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1. Introduction

One of the most important concepts in cloud computing is to model the
problem as a multi-layer optimization problem, which leads to cost-
savings in designing and operating the networks. The previous
researchers have modeled the two-layer network-operating problem as
an Integer Linear Programming (ILP) problem, and due to the
computational complexity of solving it jointly, they have suggested a
two-stage procedure in order to solve it by considering one layer at
each stage. In this paper, considering the ILP model and using some of
its properties, we propose a heuristic algorithm in order to solve the
model jointly, considering the unicast, multicast, and anycast flows
simultaneously. We first sort the demands in a decreasing order and
use a greedy method in order to realize the demands in order. Due to
the high computational complexity of the ILP model, the proposed
heuristic algorithm is suitable for the networks with a large number of
nodes. In this regard, various examples are solved by the CPLEX and
MATLAB software. Our simulation results show that for the small
values of M and N, CPLEX fails to find the optimal solution, while
AGA finds a near optimal solution quickly. The proposed greedy
algorithm could solve the large-scale networks approximately in
polynomial time, and its approximation is reasonable.

In the cloud computing area, the concept of the
transfer layer or the data exchange layer could be
modeled as a graph [1] . The two-layer network
arises in the generic network architecture in the
cloud computing area, i.e. considering the
physical layer as the first layer and the network
layer as the second layer. This concept is well-
known as Multi-Protocol Label Switching
(MPLS), which is frequently used by the network
communications. The MPLS networks consist of
two types of devices: Label Edge Router (LER),
in which one can consider the set of LERs as E,
and Label Switch Router (LSR), in which one can
consider the set of LSRs as G. In MPLS, the
packets transmit along a Label Switch Path (LSP)
between LERs and LSRs [2]. Two models for

MPLS-Traffic Engineering (MPLS-TE) have been
presented in [3] and [4]. Reference [5] presents an
MPLS technology that cloud improve the quality
of an Information-Telecommunication System
(ITS) network by creating the virtual channels
between its nodes. In [6], an improved Particle
Swarm Algorithm (PSO) for multi-objective-
based optimization of the MPLS networks has
been introduced. Due to the diversity of
considerations in the physical layer such as the
encryption and capsulation of data, the distance of
the network points and the existence of different
standards, different bandwidths can be generated
using each one of these devices [7] and [8]. For
example, according to the standards of the
International Telecommunication Standardization
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Unit (ITU-T), we can transmit a bandwidth of 10
Thps to a distance of 1500 km (or more) using the
optical waves [9], [10], [11], [12], and [13]. A real
example of Cloud Computing is given in the [15].
In the computer networks, one of the famous
problems is the flow allocation problem. Let D be
the set of demands including all the unicast,
anycast, and multicast demands in some network,
which are stored in routers as the path tables
including different types of flows as the known
data of the problem [2]. We intend to allocate
paths for these demands in the upper and lower
layers of the network, minimizing the total
allocation costs. The rest of the paper is organized
as what follows. In Section 2, the problem is
modeled as an ILP, and its complexity is
discussed. The proposed heuristic algorithm is
presented in Section 3. The numerical results and
discussion are presented in Section 4, and Section
5 is devoted to the concluding remarks and the
future research directions.

2. Problem Modeling
We considered the link set G for the first layer and
the link set E for the second layer. Sending the
flow per link in both layers incur costs, and the
sum of these costs should be minimized, which
forms the objective function of the optimization
model. First, we defined the sets, constants, and
variables similar to [2], as follows.
Sets:
E Set of upper layer links;
D  Anycast, multicast, and unicast demands;
D" Set of anycast downstream demands;
P(d) Set of all available paths for demand d;
Q(e) Set of all paths in G that link e on the
upper layer uses them;
G Links of the lower layer.
Constants:
hg Volume of demand d;
¢. Routing cost uniton link e € E;
Ky Routing cost uniton link g € G;
M Capacity module size of the upper
layer link;
N  Capacity = module
lower layer link;
7(d) Index of demand d. If d is a downstream
demand, 7(d) must be an upstream
demand, and vice versa.
s(p) Source node of path p.
t(p) Destination node of path p.

size of the

Variables:

Oeap € {0,1} = 1 if link e on path p is used
to realize demand d; 0, otherwise.

Ygeq € {0,1} = 1 if link g on path g is used
to realize link e on the upper layer; 0, otherwise.
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Xqp € {0,1} = 1 if path p is used to realize
demand d; 0, otherwise.
Y. € Z* Capacity of the upper layer link e.
Zeq € Z* Number of paths g that link e on
the upper layer uses them.
ug € Z* Capacity of the lower layer link g.
Now the following ILP model could be formulated [2]:

Min F = Zfeye +Zkgug

2-a)
e€eE geG
St
SeapXapha <My, , e €EE 2-b)
deD  peP(d)
Z YgeqZeqha < Nug , g€G 2-0)
e€E qeQ(e)
Z Xaps(p) = Z Xe(@ypt(®),d € DPS @2-d
peP(d) peP(z(d))
xdpzl, d€eD (2—6‘)
pEP(d)
D, Za=% €<k @-1)

q€Q(e)

The objective function (2-a) aims to minimize the
cost of the capacity assigned in both network
layers. Constraints (2-b)—(2-f) are the same as in
the single layer network design problem. Equally,
(2-e) ensures that each upper layer link is realized
by a set of lower layer paths. Condition (2-f)
states that the flow in each lower layer link cannot
exceed its capacity.

Since the capacities of the modules in the upper
and lower layers are restricted to M and N,
respectively, the sum of the flows that could be
allocated to the links in the layers should not
exceed M (for the upper-layer) and N (for the
lower-layer). The constraints (2-b) and (2-c) show
this limitation. Equation (2-f) states that each link
in the upper-layer can use multiple paths of the
lower-layer, provided that the sum of the total
streams for the upper-layer links used in the lower
layer links does not exceed the total capacity of
that link. Equation (2-d) states that each path can
be used only as upstream or downstream.
Equation (2-e) states that only one path must be
allocated per flow. Due to the complexity of the
multi-layer models (because of the existence of
binary and integer variables), the heuristic
algorithms are required in order to solve the larger
problem instances. One approach is to tackle the
optimization in all network layers jointly.
However, since the routing and capacity decision
variables of both layers are bound to each other,
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this strategy may not be efficient. Another
approach is to optimize each network layer in a
separate phase, i.e. the problem in the upper layer
is solved first, and the lower layer is optimized
next. The algorithms developed for the single
layer problems can be used, i.e. the methods
proposed in [2]. If the algorithms used to optimize
each layer are relatively fast, the procedure can be
repeated for many times, and in each subsequent
iteration, the information obtained in the previous
iteration can be used to improve the performance
of the overall optimization process.

This model was introduced in [2], and due to its
complexities, it was suggested to optimize the
problem in separate stages, i.e. the upper layer
optimized first, and the lower layer optimized
next. Since the two layers are dependent, this
procedure should be down alternately to get a near
optimal solution. If we denote the cardinality of
each set D by |D|, model (1-a)-(1-f) has 2 x
(|IE| +|D|) + |G| constraints and |D| X |P|+
|Q| X (JE| + 1) + |G| variables, making any exact
algorithm of high computational complexity in
solving large networks. In other words, the solvers
like CPLEX or Gurobi fail to find the optimal
solution for large-scale networks. Therefore, the
heuristic procedures seem to be useful methods,
which could find good solutions in a reasonable
time for large scale networks. In this paper, we
propose a heuristic algorithm based on a simple
greedy strategy for solving Problem (2 —
a)- (2 — f) considering both layers jointly. We
first sort the demands in a decreasing order and
use a greedy method to realize the demands in
order.

3. Heuristic Algorithm for Solving Model

Jointly
As our investigations show, no algorithm has been
proposed to solve model (2—a)—(2—-f)

efficiently. Only in [2], it is suggested that each
layer is solved separately with a greedy method or
the Flow Deviation for Network Design (FDND)
algorithm. Then using an iterative procedure, by
optimizing each layer for several times, the
information obtained in the previous iteration is
used in order to improve the performance of the
overall optimization process. We refer to this
method as GRFA. Actually, GRFA considers the
layers separately and ignores the two-layer
dependency.

Note that the function Find_Best_Path d searches
all the candidate paths available for demand d
(line 4), and the function DC_Node 7(d) returns
the DC node selected for demand z(d) (line 6).

Also note that the functions Find_Best_Path and
Find Best Path DC are generic, and can
implement various strategies in order to find a
routing path like the shortest path in a residual
graph that only contains links with a residual
capacity greater than the requested bit-rate of the
considered demand.

Algorithm GRFA (Greedy algorithm for anycast, multicast, and
unicast demand flow allocation) [2]

Input: set of edges E, set of anycast, multicast, and unicast
demands D, sets P(d) including candidate paths for each demand
d€ED.

Ensure: each  demand

of objective

path

deD
function.

1: procedure GRFA(D, P(d))
2: fordeDdo
3 if 1s_Not_Allocated(z (d)), then
4: p := Find_Best_Path (d)
5
6
7
8

selection  (routing)  for
included in set X, value

else
p := Find_Best_Path_DC(d,DC_Node (z (d)))
end if
: X =XUxgp
9: D:=D-{d}
10: end for
11: end procedure
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Now we propose a heuristic algorithm to solve
Problem (2 —a) — (2 — f) using a Greedy based
strategy. Our proposed algorithm, which we call it
the Adaptive Greedy Algorithm (AGA), solves
the model considering both layers simultaneously.
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Figurel. An example of the MPLS network.

Note that as some advantages of the greedy
algorithm, we can refer to its adaptability to the
means of ordering and routing strategies, its
relatively low complexity, and short execution
time. Before explaining the algorithm, some
important remarks on model (2—a)—-(2—-f)
are noticed. Each upper-layer node is connected to
one lower-layer node by a physical link.
Therefore, there is no demand d such that its
source or destination nodes are on the lower-layer.
On the other hand, one or more paths in the lower-
layer connect every two nodes on the upper-layer.
For example, in Figure 1, if one wants to send
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data from node 13 to node 14 on the upper-layer,
the data must be sent on one of the many available
paths from node 5 to node 4 on the lower-layer.
As it can be seen in Figure 1, there are 22 paths
from node 5 to node 4. The lengths of these paths
vary from 3 to 8. Table 1 shows all of these paths
for this example from node 13 to node 14. We
denote this collection of paths by Q(e), where e is
the link between nodes 13 and 14.

Table 1. All paths from node 13 to 14.
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Since every link e in the upper-layer has several
paths on the lower-layer, and each demand is
produced and transferred on the upper-layer, for
each demand d, we have several paths on the
lower-layer from which we search for the shortest
one to realize demand d. We use this observation
to propose our heuristic greedy algorithm, AGA.

In order to get the complexity of the algorithm, it
is enough to obtain the number of iterations in the
loops of the algorithm. Line 2 sorts the elements
of D, which is done in O(|D|log(|D|). Lines 4 to
19 are repeated |D| times. It is also possible to
find the best route with a linear search, so lines 4
to 8 are repeated for a maximum of |P| and line
10, |Q| times. In order to find the upper-layer
paths in the lower-layer, all the edges of the path
in the upper-layer must be compared with all the
edges of the lower layer paths; this can be done by
the |E| X |G| iterations. Lines 12 and 16 can also
be done by p and q iterations, respectively. This
discussion leads us to the complexity of the AGA
as (IDI?+ D] x (2x|P|+|El x |G| +2%1Q])) ,
which is obviously polynomial time.

In order to solve by AGA, we first sort demands
D by the value of each demand descending. This
will meet the demand for larger values sooner. In
order to meet any demand, we first find the best of
all possible supply paths at the upper layer. Since
each arc in the upper layer uses a path from the
lower layer, we find all the possible paths in the
lower layer that the selected path from the upper
layer uses, and keep in set Q. Then we choose the
best path in Q. According to the greedy algorithm,
the chosen path is the best path by which demand
d can be met. Therefore, we calculate the values
of z and the amount of flow that must be
transferred in this path according to the volume of
this demand and add the selected path to the
solution set x.

Algorithm: Adaptive greedy algorithm (AGA)
tosolve model (1—a)—(1—f)

Input: set of edges E and G, set of anycast,
multicast and unicast demands D, sets P(d)
including  candidate paths for each demand
d€eD.

Ensure: path selection (routing) for each demand
deD included in set X, value of objective
function.

1: procedure AGA (D, P(d))

2:  sort descending (D)

3: ford e D,do

4; if Is Not Allocated(z (d)), then:

5: p = Best Path On E for demand d

6 else:

7 p = Best Path On E for demand d On

DC node from t(d)

8: end if:

9: X=X U{xgp}

10: Q(p):=Compute all paths on G for all e on p
11: q=find best path on Q(p)
12: fore e pdo

13: Zqq-=cardinal of Q(e)

14: compute y(e) according to h(d)
15: end for

16: forg e qdo

17: compute u(g) according to h(d)
18: end for

19: D:=D-{d}

20: end for

21: end procedure
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In order to show the performance of AGA, we
compare the algorithm results with the exact
solutions for a few small examples solved by the
CPLEX optimization software. Due to the
complexity of the model, CPLEX could solve
only small problem instances to optimality, so in
the next section, several small problem instances
are simulated and solved by AGA as an
approximation algorithm and by the CPLEX
optimization software as an exact solver, and the
results obtained are compared and discussed. By
this comparison, we show that the solutions
obtained by AGA are not far from the exact
solutions.
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4. Numerical Results and Discussion

In this section, we create several small MPLS
network instances with known demands by
simulation, and solve them by CPLEX. Then we
solve these examples by AGA, and compare the
solutions obtained. These examples are solved
using a computer with an Intel Core i7-6700HQ
processor and 12GB Ram. The simulated
demands, MPLS graphs, and sets of paths are
created and computed by MATLAB. AGA is
implemented in the MATLAB software as well.

25
2
®s
1.5
1

0.5 i1

.2

Figure 2. An example of an MPLS network.

First, we explain the example of Figure 2. In this
MPLS network, we have 5 nodes on the upper-
layer and 7 nodes on the lower-layer. Note that if
M is a small number, Equation (1-b) is satisfied
for a large amount of y,. In this example, we
consider the set of demands as Table 2. Therefore,
if weset M =1 and N = 1, the value of 35510 is
obtained for the objective function. On the other
hand, if we set M =30 and N = 40, then the value
of the objective function becomes 297.

We solve this example by both CPLEX and AGA
for different values of M and N, and show the
results in Figure 3. The values of M and N are
M=1to8 and N = 1to50. In Figure 3, the
vertical axis represents the value of the objective
function, and the two horizontal axes represent the
values of M and N. CPLEX finds the exact
solution, and AGA obtains the approximate
solution. Of course, the solutions do not exactly
match but they are not far apart. For example,
when M =3 andN =43, the exact optimal
objective function is 1388, and AGA finds 1392
as a near optimal objective function.

Table 2. Simulated demands on MPLS of Figure 2.

Source 10 9 10 12 9 10 11 10 11 10 9 9
Destination 11 10 8 8 10 11 9 11 9 12 10 10
Value of h, 4 4 9 6 7 8 5 3 6 4 9 9
«10*
4—
3.5 — I‘
|
3 —
I —— AGA Algorithm

‘ ——CPLEX

Figure 3. Comparing CPLEX with AGA.

Table 3 shows nine MPLSs with different sizes
from small to large. Also Table 3 shows the time
to get the answer for several values of M and N.
CPLEX cannot solve examples 6 to 9 for some
values of M and N or it takes a long time.
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As shown in Table 3, CPLEX fails to get a
solution for large size MPLS networks or it
requires a very long time to get the optimal
solution, while AGA finds a near optimal solution
quickly. This fact is shown in Figure 4.
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Table 3. Numerical results for 9 examples.

Example 1 2 3 4 5 6 7 8 9
Number of upper layer edges 3 8 11 12 14 11 15 18 17
Number of upper layer nodes 3 5 7 8 9 8 8 10 9
Number of lower layer edges 5 10 12 12 14 15 17 17 17
Number of lower layer nodes 4 7 8 8 9 9 10 10 10
Number of demands and maximum number of paths 6 12 18 18 34 58 72 129 84
between 2 nodes
Number of all paths on upper layer 12 156 472 662 1146 392 2326 6794 5626
Number of all paths on lower layer 38 350 674 662 1104 2208 4260 4250 4522
Cardinality of Q, 10 67 115 147 192 349 739 909 919
Average time to get the approximate solution by
AGA implemented for different M and N in
MATLAB (s) 016 04 032 055 05 1.39 1.76 2.881 1.24
Average time to get the exact solution for different
M and N by CPLEX (s)
8136 33335 66687 75160
009 05 099 291 27 Or fail  Orfail  Or fail Or fail

5. Conclusions and Future Research Works

In this paper, we presented a greedy algorithm to
solve the multi-layer network model, which joins
joined the two layers. Since the integer-
programming model for the large-scale networks
had a high computational complexity, the
optimization softwares like CPLEX fail to solve
the large-scale networks, while the proposed
greedy algorithm could find a near optimal
solution in polynomial time. On the other hand,
for small values of M and N, CPLEX fail to find
the optimal solution, while AGA find a near
optimal solution quickly. In the future, we intend

to solve the model with other heuristic algorithms
such as the Particle Swarm Optimization (PSO)
method. We also intend to compare the AGA and
PSO algorithms and discus their specific
properties.
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