
(37) 

        (  )   𝜇    (  ) (38) 

Substituting Equation (23, 29-33) in (19), 2PV 

can be calculated. 

4. Optimization of 2PV Volume 

Looking more at the    equations show that we 

can neglect the 1 and 0.5 terms compared to the 

values of   and  , which are the pixel numbers, 

and take a value between 0 and the maximum 

resolution. This assumption reduces Equation (19) 

into a more compact one of Equation (39): 

 ̃      𝜇 
     

 

  
  (39) 

Solving Equation (9) and (10) for   and  , we 

have: 

  
 [(   )    (  )      (  )]

𝜇[    (  )  (   )   (  )]
 

 

(40) 

   
 [    (  )      (  )]

𝜇[    (  )      (  )]
 

(41) 

Now, substituting Equations (40) and (41) in 

Equation (39): 

 ̃  
𝜇 

    
[    (  )

     (  )]
 [    (  )

 (   )   (  )]
  

(42) 

The derivative of  ̃ with respect to    is shown in 

Equation (43), and can be used to find the 

extremum value of equation  ̃. 

  ̃

   
 [    (  )  (   )   (  )][( 

  )    (  )      (  )] 
(43) 

Equating the right side of Equation (43) to zero 

yields two groups of answers as: 

   (  )  
   

 
 (44) 

   (  )  
  

   
 (45) 

The right side of Equation (44) is positive, so the 

answer for    is either in the first or the third 

quarter. When    is in first quarter, the object is 

on the camera FOV, and the answer is accepted, 

while for    on the 3th quarter, the object is 

located behind the camera, and the answer is 

rejected. 

Considering Equation (45), one can see that the 

right side of the equation is negative, which 

means that    should be at the second or the 

fourth quarter. This means that the object is 

behind the camera or is not on its FOV, which is 

not our answer. 

The same process goes for the    value, and we 

can use Equation (46) in order to find an 

acceptable answer for   . 

   (  )  
 

 
 (46) 
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Solving Equation (44) for the sine and cosine 

values of   , we have: 

   (  )  
   

√   (   ) 
 (47) 

   (  )  
 

√   (   ) 
 

(48) 

The same would be for    as: 

   (  )  
 

√     
 (49) 

   (  )  
 

√     
 

(50) 

Using the trigonometric identities, we obtain: 

   (     )  
  

√     √   (   ) 
 

 

(51) 

   (     )  
    (   )

√     √   (   ) 
 

(52) 

Now, substituting Equations (47-52) in the 

Equation (29-33), we can re-write Equation (19) 

as: 

 ̃  
 𝜇 (     )

 
 (   (   ) )

   
 (53) 

  is itself a function of  ,  , and  (Appendix 

shows the details of the   function). Using F will 

simplify our next equations. In order to find the 

optimum distance between the cameras ( ), 

which minimizes the  ̃  value, we can obtain the 

derivative of  ̃  with respect to   as: 

  ̃ 

  
 [

(   (   )    (   )) 

  

 
 (   (   ) )  

  
] 

(54) 

Setting the right side of Equation (54) to zero and 

solving for   gives us the value of  , in which  ̃  

would have an extremum. However, it is very 

difficult to find an analytic solution for  . 

Suppose that  ̃ is such an answer. Now, Equation 

(55) can guarantee that the right side of (54) is 

zero. 

  

 
 

 

 ̃
 

 ( ̃   )

   ( ̃   )
  (55) 

Equation (55) is a differential equation with a 

solution in the form of Equation (56), in which    

is an unknown constant.  

    ̃(   ( ̃   )
 
) (56) 

Re-arranging Equation (53) with the value of   as 

in Equation (56) and  ̃, we obtain: 

 ̃   
 ̃𝜇 (     )

 
 (   ( ̃   ) )

    ̃(   ( ̃   ) )
 (57) 

Considering the parameter  , we can do the same 

for Equation (57) and arrive at Equation (58). 

  ̃  

  
      (     ) (  

 ( ̃   )
 
)    

(58) 

The left side of Equation (58) is always a positive 

number, so we can only minimize this value. 

Again we compute the derivative of Equation (58) 

with respect to   and equate the result to zero: 

  (   ( ̃   )
 
)   ( ̃

  )(     )    
(59) 

Now we get: 

( ̃    )( ( ̃   )    )    (60) 

Solving Equation (60) for  , we reach: 

 ̃  
 ̃

 
 √

 ̃ 

 
    

 ̃

 
 (61) 

Considering Equation (61), we can conclude that: 

1. If  ̃    , then there is one real answer, 

 ̃   ̃
 ⁄  corresponding to minimum of   ̃  . 

2. If  ̃    , then there are three distinct 

answers with  ̃  ⁄  pointing to a local maximum 

for   ̃   and two other answers with respect to the 

two local minima of  ̃  . 

The result of   ̃ fitting into the second term of 

Equation (60) would apply to Equation (62) too. 

( ̃   )

 
 

 

 
 (62) 

The left side of Equation (62) is equal to the right 

side of (44), and its right side is equal to the 

inverse of the right side of Equation (46). Thus we 

can say: 

    (  )       (  ) (63) 

The solution for Equation (63) is: 

      
 

 
                    (64) 

In other words, the axes of the two cameras have 

to be perpendicular to each other in the optimized 

condition. Regarding the results of Equation (57), 

it can be said that  ̃ at least has to be equal to   . 
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In such a condition, regarding Equations (42) and 

(43),          . Furthermore, if  ̃    , the 

perpendicularity of the cameras’ axes is enough, 

and there will be two optimized states that are the 

answers of Equation (61). However, in this 

condition, the distance of the object from two 

cameras is not the same and there is no geometric 

symmetry. In addition, according to Equation 

(57), the optimal camera focal length ( ) will be 

maximal. This maximum value should be 

determined in a way that the required region is 

within FOV of the two cameras. In this way, if the 

distances of this spatial region to the cameras 

differ, then the cameras’ focal lengths have to be 

different as well. A larger focal length implies a 

larger lens and more cost. Therefore, it can be said 

that the optimum condition is  ̃    . 

𝜇 is the last parameter of the correspondence field 

to be discussed. According to Equation (57), the 

volume of each 2PV is proportional to the third 

power of 𝜇, which is related to the CCD 

technology used. 

 

5. Simulation and Experimental Results 

In this section, the validity of the proposed 

method is examined by the simulation and 

empirical results. 

 

5.1. Simulation 

In order to validate our analytical results, which 

determine the condition of camera posing to have 

the minimum voxel volume, we developed a 

simulation setup. As the voxel size is directly 

related to the localization error, we used an array 

of          dotes located inside a 1 cubic 

meter space as our test bed, as shown in Figure 7 

(with  ̃   ). The cube center is at the coordinate 

(0,  ̃, 5). After setting the camera parameters and 

 ̃ value, using Equations (13, 14), and (16), the 

position of each point in the array is calculated, 

and the mean RMS error with respect to the actual 

value is obtained.  

Starting with     , the three values of 40, 45, 

and 50 degrees are chosen for    and    is 

changed from 30 to 60 degrees in 0.03 degree 

steps. The mean RMS error value for each step is 

calculated, and the total results are shown in 

Figure 8. Equations (44) and (46) predict 39.95, 

45, and 49.25 degrees as the optimum value for  

   according to the    values. Looking at Figure 

8, we can see that this result is validated through 

the simulation too. In addition          

degrees corresponds to the best result. 

For     ,       , the simulation is repeated 

for the    values of 32.69, 40, 47.73, 50, and 

57.31 degrees. According to Equation (64), for 

      , the optimum values of    and    are 

32.69 and 57.31 degrees. 

 
Figure 7. An array of          dotes as our test 

bed for  ̃   . 

 
Figure 8. Mean RMS error versus variation of    for 

      and different values of   . 

When  ̃   
 ⁄ ,    and    would be 47.73 

degrees as Equations (44) and (46) predict.    in 

changed again from 30 to 60 degree in 0.03 

degree steps, and the mean RMS error is 

calculated for each step, Figure 9 shows the 

results. As it can be seen, at 32.69 and 57.31 

degree the minimum error is less than the other 

cases.  

 
Figure 9. Mean RMS error versus variation of    for 

      and different values of   . 

Figure 10 shows the mean RMS error, while   is 

changed from 0 to 14 m in step of 0.14 m, and    

and    chosen as Equations (44) and (46). Three 
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different cases for     (     ),   
  (      ),     (      ) are reported. 

It is clean that for     , the optimized value is 
 

 ⁄       . When     , we have  
 ⁄  

    again as the optimum value. 

 
Figure 10. Mean RMS error versus   variation for 

different values of  . 

While     , we have two minimum values at 

1.91 and 13.09 m and a local maximum at 
 

 ⁄       . Again, the simulation results are as 

what Equation (61) is predicting.   and 𝜇 are 

evident and require no further investigation. 

 

5.2. Experimental Results 
In this section, the validity of the proposed 

method is experimentally assessed. For this 

purpose, the Stanford Scanning Models are 

applied [23]. These models provide stereo-images 

per any desired configuration of the camera and 

object settings. Four statues of Bunny, Buddha, 

Dragon, and Asian dragon in the Stanford datasets 

are used for the test, as in Figure 11.    

Five different camera setups are used for 

comparison. In the first setup, the cameras are 

arranged in a conventional rectified configuration. 

Equations (44) and (46) are used in order to 

choose the optimized value for     and    used as 

setup 2. In setup 3, first, the optimum value for   

is chosen, and then the optimum values for    and 

   are calculated using Equations (44) and (46). 

The setups 4 and 5 are the same as the setups 2 

and 3, except that the focal length has been 

optimized in a way that the object will fill the 

entire FOV. Table 2 shows the setup 

configurations in details.  
Table 2. Five different camera setups details. 

   (m)  (m)       
Camera 

arrangement 

5300 0.2 0.4 0 0 Setup 1 

5300 0.2 0.4 2.86 2.86 Setup 2 

5300 4 8 45 45 Setup 3 

5800 0.2 0.4 2.86 2.86 Setup 4 

7500 4 8 45 45 Setup 5 

 

 

 
Bunny Buddha 

 
 

Dragon Asian Dragon 

Figure 11. Examples of the applied datasets [23]. 

 

Figures 12-a, 12-b, and 12-c show the 

experimental results for the setups 1, 2, and 3, 

respectively. Stereo-images of Bunny for setup 2 

are shown in Figure 13.  

Table 3 shows the mean absolute error for the 

three configurations, in summary. Observing the 

results, it is clear that the configuration of setup 3 

has reduced the localization error about one order 

of magnitude compared to the rectified settings of 

setup 1.  
Table 3. Mean absolute error for different camera 

arrangements. 

Setup 1 Setup 2 Setup 3 
3.27e-4 3.27e-4 3.33e-5 

 

The second experiment is very similar to the first 

one, except that the focal length is increased to the 

maximum value, so the object will fill the entire 

FOV, and includes the setups 1, 4 and 5. Figures 

14-a, 14-b, and 14-c show the experimental results 

for setups 1, 4, and 5, respectively. Table 4 shows 

the mean absolute error for the second 

experiment, in summary. In comparison to the 

rectified case of setup 1, we have almost a 96.7% 

reduction in the localization error in setup 5. 

Figure 15 shows the results of repeating the 

experiment on Buddha, Dragon, and Asian 

dragon.  Again, Figures 15-a, 15-b, and 15-c show 

the experimental results for setups 1, 4, and 5, 

respectively. The columns 3 to 5 in Table 4 show 

these results. A reduction of 30 to 40 times in the 

localization error can be observed. 
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a 

 
b 

 
c 

Figure 12. Effect of different CF parameters’ 

optimization on the localization error. a) Initial 

parallel cameras, b)    and    optimization, c) 

optimization of   ,   , and D. 

 

Table 4. Comparison between mean absolute errors for 

different camera arrangements. 

Asian 

Dragon 
Dragon Buddha       

Error 

reduction 

Camera 

arrangement 

1.09e-4 1.84e-4 1.60e-4 3.31e-4 
Reference 

Error 
Setup 1 

5.08e-5 4.37e-5 6.71e-5 1.37e-4 Error 

Setup 4 
53.4% 76.2% 58.1% 58.6%  Reduction 

3.58e-6 1.99e-6 3.42e-6 7.53e-6 Error 
Setup 5 

96.7% 98.9% 97.8% 97.7% Reduction 
 

In order to evaluate the behaviour of our method, 

the localization error around the obtained 

optimum points is investigated through three 

experiments. In the first experiment,      and 

  is chosen as the optimum value according to 

Equation (61), while a set of different values 

around the optimum points are assigned to    and 

  .  

 
a 

 
b 

Figure 13. Stereo-images of Bunny for setup 2. a) Right 

camera, b) Left camera. 

 
a 

 
b 

 
c 

Figure 14. Effect of different CF parameters’ 

optimization on the localization error. a) Initial parallel 

cameras, b)   ,   , and   optimization, c) optimization 

of   ,   , D, and  . 
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Table 6 shows the mean absolute localization 

error for the Bunny dataset at some combinations 

for     and    around their optimum value (from 

Table 5 when         ). 
 

Table 5. Optimized    value per    values for     . 

  (       )   (Degrees) 
47.7 42.0 
46.9 43.0 
46.0 44.0 
45.0 45.0 
44.0 46.0 

42.8 47.0 
41.6 48.0 

 

Table 6. Mean absolute error (     ) versus 

variation of    for       and different values of   . 

  (       )    
(Degrees) 47.7 46.9 46.0 45.0 44.0 42.8 41.6 

1.2058 1.2731 1.3546 1.4551 1.5552 1.6750 1.7996 42.0 
1.5422 1.1652 1.2340 1.3227 1.4108 1.5240 1.6392 43.0 

2.1081 1.6738 1.1634 1.2374 1.3221 1.4255 1.5370 44.0 

2.6292 2.1244 1.6976 1.1629 1.2394 1.3371 1.4411 45.0 

3.1615 2.8886 2.3607 1.6938 1.1649 1.2462 1.3432 46.0 
3.6885 3.4738 2.9520 2.3711 1.7288 1.1668 1.2528 47.0 

4.7697 4.0668 3.5487 2.9849 2.4343 1.7058 1.1647 48.0 
 

The bold value in Table 6 shows the minimum in 

each row, and it is clear that they occur at the 

predicted    value. The global minimum is at 

         degrees. 

The second experiment is essentially as the first 

one, except that we have     . Here, Table 8 

shows the results for this case, and the three bold 

numbers enclosed by squares are the three 

answers of Equation (61), while Table 7 shows 

the corresponding optimum pairs of     and    for 

    .  

Table 7. Optimized    value per    values for     . 

  (       )   (Degrees) 

61 24.00 

58.63 31.37 
54.67 40.00 

48.3 48.30 

40 54.67 
31.37 58.63 

24 61.00 
 

In the third experiment,     and    are chosen as 

the optimum value according to Equations (44) 

and (46), while a set of different values around the 

optimized points are assigned to   and  .  

Table 9 shows the forecasted values of optimum   

for some different   values. For each selected D 

value from Table 9, a set of X values around its 

   

   

 
   

a b c 

Figure 15. Effect of different CF parameters’ optimization on the localization error for Buddha, Dragon, and Asian 

Dragon. a) Initial parallel cameras, b) 𝜃 , 𝜃 , and 𝐟 optimization, c) optimization of 𝜃 , 𝜃  , D, and 𝑓. 
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corresponding optimum value is selected.   
 

Table 8. Mean absolute error (     ) versus 

variation of    for       and different values of   . 

  (       )    
(Degrees) 61 58.63 54.67 48.3 40 31.37 24 

1.2087 1.5348 2.1660 3.2059 4.2207 4.8272 4.8788 24.00 

2.9528 1.1775 1.6720 2.5741 3.5902 4.2333 4.3134 31.37 

5.9459 3.8316 1.1832 1.8463 2.7298 3.4294 3.6626 40.00 

9.3228 8.5946 5.0453 1.1947 1.8426 2.4764 2.8517 48.30 

11.815 11.274 10.057 6.5011 1.1875 1.6848 2.0921 54.67 

13.643 13.603 12.820 9.4405 5.1793 1.1730 1.5138 58.63 

13.995 13.434 1.3200 10.959 7.9951 4.2688 1.2040 61.00 
 

The mean absolute localization error for all of 

these combinations are calculated and shown in 

Table 10.  Again, the minima on each row are 

bolded. As Equation (61) tells for          

we have one answer, and for     , there are 

two answers. 

Table 9. Optimized   value per   values. 

 ( )  (m) 

- 3.5 7.0 

- 3.75 7.5 

- 4.0 8.0 
5.68 2.82 8.5 

6.56 2.44 9.0 

Table 10. Mean absolute error (     ) versus   

variation for different values of  . 

   

7.00 6.56 5.68 4.00 3.75 3.50 2.82 2.44 2.00   

1.291 1.252 1.218 1.185 1.183 1.183 1.201 1.209 1.218 7.0 
1.236 1.215 1.195 1.178 1.177 1.179 1.196 1.203 1.220 7.5 

1.188 1.178 1.163 1.163 1.165 1.173 1.190 1.197 1.203 8.0 

1.178 1.172 1.166 1.174 1.172 1.170 1.167 1.175 1.178 8.5 
1.170 1.168 1.172 1.174 1.173 1.172 1.170 1.167 1.175 9.0 

 

6. Conclusions  
Spatial positioning of the objects is an important 

issue in the machine vision application. Different 

parameters can influence the positioning accuracy, 

one of which is the cameras’ configuration and 

their viewing angle toward the scene. This paper 

presented a method for the geometric optimization 

of cameras in order to minimize the localization 

error. For this purpose, FOV of each pixel was 

assumed as a skew pyramid, and the uncertainty 

region was created from the intersection of these 

two pyramids. Then the mathematical equation of 

the uncertainty volume was calculated based on 

the correspondence field parameters as a criterion 

for the localization error. Then, given the 

mathematical relation of the localization error, the 

geometric optimization of camera configuration in 

the stereo-vision system was addressed. This 

meant that the cameras’ position and their viewing 

angles and also camera parameters were 

optimized, which was not possible till now, and 

was determined according to the experience. 

Finally, the validity of the results obtained was 

evaluated by simulation and the empirical results. 

The empirical results indicated that in the 

optimized state, a 40-fold reduction in the 

localization error was possible. It must be noted 

that the optimal configuration requires a larger 

focal length, implying higher costs and 

computational load. 
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7. Appendix 

7.1. Details of Function   

Parameters    through     are defined as: 
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Now,    and    can be calculated as: 
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The desired   function can be summarized as: 
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 چکیده:

توانندد ها مییرد و پارامترها و چیدمان دوربینمورد استفاده قرار گتواند به عنوان یک تکنیک نمونه برداری از فضا، می سیستم بینایی ماشین دو دوربینه

هدا سازی چیدمان هندسدی دوربدین، این مقاله روشی را برای بهینه Voxelsبا استفاده از مفهوم .را تغییر دهند (SSD)ها فضاییبه طور مؤثر تعداد نمونه

یابی یک شی در فضدای سده و کاهش عدم قطعیت در موقعیت Voxel حداقل رساندن حجمدهد که به معنای به ارائه می SSD برای به حداکثر رساندن

شود و در نتیجه منطقه عدم قطعیت از محل تلاقی دو هدرم متندا ر از دو ورت یک هرم مورب در نظر گرفته میمیدان دید هر پیکسل به ص .بعدی است

یدابی از بر اساس پارامترهای میدان تنا ری به عنوان معیداری بدرای اطدای موقعیدتآید. سپس معادله ریاضی منطقه عدم قطعیت دوربین به دست می

این میدان کاملاً به پارامترهای داالی و اارجی دوربین بستگی دارد. بدا توجده  .شودمحاسبه می Y و X جمله اطای عمق و همچنین اطای محورهای

سدرانجام،  گیدرد.ها در یک سیستم دو دوربینه مورد بررسی قدرار مدیزی چیدمان دوربین، بهینه ساضی اطای موقعیت یابی به دست آمدهبه معادله ریا

یابی به طور قابدل تدوجهی در چیددمان دهد که اطای موقعیتشود. این نتایج نشان میاعتبار روش پیشنهادی با شبیه سازی و نتایج تجربی بررسی می

 یابد.ها کاهش میبهینه دوربین

 .سازی هندسیها، میدان تنا ری، بهینهبینایی ماشین، چیدمان دوربین :کلمات کلیدی

 


