
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 2, 2021, 213-226.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research Paper

An Energy-aware Real-time Task Scheduling Approach in a Cloud

Computing Environment

Hossein Momeni
*
 and Nahid Mabhoot

Department of Computer Engineering, Golestan University, Gorgan, Iran.

Article Info Abstract

Article History:
Received 09 December 2020

Revised 15 February 2021
Accepted 06 March 2021

DOI:
10.22044/jadm.2021.10344.2171

 The interest in cloud computing has grown considerably over the

recent years, primarily due to the scalable virtualized resources.

Thus cloud computing has contributed to the advancement of the

real-time applications such as the signal processing, environment

surveillance, and weather forecast, where time and energy

considerations are critical in order to perform the tasks. In the real-

time applications, missing the deadlines for the tasks will cause

catastrophic consequences Thus real-time task scheduling in a

cloud computing environment is an important and essential issue.

Furthermore, energy-saving in the cloud data center, regarding the

benefits such as the reduction in the system operating costs and

environmental protection is an important concern that has been

considered during the recent years, and is reducible with an

appropriate task scheduling. In this paper, we present an energy-

aware real-time task (EaRT) scheduling approach for the real-time

applications. We employ the virtualization and consolidation

techniques subject to minimizing the energy consumptions,

improve resource utilization, and meeting the deadlines of the

tasks. In the consolidation technique, the scale-up and scale-down

of the virtualized resources could improve the performance of task

execution. The proposed approach comprises four algorithms,

namely energy-aware task scheduling in cloud computing (ETC),

vertical VM scale-up (V2S), horizontal VM scale-up (HVS), and

physical machine scale-down (PSD). We present the formal model

of the proposed approach using timed automata in order to prove

precisely the schedulability feature and correctness of EaRTs. We

will show that our proposed approach is more efficient in terms of

the deadline hit ratio, resource utilization, and energy consumption

compared to the other energy-aware real-time tasks scheduling

algorithms.

Keywords:
Task, Real-time, Cloud

Computing, Scale-up, Scale-

down, Scheduling.

*Corresponding

author:h.momeni@gu.ac.ir (H.

Momeni).

1. Introduction

A cloud computing environment is a distributed

computing model based on the virtualization

technology. It is also known as a dynamic service

provider with the ability of scalability, flexibility,

and virtualization of resources on the internet [1-

3]. This environment contains the physical and

virtual resources and virtualization platforms, and

also allows the users and administrators to do the

migration of a virtual machine (VM) from one

server or physical machine (PM) to another PM.

Migration of a VM from one host to another one

helps to balance the workload among PMs

running in the cloud data center.

In particular, the scalable virtualized resources in

cloud computing address the high computation

demands that are required by the real-time

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

214

systems. In other words, the employment of

computing resources to meet the user’s

requirements makes cloud computing an attractive

and suitable environment for executing the real-

time tasks [4].

Thus a very important issue regarding the subject

that many applications are deployed on clouds has

a real-time nature. It means that the correctness of

a real-time application is not only dependent on

the computation results but also on the time the

results are available. For some latency-sensitive

applications, providing a real-time guarantee is

even a necessity. For example, in an environment

surveillance, forecasting or medical simulation

has a deadline constraint, and when it fails, other

results may be useless [5-7].

In these applications, the deadline meet has a

priority over the other criteria so presenting the

task schedulability model on the clouds is

important. As we know, most of the previous real-

time task scheduling algorithms reject the tasks if

they are not guaranteed by using the available

VMs and increase the number of virtual machines

(horizontal scaling) on PMs in a deadline

constraint.

On the other hand, regarding the rapid growth of

cloud computing, development of using cloud

computing services, and interest of the customers

in these services, the providers create a data center

on a large scale including thousands of VMs as

the computing nodes, which result in a huge

consumption of energy with high expenses, and

here, consuming energy is an important and vital

concern [6, 11-13].

When a large number of real-time tasks arrive at

short intervals to the cloud system, there is a need

to set up PMs and deploy more virtual machines

in order to respond to these demands. However,

the overhead time of deploying new physical and

virtual machines that have a long delay in starting

the time of real-time tasks may cause the violation

of the deadline of some real-time tasks.

Moreover, as the system workload increases, the

number of virtual machines will increase, and as

the system workload decreases, the virtual

machines can merge and consolidate into fewer

PMs. Turning off the idle virtual and PM is

important in terms of the energy management

problems, especially in the green cloud

computing. The consolidation techniques aim to

consolidate the tasks in fewer PMs and VMs. The

consolidation schemes should optimize the

resource utilization in such a way as to avoid

violating the service level agreements (SLA),

energy consumption, and performance

degradation [4].

In this paper, we propose an energy-aware task

scheduling approach, namely EaRTs, for the real-

time tasks, which is independent and dynamic. In

the EaRTs approach, we present an energy-aware

real-time task scheduling (ETC) algorithm. We

then present the horizontal VM scale-up (HVS)

algorithm in order to guarantee that the deadline

of the tasks is met in an active VM. The

horizontal VM scale-up is done by increasing the

number of VMs through creating a new VM and

deploying it on a PM.

The vertical scaling-up of VM increases the

number of resources including the processor,

memory, and storage of a VM, and can be done in

less than a few milliseconds, while the horizontal

scaling-up can take several minutes. Thus we

propose the vertical VM scale-up (V2S)

algorithm, and finally, to reduce the number of

active PMs in the system to save energy, we

present the physical machine scale-down (PSD)

algorithm using the consolidation technique. In

our proposed algorithms, the virtualization

technique is used to decrease the energy

consumption in the cloud data center. Besides,

from the elasticity viewpoint, VM’s vertical

scaling is used when there is no possibility to

guarantee the tasks by increasing horizontal

scaling in their deadline constraint. Furthermore,

in the proposed approach, by executing more tasks

over active PMs, the resource utilization rate is

increased. The EaRTs approach creates a balance

among three factors including the guarantee rate,

resource utilization, and decreasing energy

consumption. We also present three models,

namely the resource model, task model, and

energy model, in order to describe this proposed

approach and formalize our approach using timed

automata [8] to verify all the proposed algorithms

and employ a temporal logic based on a timed

automata to the description of schedulability [9,

10]. Timed automata is a dominant method for

modeling and verification of the real-time

systems. Using timed automata, we model and

verify our approach, and check the schedulability,

deadlock-freeness, and correctness of our

proposed algorithms.

The rest of this paper is organized as what

follows. Section 2 provides a brief background

and the definitions. Section 3 presents some

notable related works on the real-time task

scheduling. Section 4 presents our system models.

Section 5 presents our proposed approach. Section

6 presents the formal models of the proposed

approach. Section 7 presents the verification of

our proposed approach. Finally, Section 8

concludes the paper.

An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment

215

2. Definitions

2.1. Scalability

Scalability is an important feature in the cloud

computing environments such that the cloud

services and computing platforms can be scalable

regarding the geographical locations, hardware

performance, and software configuration [14].

In general, there are two kinds of resource

scalability technologies in cloud computing. The

first one is horizontal scaling, which determines

the number of VMs, and the second one is vertical

scaling, which is determined by changing the

partition of resources (CPU, memory, storage,

etc.) inside VMs. Vertical scaling can be done in

less than a few milliseconds, and VM cannot be

used at once [15].

2.2. Schedulability

Schedulability checks that all tasks have reached

their deadline and exist in the right conditions. In

other words, it checks whether all paths are in the

conditions in which no task is placed in the error

state. If the answer is yes, it guarantees that the

system is schedulable in all conditions [17]. A

system with a set of tasks with constraint

resources are called schedulable if no execution

satisfying the constraints of the system violates a

deadline [16].

2.3. Timed Automata

Timed automata is a tuple (L, L0, LF, Σ, C, E, I),

where:

L is a finite set of locations;

L0 is a subset of L and a set of initial locations;

LF is a subset L and a set of final locations;

Σ is a set of finite alphabets;

C is a finite set of clocks with real negative

values;

E: E ∈ L × Φ(C) × (Σ ∪ {ϵ}) × 2C × L is a set of

edges;

I: L → Φ(C) is a mapping of local invariants to

locations.

Timed automata is a state transition system adding

clocks with real values [18]. The states are called

locations, which model different possible

configurations of the system. The transition

among these locations shows the way that the

system can progress. The locations can be labeled

with some features, which show the elapsed time

for transition from a previous location to a new

one.

An example of timed automata is shown in Figure

1 with x, y clocks. Whenever a guard exists, the

system will be transferred from the location l0 to

the location l1, and x clock will become zero.

Figure 1. A timed automaton with 2 clocks.

X < 1 in the l1, l2 locations guarantee that the

system with guard c can be transferred from the

location l2 to the location l3, when about one time

unit has passed from the event a. When guard b

exists, the system will be transferred from the

location l1 to the location l2, and y clock will

become zero. When guard d exists and 2 time

units have passed of clock y, the system will be

transferred from the location l3 to the location l0,

and guarantees that the delay between b and d is

more than two time units.

3. Related Works

In the recent years, the issue of high energy

consumption in a cloud environment has received

much attention, and therefore, the energy-aware

scheduling algorithms have been developed.

Nevertheless, a few of them support the real-time

task scheduling with the management of energy,

and give a guarantee for the schedulability of the

system.

Chen et al. [5] have presented ERES as a

scheduling algorithm aware of energy for the real-

time tasks in the cloud environment based on the

EDF policy. They used the VM consolidation

technique in order to decrease PMs and save

energy. Zhu et al. [6] have presented an

algorithm, namely EARH, in order to balance

between the consumed energy and the

schedulability tasks. In this algorithm,

virtualization is used in order to decrease the

consumed energy. Chen et al. [19] have proposed

the PRS algorithm, where each VM just places

one task in its local queue, and whenever the

number of arriving tasks increases, more VMs are

required to guarantee the real-time tasks. This

algorithm uses the virtualization method in order

to decrease the consumed energy. This algorithm

only considers one task execution at a time on a

VP. As the number of tasks increases, more VMs

are required, which increases the static energy

consumption. In [11], the ERECT algorithm has

been proposed for the real-time task scheduling in

virtual cloud regarding saving energy. At first,

this algorithm guarantees the real-time tasks with

the least active PMs, and whenever the workload

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

216

of the system increases and there is the need to

turn on a new PM, the PM with less energy

consumption would be selected to decrease the

consumed energy. If the workload of the system

decreases, it uses the consolidation of VMs and

turn off the idle PMs in order to decrease the

consumed energy. In this algorithm, the results

obtained are just based on the simulation, and

there is no verification on guaranteeing the task

execution within their deadlines.

Jun et al. [20] have presented the EART algorithm

for the energy-aware task scheduling. This

algorithm while guarantees the limitation of the

deadline, also considers saving energy. The tasks

in the waiting queue are placed and sorted

according to the urgency level, which decreases

the rate of deadline miss. The indivisible task goes

to VMs with the least consumption of energy, and

the divisible tasks go to several VMs in order to

improve scheduling and save energy. In EART,

the task is not accepted if it is not guaranteed

using the existing VMs and increasing the number

of VMs (horizontal scalability) within its

deadline.

Zhang et al. [21] have presented the EAD-NMS

algorithm regarding saving energy for scheduling

the real-time tasks, which decreases the number of

PMs and prevents migration of VMs with tasks

for which their deadline is not very sensitive. In

this algorithm, in order to postpone the execution

of the task that has a soft deadline causes some

new tasks, with a hard deadline to enter, and leads

to reject these tasks, and as a result, the tasks

guarantee that the rate is reduced.

Hosseini et al. [22] have presented the SEATS

algorithm for scheduling VMs in order to

maximize the level of utilization by presenting

more CPU performance for the host VMs. In this

algorithm, if using the current processor is less

than the optimal threshold, the VM scheduler

shares the remaining of a million instruction per

second (MIPS) among VMs to maximize MIPS in

order to reach the optimal utilization level. This

algorithm is only applicable when the system load

is low, and if the number of tasks increases, there

will be a slight improvement in the energy

consumption when completing the tasks with a

hard deadline.

Wang et al. [23] have proposed the FESTAL

algorithm, which is a real-time task scheduling

algorithm in the cloud and improves fault

tolerance and resource utilization in the cloud.

The main purpose of FESTAL is to increase the

schedulability of the system, and to use the

resource until it reaches the fault tolerance. This

algorithm considers the task schedulability

regardless of the energy criterion.

Given this background, in most of the previous

research works, the real-time task scheduling

algorithm will not accept the task if it is not

guaranteed by using the existing VMs and

increasing the number of VMs (horizontal scaling)

in its deadline. We will present an energy-aware

real-time task scheduling approach based on the

consolidation technique subject to minimizing the

energy consumptions, improving the resource

utilization, and meeting the deadlines of the tasks.

4. System Models

In this section, we will describe our proposed

models formally in order to present our approach.

4.1. Resource Model

There is a set of physical machines (PM = {pmj, j

= 1, 2, ..., n} n = |PM|) in the cloud environment

with a high scale data center. Also on each pmj,

there is a set of virtual machines (VMj = {vmj1,

vmj2, ..., vmjk}, k = |VMj|). We model each pmj as

(1):

  , , ,j j j j jpm M R E VM

(1)

where Mj is the processor speed in MIPS, Rj is the

capacity of memory, Ej is the maximum energy of

PM, and VMj is a set of VMs in pmj.

We model each virtual machine vmjk as (2):

  ,,jk jk jk jkvm M R P

(2)

where Mjk is the processor speed in MIPS, Rjk is

the capacity of memory assigned to vmjk, and Pjk

is the readiness time of vmjk.

Equation (3) shows that the total amount of

resources required for VMs on a PM should not

be more than the capacity of the PM resources.

PMpmRRMM j

vm

k

jkj

vm

k

jkj

jj

 


||

1

||

1

&&

(3)

where Mj is the total processor speed of PMj and

Rj is the total memory capacity of PMj.

4.2. Task Model

We consider a finite set of real-time and

independent tasks (T = {t1, t2, …, tm}). Each task

is defined as a four partite tuple in (4):

, , , i i i i it a lh d f 

(4)

where ai is the task arrival time, lhi is the task

length (in million instruction), di is the deadline,

and fi is the task finish time of ti.

We calculate the execution time of ti on vjk as (5):

 /ijk i jket lh M v

(5)

An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment

217

where lhi is the length of ti and M(vjk) is the

processor speed that assigns to vjk.

The finish time of ti on vjk is calculated as (6):

ijkijkijk btetft 

(6)

where btijk is the beginning time of the task

execution and etijk is the length of the task

execution of ti on vjk.

The beginning time of the task execution btijk is

computed as (7):

},max{ jkiijk pabt 

(7)

where ai is the task arrival task and pjk is the

readiness time of vjk.

At first, creating and deploying of VM on a PM is

determined by the beginning time of its task, and

for each ti that assign to vjk, it will be updated as

(8):

ijkijkjk etbtp 

(8)

In this work, our main goal is to maximize the rate

of the real-time task acceptance that has a priority

in comparison to any other criteria in such tasks. It

can be defined by (9):

TotalAcceptTask
Max

T

(9)

where TotalAcceptTask is the total number of the

executed tasks that meet their deadlines, and is

defined as (10):






||

1

||

1

||

1

jvm

k

ijk

PM

j

T

i

ttTaskTotalAccep

(10)

If task ti is assigned to vjk and is terminated

without a missing deadline, then tijk equals to 1;

otherwise, it will be 0.

4.3. Energy Model

We define the energy consumption model as (11):

| |

1

TotalEnergyConsumption

(. . (1). . ()) .

ftPM
t

j j j

j bt

k E ac k E u t dt




  

(11)

where bt and ft are the beginning time and

finishing time of task execution, respectively, and

k is a fraction of energy consumption rate and we

consider it 70% [24], Ej is the maximum energy of

PM, ac
t
j €{0,1} if pmj is active in time t, and u(t) is

the utilization of pmj in time t.

In this work, the next goal is to minimize the

energy consumption of task execution that

finishes before the deadline. It can be defined by

(12):

)(
tTaskTotalAccep

onyConsumptiTotalEnerg
Min

(12)

In order to minimize energy consumption, we

employ the VM consolidation technique and turn

off the idle PMs [3], which will be described in

Section 5.

The next goal in this work is to maximize the

resource utilization. It can be defined by (13).

()

()

MAX TotalAcceptTaskLength

TotalActiveHostMips TotalActiveTime

(13)

that is computed from the executed task total

length over the total processor performance of

active PMs in the system during the execution.

TotalAcceptTaskLenghth is the executed task total

length, and is calculated as (14), and

TotalActiveHostMips is the total processor

performance of active PMs, and is calculated as

(15).

).(
||

1

||

1

||

1

ijk

T

i

i

V

k

PM

j

tlhhtTaskLengtTotalAccep
j






(14)

where lhi is the length of ti, and if ti assigns to vjk,

then tijk will be equal to 1; otherwise, it will be

equal to zero.

).(
||

1 j

PM

j j wtMeHostMipsTotalActiv  


(15)

where wtj is the total time of pmj when it is

activated during the experiment, and Mj is the

speed of the pmj 's processor.

5. Energy-aware Real-time Task Scheduling

Approach

In this section, we describe our energy-aware task

scheduling approach for real-time tasks (EaRTs)

in a cloud computing environment.. Firstly, we

present the ETC algorithm and then present the

HVS, V2S and PSD algorithms.

5.1. ETC Algorithm

When a new task arrives at the system, it is placed

in a general queue initially. At first, this algorithm

is checked according to the number of existing

VMs in the system, whether the task can be

finished without a missing deadline.

If it finds several VMs in order to execute the task

without missing the deadline, the task will be

assigned to a VM with a less turnaround time. If

execution of the task in its deadline is guaranteed

by active VMs in the system, the horizontal VM

scale-up should be done (if execution of the task

can be guaranteed on a VM).

If by the horizontal VM scale-up the task cannot

finish before its deadline, the vertical VM scale-

up should be done, and then the task will be

assigned to a VM, which guarantees its execution

before the deadline; otherwise, the task will not be

accepted. Figure 2 shows the pseudo-code of the

ETC algorithm.

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

218

ETC algorithm

1. Successtage = false;

2. Select_VM = Null;

3. For each new task ti, do

4. Add ti to the general queue

5. End for

6. Sort (tasks, in general, queue by increasing the deadline);

7. For each ti in general queue, do

8. For each vjk available do
9. Calculate btijk and execution time etijk of task ti;

10. If btijk + etijk = < di, then

11. Success_Tage = True;

12. End if

13. End for

14. If Success_Tage = True, then

15. Select_VM = Select vjk with minimal finish time to

execute ti ;

16. Re-calculate the readiness time of vjk;

17. End if

18. If Success_Tage = False, then
19. Select_VM = HVS();

20. End if

21. If Select_VM = Null, then

22. Select_VM = V2S();

23. End if

24. If Select_VM! = Null, then

25. Assign ti to Select_VM for execute;
26. Re-calculate the readiness time of Select_VM;

27. Success_Tage = True;

28. End if

29. If Success_Tage = False, then

30. Reject ti;

31. End if

32. End for

Figure 2. ETC algorithm.

5.2. Horizontal VM Scale-up (HVS Algorithm

We have designed HVS to guarantee that the

deadline of the tasks is met in the active VM.

Horizontal VM scale-up is done by increasing the

number of VMs through creating a new VM and

deploying it on a PM. The pseudo-code of the

HVS algorithm is shown in Figure 3.
HVS algorithm

1. Vjk = Select (a type of virtual machine with Minmips (VMs type) is

the minimal processor performance of VMs Possible for
executing ti within its deadline).

2. Success_Tag = False;

3. If Vjk! = Null, then
4. PmList = Sort (active PM is available in the increasing order of

the remaining processor capacity).

5. For each pmj in PmList, do
6. If Remaining_Mips (pmj) >= M(VjK), then

7. Deploy vjk on pmj;

8. Remaining_Mips (pmj) = Remaining_Mips (pmj)– M(vjk)
9. Calculate the readiness_time (Vjk)

10. Success_Tag = True; Break;

11. End if

12. End for

13. If Success_Tag = False, then

14. PmList = Sort (inactive PM is available in the increase order of
the energy power)

15. For each pmj in PmList, do

16. If vjk can be guaranteed finishing ti within its deadline, then
17. Turn on an inactive PM and deployt vjk on it.

18. Remaining_Mips (pmj)=Remaining_Mips(pmj) – M(vjk)

19. Calculate the readiness_time (Vjk)
20. Success_Tag = true;

21. End if

22. End For

23. End if

24. End if

Figure 3. HVS algorithm.

After an appropriate VM selection that can

guarantee the execution of the real-time task ti in

its deadline, VM will be deployed on a PM with a

maximum utilization. After deploying VM, its

readiness time (rtjk) is calculated as (16):

()jk jkrt ct dpt v 

(16)

where ct is the current time and dpt(vjk) is the time

of creation and deployment of vjk on PM. If VM

cannot be deployed in this way, an inactive PM

with the least energy consumption in which VM

can be deployed on it will be turned on, and VM

will be created on it. In this situation, the

readiness time of VM is calculated as (17):

() ()jk j jkrt ct tt pm dpt v  

(17)

where tt(pmj) is the turning on time of pmj and

dpt(vjk) is the deployment time of vjk on pmj.

5.3. Vertical VM Scale-up Algorithm (V2S)

Actually, vertical VM scale-up increases the

amount of resources including the processor,

memory, and storage of a VM. Vertical scaling-up

of VM can be done in less than a few

milliseconds, while horizontal scaling-up can take

time for several minutes.

In the HVS algorithm, creating more new VMs

may miss the deadline of tasks so vertical scaling-

up of VMs should be done, as shown in Figure 4.

V2S finds a VM with a possibly minimal

processor capacity required to execute the task in

its deadline constraint such that it can increase the

processor capacity as follows.

If the remaining of the PM processor capacity can

guarantee the execution of the real-time task, V2S

adds it to the VM processor capacity, and then

assigns the task to this VM; otherwise, V2S

computes the extra amount of processor capacity

allocated to other VMs deployed on this PM (in a

manner that the allocated task deadline to these

VMs will not be missed). If the remaining of the

processor capacity of PM plus an extra amount of

other VMs processor capacity equals the amount

of the required processor capacity of the real-time

task, V2S, at first, selects this capacity from the

remaining capacity of PM, then it selects from

VMs that are ordered according to increasing of

waiting tasks on them. Finally, V2S assigns the

task for execution to VM.

Among the other VMs deployed on PMs, V2S

calculates the extra amount of each VM processor

capacity, and then selects VMs in the order of

increasing the waiting tasks and reduces their

processor capacity in order to provide the amount

of processor capacity required by the selected

VM. Finally, V2S assigns the task for execution

to VM.

An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment

219

V2S algorithm

1. Find_Tag = False;

2. For each vjk available, do
3. Calculate Extra Mips of vjk that

 tasks on vjk can be finished before

 its deadline and require Mips of execute ti
 before its deadline on vjk;

4. End For

5. VmList = Sort (VMs by Increase require Mips)
6. For each vjk in VmList, do

7. If Find_Tag = False, then

8. If (remaining_Mips of pmj >=
 Require_Mips of vmjk), then

9. MIPS(vmjk) =Required Mips (vmjk) + MIPS (
vmjk);

10. ;

11. Re-calculate the readiness time of vmjk ;
12. Select vmjk to execute ti

13. Find_Tag = True; break;

14. End if

15. End if

16. End for
17. If Find_Tag = False, then
18. For Each vjk in VmList, do

19. If (total Extra Mips other vm on pmj

 add remaining mips of pmj >=
 Required Mips of vmjk) Then

20. MIPS (vmjk) = Required Mips (vmjk) + MIPS

(vmjk) Re-calculate the readiness time of VMs;
21. Select vmjk to execute ti;

22. Find_Tag = True; break;

23. End if

24. End for

25. End if

26. If Find_Tag = False, then
27. For each vjk in VmList, do

28. If (total Extra Mips other vm on pmj >=

 Required Mips of vmjk) Then
29. MIPS(vmjk) = Required Mips (vmjk) + MIPS

(vmjk);;

30. Re-calculate the readiness time of VMs ;
31. Select vmjk to execute ti;

32. Find_Tag = True; break;

33. End if

34. End for

Figure 4. V2S algorithm.

In the V2S algorithm, we calculate the readiness

time of vjk whose processor capacity has changed

as (18):

(_) (_)

| _ |

(_)

1

| _ |

(_)

1

vjk

jk jk ijk old mips ijk new mips

waitingtask list

ijk old mips

i

waitingtask list
vjk

ijk new mips

i

rt rt ert ert

et

et





  









(18)

where rtjk is the readiness time of vjk, ertijk(old_mips)

is the remaining execution time of ti that is

running on vjk with the previous processor

capacity, ertijk(new_mips) is the remaining execution

time of ti that is running on vjk with a new

processor capacity, etijk(old_mips) is the task

execution time that is located in the local queue of

vjk and is processed by the previous processor

capacity of VM, and finally, etijk(new_mips) is the task

execution time that is located in the waiting local

queue of vjk and is processed by a new processor

capacity of VM.

The processor capacity that vjk requires to execute

tp in its deadline range is calculated as (19):

Re () () ()jk jk jkqMips v IdealMips v M v 

(19)

where M(vjk) is the processor capacity of vjk,

IdealMips, and (vjk) is the processor capacity that

if it is assigned to vjk, it can execute all of its tasks

plus tp in their deadline constraints, and is

calculated as (20):

| |

1

()

(() () / (()))
vjk

jk

waitingtasklist

ijk zjk p

i

IdealMips v

lh t ert t d t ct




 

(20)

where ct is the current clock, ert(tzjk) is the

remaining execution time of running task tzjk on

vjk, and d(tp) is the deadline of the new task tp. If

the maximum delay that all allocated tasks to vjk

can tolerate is more than zero, then the extra

amount of processor capacity of vjk is calculated as

(21):

)()()(jkjkjk vipsNecessaryMVMvExtraMips 

(21)

where NecessaryMips(vjk) is the processor

capacity of vjk that can execute all its assigned

tasks without missing a deadline, and is calculated

as (22):

()

| |

(() ()) / (()

1

())

NecessaryMips v
jk

waitingtasklist
vjk

lh t ert t rt v
ijk zjk jk

i

ct Maxdelaytolerate v
jk







 

(22)

where rt(vjk) is the readiness time of vjk and ct is

the current clock.

5.4. Physical Machine Scale-down Algorithm

(PSD)

The PSD algorithm is used to reduce the number

of active PMs in the system in order to save

energy. The PSD algorithm uses VMs

consolidation and removes the idle VMs to turn

off the active PMs. PSD, at first, checks all of the

existing VMs, and if more time has passed than

the threshold of being idle of a VM, it removes

that VM, and then PSD by using the VM

migration technique, consolidates VMs in PMs as

far as possible. Figure 5 shows the pseudo-code of

PSD.

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

220

Figure 6. Task automaton model.

PSD algorithm

1. For each vjk available do

2. If vmjk's idle time bigger than idle time maximum specified

for VMs, then

3. Delete vjk;

4. End if

5. End for

6. Sort (active PM in an increasing order of the Remaining

Processor Capacity).
7. For each active pmj available do

8. If all the VMs deployment on pm can be migrated to other

active PMs, then
9. Migrate all the VM deployment on pmj to destination PMs;

10. End if

11. End for

12. For each active pmj available do

13. If pmj is idle, then

14. turn off pmj;

15. End for

Figure 5. PSD algorithm.

To consolidate VMs, PSD arranges the active

PMs by increasing the processor capacity

remaining order, and begins by VMs of PMs with

the least remaining of the processor capacity so

that it can help them to migrate to other active

PMs. If it finds a destination for all of the

deployed VMs on a PM, it will migrate VMs to

the destination PM. Finally, this algorithm will

turn off all the idle PMs.

6. Formal Model of Proposed Approach

In this section, we present a formal model of our

proposed approach in terms of timed automata

and use a model checking approach in order to

verify the soundness of our proposed approach

formally. With model checking, a system is

specified using a collection of timed automatons.

Each automaton has a finite number of states and

transitions between these states. The Clocks and

Boolean expressions may guard these states and

transitions [19]. Chan is used for synchronization

in the system.

We use the UPPAAL 4.1.19 model checker,

which can check different kinds of real-time

system's features and is used in order to model

and verify the properties of our proposed

approach [25-27]. The UPPAAL query language

uses the features that are a subset of CTL

(computation tree logic) for checking [28]. The

automatons of our model including the Task

Automaton, Scheduler Automaton, and Resource

Automaton are presented as follows.

6.1. Task Automaton

The task automaton shown in Figure 6 is the most

important automaton in our model. Different

states that the task passes from arrival to the

system till existing are modeled by in this

automaton. Since in the cloud computing

environment, the users send their requests

irregularly and the tasks have irregular arrival

times, we assume that the tasks in this model are

aperiodic and independent.

When a task arrives the system, it goes from the

Initial state to the Release state, and it stays in the

Release state. The Clock time is used for each task

in order to define the time feature of the task.

After passing the release time, the task will go

from the Release state to the Ready state, and it

An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment

221

Figure 7. Scheduler automaton model.

informs the scheduler of its arrival by using the

ready channel, and then goes to the general queue

of the scheduler. The task stays in the Ready state

till the scheduler assigns a resource to it and then

it goes to the Running state. If the scheduler could

not guarantee execution of this task in its

deadline, it will go to the Reject state and will not

be accepted by the system. The run channel is

used for synchronization between the task

automaton and the resource automaton. The task

will stay in the Running state till its execution on

resource ends. The X clock is used for passing this

time. After passing the time, if the task finishes in

its deadline, it will go to the Done state, and if the

deadline is missed, it will go to the Error state.

6.2. Scheduler Automaton

The scheduler automaton is depicted in Figure 7.

The Scheduler locates the tasks that arrive the

system in a general queue by their deadlines in an

increasing order and then schedules them.

At first, the scheduler is in an Idle state and the

general queue of the scheduler in which the tasks

are located is empty. The IsEmpty() function is

used to check the fullness or emptiness of the

general queue. Whenever a new task arrives the

system, the scheduler goes from the Idle state to

the Add state. This automaton selects the task

from the heading of the queue for scheduling and

goes to the Select state. The scheduler by using

the is-system-vm() function, checks if there is a

VM in the system that the cloud executes the task

in its deadline.

The success_schedule function checks the status

of the allocated task execution on this VM. If this

execution is not successful, the create-vm-success

function checks whether by creating VM the

deadline of the task will be guaranteed or not. If

this creation meets the task deadline, the startup

channel initiates a new VM creation and allocates

task to this VM. Otherwise, the

VerticalVmScaleUp_Success function checks

whether by vertical scaling-up of VMs the task

can be executed in its deadline, and then it will

accept the task and guarantee its execution;

otherwise, the task will not be accepted, and by

using the Reject channel informs the task.

6.3. Resource Automaton

Figure 8 shows the automaton model of the

resource. In this model, the resource can be used

after passing its setting up time.

At first, the resource is in the Initial state, which

means that it is not ready to use and it is not set

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

222

 Figure 8. Resource automaton model.

up. The resource will go to the Start state by the

startup channel to synchronize the resource and

scheduler automaton. The Vm-clock is used for

each resource in order to control its scheduling

features and after passing this time, the resource is

ready to use and goes to the use-ready state. In

this state, the resource for each task that is in its

queue goes to the Inuse state; it stays in this state

for a duration of time that the task is running on it.

The Run channel is used for synchronizing

between the resource and the task automaton.

When the task is selected of the general queue for

execution, it will be informed by this channel, and

when the time of execution of the task on resource

finished, the finished channel is used for

informing resource of finishing the task to go to

the use-ready state. In this state, the is-empty-

queue() function checks if the resource queue is

empty, and it goes to the Idle state, and it stays in

this state till a task is allocated to it, and then goes

to the use-ready state, or the time is more than one

threshold and decides to delete it and goes to the

Initial state. The threshold is determined by vm-

most-idle-time and vm-idle-time clock.

7. Verification Results

In this section, we present the analyzing results of

our proposed approach, formally described in the

previous section. The main goal of verification of

the real-time task scheduling systems is the

schedulability analysis via checking the safety and

bounded liveness properties [29]. Schedulability

expresses that a system, by the considering time

constraints, scheduling policy, resources, and

tasks would guarantee execution of all the

accepted tasks in their deadline constraints.

The different formulas of the Timed Computation

Tree Logic (TCTL) specification language that we

have used in our models are as follows:

A [] φ: This formula denotes the safety property,

and means that for all paths φ holds on all states.

A [] not (φ): This formula denotes the bounded

liveness property, and means that there is no path

and no state such that the system is in φ. Note that

A [] not φ can represent deadlock freeness if φ is

logically a deadlock property.

E<> Φ: This formula denotes that the reachability

property is used for verification of schedulability.

This property checks that a special event happens

at least once in the system. Therefore, beginning

from a primary state, it surely reaches the

expected state. In fact, we use the reachability

property for the schedulability analysis of the

system in this work. If the Error state would not

be reachable, the system will be schedulable.

According to these formulas, we check the

deadlock-freeness, reachability, bounded liveness

of the system modeled with timed automata

Reachability: We traverse the total space state in

the proposed automatons using UPPAAL and

An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment

223

check whether all paths are in a condition that no

task is located in the ERROR state or not. This

property checks that a special event happens at

least once in the system. Therefore, beginning

from a primary state, it surely reaches the

expected state. If the Error state would not be

reachable, the system will be schedulable. We

check that our proposed approach is schedulable

with the following specifications in UPPAAL:

A [] forall (i: task_id) not TASK (i).Error

This formula checks that in all of the paths and

states (total space state), considering time

limitations, the location of ERROR cannot be

reached from the task model; consequently, the

system is schedulable.

E<> forall(i : task_id) TASK(i).Error

This formula checks that in all of the paths and

states (total space state), considering time

limitations, location of ERROR can be reached

from the task model; consequently, the system is

not schedulable.

Deadlock-freeness: One of the safety properties

is the deadlock-freeness, which can be verified by

the reachability analysis. Reachability checks that

no possible state of a system ever reaches a

deadlock and ensures that something bad never

happens. We check that our proposed approach is

deadlock-free with the following specification in

UPPAAL:

Scheduler[] not deadlock

Task[] not deadlock

Resource[] not deadlock

Correctness: The main correctness criterion of

our proposed approach is to ensure that whenever

a task is submitted to a resource, the scheduler

receives it eventually. Moreover, whenever the

scheduler allocates a task to a VM, the VM

receives it eventually.

We check the correctness of our proposed

approach using the following specification in

UPPAAL:

Task.Release --> Scheduler.Add

Resource.Start --> Task.Running

We have also evaluated the efficiency of our

proposed ETC algorithm experimentally by

comparing it with the ERECT [11] algorithm as a

high related and popular work in terms of task

deadline hit ratio and energy consumption of tasks

and resource utilization. We also consider a non-

migration version of ETC and ERECT, namely

NM-ETC and NM-ERECT, and compare them

with ETC.

We simulated our proposed approach using the

CloudSim simulator [30]. We consider the

simulation parameters as shown in Table 1.

We also assume:

 PM with processor performance, which is

2660 and 1860 MIPS and rate of energy

consuming 250,400 w.

 Setting up time of a PM is 90 s and

creation time of new VM on PM is 15 s.

 Length of tasks is in uniform between

random [100000, 200000] million

instructions.

Table 1. Simulation parameters.

Parameter Fixed value Variable value

Task count 1000 1000, 2000, 3000

Min deadline 100 50, 100, 150, 200

Task length [100000-200000]

Figure 9 shows the deadline hit ratio of ETC,

ERECT, NM-ETC, and NM-ERECT. As it is

shown in this figure, the deadline hit ratio in ETC

has improved in comparison to ERECT, about

30% in average. Furthermore, NM-ETC has

improved the deadline hit ratio in comparison to

NM-ERECT about 34%. This improvement is

because our EaRTs approach uses vertical scaling

of VMs when horizontal scaling is not able to

guarantee the real-time tasks.

Figure 9. Deadline hit ratio comparison.

The ETC algorithm uses the processor speed of

PMs (in Mips) as far as possible, and executes

more real-time tasks on PMs; consequently, it has

improved the resource utilization rate in

comparison to ERECT, in average 18%. Also

NM-ETC has improved the resource utilization

rate in average 23% in comparison to NM-

ERECT. These results are shown in Figure 10.

Figure 10. Resource utilization rate comparison.

0

20

40

60

80

100

1000 2000 3000 800

G
u

ar
an

te
e

R
at

io
(%

)

Task Count

ERECT

NM-ERECT

ETC

NM-ETC

0

20

40

60

80

100

1000 2000 3000

R
es

o
u

rc
e

U
ti

li
za

ti
o
n

(%
)

Task Count

ERECT

NM-ERECT

ETC

NM-ETC

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

224

As shown in Figure 11, the energy consumption

of the accepted tasks in the ETC algorithm has

improved 13.66% in comparison to ERECT.

Moreover, NM-ETC in comparison to NM-

ERECT has improved about 16.33% on average.

Since we employed the VM consolidation

technique and turned off the idle PMs in ETC, the

energy consumption was decreased.

Figure 11. Energy consumption of accepted tasks.

We have also evaluated the impact of the real-

time task deadline on the ETC algorithm in

different lengths. As shown in Figure 12, in

shorter deadlines, as ETC and NM-ETC

algorithms, where using vertical scaling, have

performed better than ERECT and NM-ERECT.

By increasing the deadline length, the ETC

algorithm has improved the deadline hit ratio by

an average 35.5% in comparison to ERECT.

Moreover, NM-ETC has improved on average

37.25% in comparison to NM-ERECT.

Figure 12. Deadline hit ratio comparison in different

lengths.

Figure 13 compares the resource utilization rates.

As shown in this figure, the ETC algorithm has

improved it by about 26.25% on average in

comparison to ERECT. Also NM-ETC has

improved in comparison to NM-ERECT about

39.25% on average.

Figure 13. Resource utilization rate comparison.

As shown in Figure 14, the ETC algorithm has

improved the energy consumption rate of the

accepted tasks by about 16.75% in comparison to

ERECT. Also NM-ETC has improved on average

about 15.5% in comparison to NM-ERECT.

Figure 14. Energy consumption of accepted tasks.

As shown in this section (ETC), since we

employed vertical scalability, in a shorter

deadline, due to the fact that it solves the effect of

start-up time and creates a virtual machine for

real-time tasks, it performs much better in terms

of the guarantee ratio, energy consumption, and

resource utilization.

8. Conclusions

In this paper, we proposed the energy-aware real-

time task (EaRTs) scheduling approach in a cloud

computing environment. In order to guarantee the

real-time tasks, the vertical scaling of VMs was

used when the horizontal scaling could not

guarantee the real-time task. Our approach

included the four algorithms ETC, HVS, V2S, and

PSD. Our proposed task scheduling approach was

modelled formally in timed automata and the

properties, namely reachability, deadlock-

freeness, and correctness, were analyzed and

proved using the UPPAAL model checker. We

checked the schedulability of EaRTs through the

reachability property, and showed that our

approach guaranteed that the deadlines of all tasks

were met. Our experimental results showed higher

remaining energies and resource utilization.

References
[1] M. Kumar, S.C. Sharma, A. Goel, A. and S.P.

Singh, ―A comprehensive survey for scheduling

techniques in cloud computing‖ Journal of Network

and Computer Applications, vol. 143, pp. 1-33,

October 2019.

[2] M. Tajamolian and M. Ghasemzadeh, ―Analytical

evaluation of an innovative decision-making algorithm

for VM live migration‖ Journal of AI and Data

Mining, vol. 7, no. 4, pp. 589-596, November 2019.

0

20

40

60

80

100

1000 2000 3000

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 p
er

 t
as

k

Task Count

ERECT

NM-ERECT

ETC

NM-ETC

0

100

200

50 100 150 200

G
u

ar
an

te
e

R
at

io
(%

)

mindeadline

ERECT NM-ERECT ETC NM-ETC

0

50

100

50 100 150 200

R
es

o
u

rc
e

ti
li

za
ti

o
n

(%
)

mindeadline

ERECT NM-ERECT ETC NM-ETC

0

50

100

150

50 100 150 200

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 p
er

ta
sk

mindeadline

ERECT NM-ERECT ETC NM-ETC

An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment

225

[3] A. Amini Motlagh, A. Movaghar and A. M.

Rahmani, ―Task scheduling mechanisms in cloud

computing: A systematic review‖ International Journal

of Communication Systems, vol. 33, no. 6, pp. 1-23,

April 2020.

[4] Y. Saadi and S. El Kafhali, ―Energy-efficient

strategy for virtual machine consolidation in cloud

environment‖ Soft Computing, pp. 1-15, March 2020.

[5] H. Chen, X. Zhu, J. Zhu and J. Wang, ―Eres: An

energy-aware real-time elastic scheduling algorithm in

clouds‖. In IEEE 10th International Conference on

High Performance Computing and Communications &

2013 IEEE International Conference on Embedded and

Ubiquitous Computing, 2013, pp. 777-784.

[6] X. Zhu, L.T. Yang, H. Chen, J. Wang, S. Yin, and

X. Liu, ―Real-time tasks oriented energy-aware

scheduling in virtualized clouds‖ IEEE Transactions

on Cloud Computing, vol.2, no. 2, pp. 168-180, April

2014.

[7] G. Chen, N. Guan, K. Huang, and W. Yi, ―Fault-

tolerant real-time tasks scheduling with dynamic fault

handling‖. Journal of Systems Architecture, vol. 102,

January 2020.

[8] S. Wimmer and J. Mutius, ―Verified certification of

reachability checking for timed automata‖. In

International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, 2020, pp.

425-443.

[9] J. Singh, ―Schedulability Analysis of Probabilistic

Real-Time Systems‖ Doctoral dissertation,

UNIVERSITE DE TOULOUSE. 2020.

[10] B. Keshanchi, A. Souri, and N.J. Navimipour, ―An

improved genetic algorithm for task scheduling in the

cloud environments using the priority queues: formal

verification, simulation, and statistical testing‖ Journal

of Systems and Software, vol.124, pp. 1-21, February

2017.

[11] H. Chen, G. Liu, S. Yin, X. Liu and D. Qiu,

―ERECT: Energy-efficient reactive scheduling for real-

time tasks in heterogeneous virtualized clouds‖ Journal

of computational science, vol. 28, pp. 416-425,

September 2018.

[12] Z. Deng, G. Zeng, Q. He, Y. Zhong, and W.

Wang, ―Using priced timed automaton to analyse the

energy consumption in cloud computing environment‖

Cluster computing, vol.17, no. 4, pp. 1295-1307,

December 2014.

[13] N. Akhter and M. Othman, ―Energy aware

resource allocation of cloud data centre: review and

open issues‖ Cluster Computing, vol. 19, no. 3, pp.

1163-1182, September 2016.

[14] A.A.S. Ahmad and P. Andras, ―Scalability

analysis comparisons of cloud-based software services‖

Journal of Cloud Computing, vol. 8, no. 1, pp. 1-17,

December 2019.

[15] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C.

Liu and J. Chen, ―A cost-aware auto-scaling approach

using the workload prediction in service clouds‖

Information Systems Frontiers, vol.16, no.1, pp.7-18,

March 2014.

[16] A. David, J. Illum, K.G. Larsen and A. Skou,

―Model-based framework for schedulability analysis

using UPPAAL 4.1.‖ Model-based design for

embedded systems, vol.1, no.1, pp. 93-119, January

2009.

[17] M. Mikučionis, K.G. Larsen, J.I. Rasmussen, B.

Nielsen, A. Skou, S.U. Palm and P. Hougaard,

―Schedulability analysis using Uppaal: Herschel-

Planck case study‖ In International Symposium on

Leveraging Applications of Formal Methods,

Verification and Validation, Springer, Berlin,

Heidelberg, 2010, pp. 175-190.

[18] N. Saeedloei and F. Kluźniak, ―Synthesizing

clock-efficient timed automata‖ In International

Conference on Integrated Formal Methods, Springer,

Cham, 2020, pp. 276-294.

[19] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin and J.

Wu, ―Towards energy-efficient scheduling for real-

time tasks under uncertain cloud computing

environment‖ Journal of Systems and Software, vol.99,

pp. 20-35, January 2015.

[20] Y. Jun, M. Qingqiang, W. Song, L. Duanchao, H.

Taigui and D. Wanchun, ―Energy-aware tasks

scheduling with deadline-constrained in clouds‖ In

IEEE International Conference on Advanced Cloud

and Big Data (CBD), 2016, pp. 116-12.

[21] Y. Zhang, L. Chen, H. Shen and X. Cheng, ―An

energy-efficient task scheduling heuristic algorithm

without virtual machine migration in real-time cloud

environments‖. In International Conference on

Network and System Security, Springer, Cham, 2016,

pp. 80-97.

[22] S. Hosseinimotlagh, F. Khunjush and R.

Samadzadeh, ―Seats: smart energy-aware task

scheduling in real-time cloud computing‖ The Journal

of Supercomputing, vol. 71, no. 1, pp. 45-66, January

2015.

[23] J. Wang, W. Bao, X. Zhu, L.T. Yang and Y.

Xiang, ―FESTAL: fault-tolerant elastic scheduling

algorithm for real-time tasks in virtualized clouds‖

IEEE Transactions on Computers, vol. 64, no. 9, pp.

2545-2558, November 2014.

[24] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin and J.

Wu, ―Towards energy-efficient scheduling for real-

time tasks under uncertain cloud computing

environment‖ Journal of Systems and Software, vol.

99, 20-35, January 2015.

[25] K.G. Larsen, P. Pettersson and W. Yi, ―UPPAAL

in a nutshell‖ International journal on software tools

for technology transfer, vol. 1, no 1-2, pp. 134-152,

December 1997.

Momeni & Mabhoot/ Journal of AI and Data Mining, Vol. 9, No. 2, 2021

226

[26] J. Bengtsson, K.G. Larsen, F. Larsson, P.

Pettersson and W. Yi, ―UPPAAL—a tool suite for

automatic verification of real-time systems. In

International hybrid systems workshop, Springer,

Berlin, Heidelberg, October 1995, pp. 232-243.

[27] Y.A.K. Chaudhry and M. Hammed, ―Formal

Verification of Cloud based Distributed System using

UPPAAL‖ In IEEE International Conference on

Innovation and Intelligence for Informatics,

Computing, and Technologies, 2019, pp. 1-4.

[28] G. Behrmann, A. David and K.G. Larsen, ―A

tutorial on uppaal‖ In Formal methods for the design of

real-time systems, Springer, Berlin, Heidelberg,

September 2004, pp. 200-236.

[29] Fersman, E., Mokrushin, L., Pettersson, P., & Yi,

W. (2006). Schedulability analysis of fixed-priority

systems using timed automata. Theoretical Computer

Science, Vol. 354, No. 2, pp. 301-317.

[30] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.

De Rose and R. Buyya, ―CloudSim: a toolkit for

modelling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms‖ Software: Practice and experience, vol.

41, no. 1, pp. 23-50, January 2011.

 .0011سال ،دوم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده مبهوت ومومنی

 درنگ آگاه از انرژی در یک محیط محاسبات ابری راهکار زمانبندی وظایف بی

 *حسین مومنیو ناهید مبهوت

 .ایران ،گرگان ،دانشگاه گلستان، مهندسی کامپیوتر گروه آموزشی

 10/10/1110 پذیرش؛ 01/11/1110 بازنگری؛ 10/01/1111 ارسال

 چکیده:

 یابرر انشیرا است. یمنابع مجاز یریپذ اسیآن مق یاصل لیدلکه است افتهی شیافزا یبطور قابل توجه ریاخ یسالها یط یابر انشیراانگیزه استفاده از

مهرم اریبس فیانجام وظا یبرا یهوا که در آن ملاحظات زمان و انرژ ینیبشیو پ محیطی ، نظارتگنالیمانند پردازش سدرنگ بی یهابرنامه شرفتیبه پ

درنرگ زمانبنردی وظرایف بری نیبنابرا دارد یدر پ یعواقب فاجعه بارزمانی وظایف ، از دست دادن مهلتدرنگبی یهابرنامه در است، کمک کرده است.

و حفاظرت از یاتیرعمل یهرا نهیمانند کاهش هز ییای، با توجه به مزایابر کز دادهامر یدر انرژ یی، صرفه جونیبر ا لاوهع است. یمسئله مهم و اساس کی

 کیرمقاله، مرا نیا در مناسب کار قابل کاهش است. یزیمورد توجه قرار گرفته است و با برنامه ر ریاخ یسالها یاست که ط ی، مسئله مهمستیز طیمح

اسرتفاده قیرو تلف یسراز یمجراز یهاکی. ما از تکنمیده یارائه م درنگکاربردهای بی یرا برا (EaRT)یآگاه از انرژ فهیوظ درنگزمانبندی بی کردیرو

افرزایش و ، قیردر روش تلفگرردد. موعد زمانی وظایف مری تی، بهبود استفاده از منابع و رعایبه حداقل رساندن مصرف انرژ موجب امر نیکه ا میکنیم

 قیراثبرات دق یبرارایه خواهیم داد و ا تمیچهار الگور یشنهادیپ روشدر کار را بهبود بخشد. یتواند عملکرد اجرا یم یساز یمنابع مجازکاهش تعداد

کره دهرد نتایج ارزیابی نشران مری .و به کمک آتوماتای زمانی استفاده خواهیم نمود یمدل رسم راهکار پیشنهادی از روش یو درست یزمانبند یژگیو

 یآگاه از انررژدرنگ بی فیوظازمانبندی یها تمیالگور ریبا سا سهیدر مقا ی، استفاده از منابع و مصرف انرژمعیارهای موعد زمانیدر ما یشنهادیروش پ

 کارآمدتر است.

 زمانبندی. ،مقایس پایین ،مقیاس بالا ،محاسبات ابری ،درنگبی ،وظیفه :کلمات کلیدی

