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  The interest in cloud computing has grown considerably over the 

recent years, primarily due to the scalable virtualized resources. 

Thus cloud computing has contributed to the advancement of the 

real-time applications such as the signal processing, environment 

surveillance, and weather forecast, where time and energy 

considerations are critical in order to perform the tasks. In the real-

time applications, missing the deadlines for the tasks will cause 

catastrophic consequences Thus real-time task scheduling in a 

cloud computing environment is an important and essential issue. 

Furthermore, energy-saving in the cloud data center, regarding the 

benefits such as the reduction in the system operating costs and 

environmental protection is an important concern that has been 

considered during the recent years, and is reducible with an 

appropriate task scheduling. In this paper, we present an energy-

aware real-time task (EaRT) scheduling approach for the real-time 

applications. We employ the virtualization and consolidation 

techniques subject to minimizing the energy consumptions, 

improve resource utilization, and meeting the deadlines of the 

tasks. In the consolidation technique, the scale-up and scale-down 

of the virtualized resources could improve the performance of task 

execution. The proposed approach comprises four algorithms, 

namely energy-aware task scheduling in cloud computing (ETC), 

vertical VM scale-up (V2S), horizontal VM scale-up (HVS), and 

physical machine scale-down (PSD). We present the formal model 

of the proposed approach using timed automata in order to prove 

precisely the schedulability feature and correctness of EaRTs. We 

will show that our proposed approach is more efficient in terms of 

the deadline hit ratio, resource utilization, and energy consumption 

compared to the other energy-aware real-time tasks scheduling 

algorithms. 

 

Keywords: 
Task, Real-time, Cloud 

Computing, Scale-up, Scale-

down, Scheduling. 

  

*Corresponding 

author:h.momeni@gu.ac.ir (H. 

Momeni). 

 

1. Introduction 

A cloud computing environment is a distributed 

computing model based on the virtualization 

technology. It is also known as a dynamic service 

provider with the ability of scalability, flexibility, 

and virtualization of resources on the internet [1-

3]. This environment contains the physical and 

virtual resources and virtualization platforms, and 

also allows the users and administrators to do the 

migration of a virtual machine (VM) from one 

server or physical machine (PM) to another PM. 

Migration of a VM from one host to another one 

helps to balance the workload among PMs 

running in the cloud data center. 

In particular, the scalable virtualized resources in 

cloud computing address the high computation 

demands that are required by the real-time 
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systems. In other words, the employment of 

computing resources to meet the user’s 

requirements makes cloud computing an attractive 

and suitable environment for executing the real-

time tasks [4]. 

Thus a very important issue regarding the subject 

that many applications are deployed on clouds has 

a real-time nature. It means that the correctness of 

a real-time application is not only dependent on 

the computation results but also on the time the 

results are available. For some latency-sensitive 

applications, providing a real-time guarantee is 

even a necessity. For example, in an environment 

surveillance, forecasting or medical simulation 

has a deadline constraint, and when it fails, other 

results may be useless [5-7]. 

In these applications, the deadline meet has a 

priority over the other criteria so presenting the 

task schedulability model on the clouds is 

important. As we know, most of the previous real-

time task scheduling algorithms reject the tasks if 

they are not guaranteed by using the available 

VMs and increase the number of virtual machines 

(horizontal scaling) on PMs in a deadline 

constraint. 

On the other hand, regarding the rapid growth of 

cloud computing, development of using cloud 

computing services, and interest of the customers 

in these services, the providers create a data center 

on a large scale including thousands of VMs as 

the computing nodes, which result in a huge 

consumption of energy with high expenses, and 

here, consuming energy is an important and vital 

concern [6, 11-13].  

When a large number of real-time tasks arrive at 

short intervals to the cloud system, there is a need 

to set up PMs and deploy more virtual machines 

in order to respond to these demands. However, 

the overhead time of deploying new physical and 

virtual machines that have a long delay in starting 

the time of real-time tasks may cause the violation 

of the deadline of some real-time tasks.  

Moreover, as the system workload increases, the 

number of virtual machines will increase, and as 

the system workload decreases, the virtual 

machines can merge and consolidate into fewer 

PMs. Turning off the idle virtual and PM is 

important in terms of the energy management 

problems, especially in the green cloud 

computing. The consolidation techniques aim to 

consolidate the tasks in fewer PMs and VMs. The 

consolidation schemes should optimize the 

resource utilization in such a way as to avoid 

violating the service level agreements (SLA), 

energy consumption, and performance 

degradation [4]. 

In this paper, we propose an energy-aware task 

scheduling approach, namely EaRTs, for the real-

time tasks, which is independent and dynamic. In 

the EaRTs approach, we present an energy-aware 

real-time task scheduling (ETC) algorithm. We 

then present the horizontal VM scale-up (HVS) 

algorithm in order to guarantee that the deadline 

of the tasks is met in an active VM. The 

horizontal VM scale-up is done by increasing the 

number of VMs through creating a new VM and 

deploying it on a PM.  

The vertical scaling-up of VM increases the 

number of resources including the processor, 

memory, and storage of a VM, and can be done in 

less than a few milliseconds, while the horizontal 

scaling-up can take several minutes. Thus we 

propose the vertical VM scale-up (V2S) 

algorithm, and finally, to reduce the number of 

active PMs in the system to save energy, we 

present the physical machine scale-down (PSD) 

algorithm using the consolidation technique. In 

our proposed algorithms, the virtualization 

technique is used to decrease the energy 

consumption in the cloud data center. Besides, 

from the elasticity viewpoint, VM’s vertical 

scaling is used when there is no possibility to 

guarantee the tasks by increasing horizontal 

scaling in their deadline constraint. Furthermore, 

in the proposed approach, by executing more tasks 

over active PMs, the resource utilization rate is 

increased. The EaRTs approach creates a balance 

among three factors including the guarantee rate, 

resource utilization, and decreasing energy 

consumption. We also present three models, 

namely the resource model, task model, and 

energy model, in order to describe this proposed 

approach and formalize  our approach using timed 

automata [8] to verify all the proposed algorithms 

and employ a temporal logic based on a timed 

automata to the description of schedulability [9, 

10]. Timed automata is a dominant method for 

modeling and verification of the real-time 

systems. Using timed automata, we model and 

verify our approach, and check the schedulability, 

deadlock-freeness, and correctness of our 

proposed algorithms. 

The rest of this paper is organized as what 

follows. Section 2 provides a brief background 

and the definitions. Section 3 presents some 

notable related works on the real-time task 

scheduling. Section 4 presents our system models. 

Section 5 presents our proposed approach. Section 

6 presents the formal models of the proposed 

approach. Section 7 presents the verification of 

our proposed approach. Finally, Section 8 

concludes the paper. 
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2. Definitions 

2.1. Scalability 

Scalability is an important feature in the cloud 

computing environments such that the cloud 

services and computing platforms can be scalable 

regarding the geographical locations, hardware 

performance, and software configuration [14]. 

In general, there are two kinds of resource 

scalability technologies in cloud computing. The 

first one is horizontal scaling, which determines 

the number of VMs, and the second one is vertical 

scaling, which is determined by changing the 

partition of resources (CPU, memory, storage, 

etc.) inside VMs. Vertical scaling can be done in 

less than a few milliseconds, and VM cannot be 

used at once [15]. 

 

2.2. Schedulability 

Schedulability checks that all tasks have reached 

their deadline and exist in the right conditions. In 

other words, it checks whether all paths are in the 

conditions in which no task is placed in the error 

state. If the answer is yes, it guarantees that the 

system is schedulable in all conditions [17]. A 

system with a set of tasks with constraint 

resources are called schedulable if no execution 

satisfying the constraints of the system violates a 

deadline [16]. 

 

2.3. Timed Automata 

Timed automata is a tuple (L, L0, LF, Σ, C, E, I), 

where: 

 

L is a finite set of locations; 

L0 is a subset of L and a set of initial locations; 

LF is a subset L and a set of final locations; 

Σ is a set of finite alphabets; 

C is a finite set of clocks with real negative 

values; 

E: E ∈ L × Φ(C) × (Σ ∪ {ϵ}) × 2C × L is a set of 

edges; 

I: L → Φ(C) is a mapping of local invariants to 

locations. 

 

Timed automata is a state transition system adding 

clocks with real values [18]. The states are called 

locations, which model different possible 

configurations of the system. The transition 

among these locations shows the way that the 

system can progress. The locations can be labeled 

with some features, which show the elapsed time 

for transition from a previous location to a new 

one.  

An example of timed automata is shown in Figure 

1 with x, y clocks. Whenever a guard exists, the 

system will be transferred from the location l0 to 

the location l1, and x clock will become zero. 

 

 
Figure 1.  A timed automaton with 2 clocks. 

 

X < 1 in the l1, l2 locations guarantee that the 

system with guard c can be transferred from the 

location l2 to the location l3, when about one time 

unit has passed from the event a. When guard b 

exists, the system will be transferred from the 

location l1 to the location l2, and y clock will 

become zero. When guard d exists and 2 time 

units have passed of clock y, the system will be 

transferred from the location l3 to the location l0, 

and guarantees that the delay between b and d is 

more than two time units. 

 

3. Related Works  

In the recent years, the issue of high energy 

consumption in a cloud environment has received 

much attention, and therefore, the energy-aware 

scheduling algorithms have been developed. 

Nevertheless, a few of them support the real-time 

task scheduling with the management of energy, 

and give a guarantee for the schedulability of the 

system. 

Chen et al. [5] have presented ERES as a 

scheduling algorithm aware of energy for the real-

time tasks in the cloud environment based on the 

EDF policy. They used the VM consolidation 

technique in order to decrease PMs and save 

energy. Zhu et al. [6] have presented an 

algorithm, namely EARH, in order to balance 

between the consumed energy and the 

schedulability tasks. In this algorithm, 

virtualization is used in order to decrease the 

consumed energy. Chen et al. [19] have proposed 

the PRS algorithm, where each VM just places 

one task in its local queue, and whenever the 

number of arriving tasks increases, more VMs are 

required to guarantee the real-time tasks. This 

algorithm uses the virtualization method in order 

to decrease the consumed energy. This algorithm 

only considers one task execution at a time on a 

VP. As the number of tasks increases, more VMs 

are required, which increases the static energy 

consumption.  In [11], the ERECT algorithm has 

been proposed for the real-time task scheduling in 

virtual cloud regarding saving energy. At first, 

this algorithm guarantees the real-time tasks with 

the least active PMs, and whenever the workload 
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of the system increases and there is the need to 

turn on a new PM, the PM with less energy 

consumption would be selected to decrease the 

consumed energy. If the workload of the system 

decreases, it uses the consolidation of VMs and 

turn off the idle PMs in order to decrease the 

consumed energy. In this algorithm, the results 

obtained are just based on the simulation, and 

there is no verification on guaranteeing the task 

execution within their deadlines. 

Jun et al. [20] have presented the EART algorithm 

for the energy-aware task scheduling. This 

algorithm while guarantees the limitation of the 

deadline, also considers saving energy. The tasks 

in the waiting queue are placed and sorted 

according to the urgency level, which decreases 

the rate of deadline miss. The indivisible task goes 

to VMs with the least consumption of energy, and 

the divisible tasks go to several VMs in order to 

improve scheduling and save energy. In EART, 

the task is not accepted if it is not guaranteed 

using the existing VMs and increasing the number 

of VMs (horizontal scalability) within its 

deadline. 

Zhang et al. [21] have presented the EAD-NMS 

algorithm regarding saving energy for scheduling 

the real-time tasks, which decreases the number of 

PMs and prevents migration of VMs with tasks 

for which their deadline is not very sensitive. In 

this algorithm, in order to postpone the execution 

of the task that has a soft deadline causes some 

new tasks, with a hard deadline to enter, and leads 

to reject these tasks, and as a result, the tasks 

guarantee that the rate is reduced. 

Hosseini et al. [22] have presented the SEATS 

algorithm for scheduling VMs in order to 

maximize the level of utilization by presenting 

more CPU performance for the host VMs. In this 

algorithm, if using the current processor is less 

than the optimal threshold, the VM scheduler 

shares the remaining of a million instruction per 

second (MIPS) among VMs to maximize MIPS in 

order to reach the optimal utilization level. This 

algorithm is only applicable when the system load 

is low, and if the number of tasks increases, there 

will be a slight improvement in the energy 

consumption when completing the tasks with a 

hard deadline. 

Wang et al. [23] have proposed the FESTAL 

algorithm, which is a real-time task scheduling 

algorithm in the cloud and improves fault 

tolerance and resource utilization in the cloud. 

The main purpose of FESTAL is to increase the 

schedulability of the system, and to use the 

resource until it reaches the fault tolerance. This 

algorithm considers the task schedulability 

regardless of the energy criterion. 

Given this background, in most of the previous 

research works, the real-time task scheduling 

algorithm will not accept the task if it is not 

guaranteed by using the existing VMs and 

increasing the number of VMs (horizontal scaling) 

in its deadline. We will present an energy-aware 

real-time task scheduling approach based on the 

consolidation technique subject to minimizing the 

energy consumptions, improving the resource 

utilization, and meeting the deadlines of the tasks. 

 

4. System Models 

In this section, we will describe our proposed 

models formally in order to present our approach. 

 

4.1. Resource Model 

There is a set of physical machines (PM = {pmj, j 

= 1, 2, ..., n} n = |PM|) in the cloud  environment 

with a high scale data center. Also on each pmj, 

there is a set of virtual machines (VMj = {vmj1, 

vmj2, ..., vmjk}, k = |VMj|). We model each pmj as 

(1): 

  ,  ,  ,j j j j jpm M R E VM
 

(1) 

where Mj is the processor speed in MIPS, Rj is the 

capacity of memory, Ej is the maximum energy of 

PM, and VMj is a set of VMs in pmj. 

We model each virtual machine vmjk as (2): 

  ,,jk jk jk jkvm M R P
 

(2) 

where Mjk is the  processor speed in MIPS, Rjk is 

the capacity of memory assigned to vmjk, and Pjk 

is the readiness time of vmjk. 

Equation (3) shows that the total amount of 

resources required for VMs on a PM should not 

be more than the capacity of the PM resources. 
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||

1

||

1

&&

 

(3) 

where Mj is the total processor speed of PMj and 

Rj is the total memory capacity of PMj. 

 

4.2. Task Model 

We consider a finite set of real-time and 

independent tasks (T = {t1, t2, …, tm}). Each task 

is defined as a four partite tuple in (4): 

,  ,  ,  i i i i it a lh d f 
 

(4) 

where ai is the task arrival time, lhi is the task 

length (in million instruction), di is the deadline, 

and fi is the task finish time of ti.  

We calculate the execution time of ti on vjk as (5):  

 /ijk i jket lh M v
 

(5) 
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where lhi is the length of ti and M(vjk) is the  

processor speed that assigns to vjk.  

The finish time of ti on vjk is calculated as (6): 

ijkijkijk btetft 
 

(6) 

where btijk is the beginning time of the task 

execution and etijk is the length of the task 

execution of ti on vjk. 

The beginning time of the task execution btijk is 

computed as (7): 

},max{ jkiijk pabt 
 

(7) 

where ai is the task arrival task and pjk is the 

readiness time of vjk.  

At first, creating and deploying of VM on a PM is 

determined by the beginning time of its task, and 

for each ti that assign to vjk, it will be updated as 

(8): 

ijkijkjk etbtp 
 

(8) 

In this work, our main goal is to maximize the rate 

of the real-time task acceptance that has a priority 

in comparison to any other criteria in such tasks. It 

can be defined by (9):  

TotalAcceptTask
Max

T
 

(9) 

where TotalAcceptTask is the total number of the 

executed tasks that meet their deadlines, and is 

defined as (10): 


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

||

1

||

1

||
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jvm

k

ijk

PM

j

T
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ttTaskTotalAccep

 

(10) 

If task ti is assigned to vjk and is terminated 

without a missing deadline, then tijk equals to 1; 

otherwise, it will be 0. 

 

4.3. Energy Model 

We define the energy consumption model as (11): 

| |

1

TotalEnergyConsumption

( . . (1 ). . ( )) .

ftPM
t

j j j

j bt

k E ac k E u t dt




  
 

(11) 

where bt and ft are the beginning time and 

finishing time of task execution, respectively, and 

k is a fraction of energy consumption rate and we 

consider it 70% [24], Ej is the maximum energy of 

PM, ac
t
j €{0,1} if pmj is active in time t, and u(t) is 

the utilization of pmj in time t. 

In this work, the next goal is to minimize the 

energy consumption of task execution that 

finishes before the deadline. It can be defined by 

(12): 

)(
tTaskTotalAccep

onyConsumptiTotalEnerg
Min

 
(12) 

In order to minimize energy consumption, we 

employ the VM consolidation technique and turn 

off the idle PMs [3], which will be described in 

Section 5. 

The next goal in this work is to maximize the 

resource utilization. It can be defined by (13). 

 
( )

( )

MAX TotalAcceptTaskLength

TotalActiveHostMips TotalActiveTime

 

(13) 

that is computed from the executed task total 

length over the total processor performance of 

active PMs in the system during the execution. 

TotalAcceptTaskLenghth is the executed task total 

length, and is calculated as (14), and 

TotalActiveHostMips is the total processor 

performance of active PMs, and is calculated as 

(15). 
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(14) 

where lhi is the length of ti, and if ti assigns to vjk, 

then tijk will be equal to 1; otherwise, it will be 

equal to zero.  

).(
||

1 j

PM

j j wtMeHostMipsTotalActiv  


 
(15) 

where wtj is the total time of pmj when it is 

activated during the experiment, and Mj is the 

speed of the pmj 's processor. 

 

5. Energy-aware Real-time Task Scheduling 

Approach 

In this section, we describe our energy-aware task 

scheduling  approach for real-time tasks (EaRTs) 

in a cloud computing environment.. Firstly, we 

present the ETC algorithm and then present the 

HVS, V2S and PSD algorithms. 

 

5.1. ETC Algorithm 

When a new task arrives at the system, it is placed 

in a general queue initially. At first, this algorithm 

is checked according to the number of existing 

VMs in the system, whether the task can be 

finished without a missing deadline.  

If it finds several VMs in order to execute the task 

without missing the deadline, the task will be 

assigned to a VM with a less turnaround time. If 

execution of the task in its deadline is guaranteed 

by active VMs in the system, the horizontal VM 

scale-up should be done (if execution of the task 

can be guaranteed on a VM). 

If by the horizontal VM scale-up the task cannot 

finish before its deadline, the vertical VM scale-

up should be done, and then the task will be 

assigned to a VM, which guarantees its execution 

before the deadline; otherwise, the task will not be 

accepted. Figure 2 shows the pseudo-code of the 

ETC algorithm. 
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ETC  algorithm 

1. Successtage = false; 

2. Select_VM = Null; 

3. For each new task ti, do 

4.      Add ti to the general queue 

5. End for 

6. Sort (tasks, in general, queue by increasing the deadline); 

7. For each ti in general queue, do 

8.        For each vjk available do 
9.               Calculate btijk and execution time etijk of task ti; 

10.               If btijk + etijk = < di, then   

11.                    Success_Tage = True;  

12.                End if 

13.           End for 

14.          If  Success_Tage = True, then 

15.             Select_VM = Select vjk with minimal finish time to 

execute ti ; 

16.                     Re-calculate the readiness  time of  vjk; 

17.          End if 

18.         If  Success_Tage = False, then 
19.                    Select_VM = HVS();     

20.          End if 

21.           If  Select_VM = Null, then 

22.                 Select_VM = V2S(); 

23.           End if  

24.           If Select_VM! = Null, then 

25.                 Assign ti to Select_VM for execute;  
26.                 Re-calculate the readiness time of  Select_VM; 

27.                   Success_Tage = True; 

28.           End if 

29.           If  Success_Tage = False,  then 

30.                   Reject ti; 

31.           End if 

32.    End for 

Figure 2.  ETC algorithm. 

 

5.2. Horizontal VM Scale-up (HVS Algorithm 

We have designed HVS to guarantee that the 

deadline of the tasks is met in the active VM. 

Horizontal VM scale-up is done by increasing the 

number of VMs through creating a new VM and 

deploying it on a PM. The pseudo-code of the 

HVS algorithm is shown in Figure 3. 
HVS  algorithm 

1. Vjk = Select (a type of virtual machine with Minmips (VMs type) is 

the minimal processor performance of VMs Possible for 
executing ti within its deadline). 

2. Success_Tag = False; 

3. If Vjk! = Null,  then 
4.    PmList = Sort (active PM is available in the increasing order of 

the remaining processor capacity). 

5.   For each pmj in PmList, do 
6.       If Remaining_Mips (pmj) >= M(VjK), then 

7.           Deploy vjk on pmj; 

8.               Remaining_Mips (pmj) = Remaining_Mips (pmj)– M(vjk) 
9.                 Calculate the readiness_time (Vjk ) 

10.             Success_Tag = True; Break; 

11.        End if 

12.   End for 

13.   If  Success_Tag = False, then 

14.   PmList = Sort (inactive PM is available in the increase order of 
the energy power) 

15.     For each pmj in PmList, do 

16.        If vjk can be guaranteed finishing ti within its deadline, then 
17.                Turn on an inactive PM and deployt vjk on it.  

18.                 Remaining_Mips (pmj)=Remaining_Mips(pmj) – M(vjk) 

19.                 Calculate the readiness_time (Vjk  )  
20.                  Success_Tag = true; 

21.         End if 

22.      End For 

23.   End if 

24. End if 

Figure 3. HVS algorithm. 

After an appropriate VM selection that can 

guarantee the execution of the real-time task ti in 

its deadline, VM will be deployed on a PM with a 

maximum utilization. After deploying VM, its 

readiness time (rtjk) is calculated as (16): 

( )jk jkrt ct dpt v 
 

(16) 

where ct is the current time and dpt(vjk) is the time 

of creation and deployment of vjk on PM. If VM 

cannot be deployed in this way, an inactive PM 

with the least energy consumption in which VM 

can be deployed on it will be turned on, and VM 

will be created on it. In this situation, the 

readiness time of VM is calculated as (17): 

( ) ( )jk j jkrt ct tt pm dpt v  
 

(17) 

where tt(pmj) is the turning on time of pmj and 

dpt(vjk) is the deployment time of vjk on pmj. 

 

5.3. Vertical VM Scale-up Algorithm (V2S) 

Actually, vertical VM scale-up increases the 

amount of resources including the processor, 

memory, and storage of a VM. Vertical scaling-up 

of VM can be done in less than a few 

milliseconds, while horizontal scaling-up can take 

time for several minutes.  

In the HVS algorithm, creating more new VMs 

may miss the deadline of tasks so vertical scaling-

up of VMs should be done, as shown in Figure 4. 

V2S finds a VM with a possibly minimal 

processor capacity required to execute the task in 

its deadline constraint such that it can increase the 

processor capacity as follows.  

If the remaining of the PM processor capacity can 

guarantee the execution of the real-time task, V2S 

adds it to the VM processor capacity, and then 

assigns the task to this VM; otherwise, V2S 

computes the extra amount of processor capacity 

allocated to other VMs deployed on this PM (in a 

manner that the allocated task deadline to these 

VMs will not be missed). If the remaining of the 

processor capacity of PM plus an extra amount of 

other VMs processor capacity equals the amount 

of the required processor capacity of the real-time 

task, V2S, at first, selects this capacity from the 

remaining capacity of PM, then it selects from 

VMs that are ordered according to increasing of 

waiting tasks on them. Finally, V2S assigns the 

task for execution to VM. 

Among the other VMs deployed on PMs, V2S 

calculates the extra amount of each VM processor 

capacity, and then selects VMs in the order of 

increasing the waiting tasks and reduces their 

processor capacity in order to provide the amount 

of processor capacity required by the selected 

VM.  Finally, V2S assigns the task for execution 

to VM. 
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V2S  algorithm 

1. Find_Tag = False; 

2. For each vjk available, do 
3.         Calculate  Extra Mips of  vjk that  

                tasks on vjk  can be finished before  

                its deadline and require Mips of execute ti   
                 before its deadline on vjk;                                      

4. End For 

5. VmList = Sort (VMs by Increase require Mips)  
6. For each vjk in VmList, do 

7.       If Find_Tag = False, then 

8.            If (remaining_Mips of pmj >= 
                                       Require_Mips of  vmjk), then 

9.                    MIPS( vmjk) =Required Mips (vmjk)  + MIPS ( 
vmjk); 

10. ; 

11.                   Re-calculate the readiness time of vmjk ; 
12.                    Select vmjk to execute ti 

13.                    Find_Tag = True; break; 

14.                   End if 

15.            End if 

16. End for 
17.  If Find_Tag = False, then 
18.      For Each vjk in VmList, do 

19.           If (total Extra Mips other vm on pmj   

                       add remaining mips of pmj >= 
                           Required Mips of  vmjk) Then 

20.                         MIPS (vmjk) = Required Mips (vmjk)  + MIPS 

( vmjk) Re-calculate the readiness time of VMs;  
21.                            Select vmjk to execute ti; 

22.                          Find_Tag = True; break; 

23.                       End if 

24.               End for 

25. End if 

26.  If  Find_Tag = False, then 
27.         For each vjk in VmList, do 

28.               If (total Extra Mips other vm on pmj >= 

                         Required Mips of vmjk) Then 
29.                        MIPS( vmjk) = Required Mips (vmjk)  + MIPS 

(vmjk);; 

30.                         Re-calculate the readiness time of VMs ; 
31.                         Select vmjk to execute ti; 

32.                                 Find_Tag = True; break; 

33.                      End if 

34.              End for 

Figure 4. V2S algorithm. 
 

In the V2S algorithm, we calculate the readiness 

time of vjk whose processor capacity has changed 

as (18): 

 

( _ ) ( _ )

| _ |

( _ )
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| _ |

( _ )
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i
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et

et





  









 

(18) 

where rtjk is the readiness time of vjk, ertijk(old_mips) 

is the remaining execution time of ti that is 

running on vjk with the previous processor 

capacity, ertijk(new_mips) is the remaining execution 

time of ti that is running on vjk with a new 

processor capacity, etijk(old_mips) is the task 

execution time that is located in the local queue of 

vjk and is processed by the previous processor 

capacity of VM, and finally, etijk(new_mips) is the task 

execution time that is located in the waiting local 

queue of vjk and is processed by a new processor 

capacity of VM. 

The processor capacity that vjk requires to execute 

tp in its deadline range is calculated as (19):  
 

Re ( ) ( ) ( )jk jk jkqMips v IdealMips v M v 
 

(19) 

where M(vjk) is the processor capacity of vjk, 

IdealMips, and (vjk) is the processor capacity that 

if it is assigned to vjk, it can execute all of its tasks 

plus tp in their deadline constraints, and is 

calculated as (20): 

 

| |

1
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( ( ) ( ) / ( ( ) ))
vjk

jk
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ijk zjk p

i
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lh t ert t d t ct



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(20) 

where ct is the current clock, ert(tzjk) is the 

remaining execution time of running task  tzjk on 

vjk, and d(tp) is the deadline of the new task tp. If 

the maximum delay that all allocated tasks to vjk 

can tolerate is more than zero, then the extra 

amount of processor capacity of vjk is calculated as 

(21): 

       
)()()( jkjkjk vipsNecessaryMVMvExtraMips 
 

(21) 

where NecessaryMips(vjk) is the processor 

capacity of vjk that can execute all its assigned 

tasks without missing a deadline, and is calculated 

as (22): 
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(22) 

where rt(vjk) is the readiness  time of vjk and ct is 

the current clock. 

 

5.4. Physical Machine Scale-down Algorithm 

(PSD) 

The PSD algorithm is used to reduce the number 

of active PMs in the system in order to save 

energy. The PSD algorithm uses VMs 

consolidation and removes the idle VMs to turn 

off the active PMs. PSD, at first, checks all of the 

existing VMs, and if more time has passed than 

the threshold of being idle of a VM, it removes 

that VM, and then PSD by using the VM 

migration technique, consolidates VMs in PMs as 

far as possible. Figure 5 shows the pseudo-code of 

PSD. 
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Figure 6.  Task automaton model. 

PSD algorithm 

1.       For each vjk available do 

2.       If vmjk's idle time bigger than idle time maximum specified 

for VMs, then  

3.            Delete vjk; 

4.       End if 

5. End for 

6. Sort (active PM in an increasing order of the Remaining 

Processor Capacity). 
7. For each active pmj available do 

8.      If all the VMs  deployment on pm can be migrated to other 

active PMs, then 
9.         Migrate all the VM deployment on pmj to  destination PMs; 

10.     End if 

11. End for 

12. For each active pmj available do 

13. If pmj is idle, then 

14.     turn off pmj; 

15.  End for 

Figure 5. PSD algorithm. 

 

To consolidate VMs, PSD arranges the active 

PMs by increasing the processor capacity 

remaining order, and begins by VMs of PMs with 

the least remaining of the processor capacity so 

that it can help them to migrate to other active 

PMs. If it finds a destination for all of the 

deployed VMs on a PM, it will migrate VMs to 

the destination PM. Finally, this algorithm will 

turn off all the idle PMs. 
 

6. Formal Model of   Proposed Approach 

In this section, we present a formal model of our 

proposed approach in terms of timed automata 

and use a model checking approach in order to 

verify the soundness of our proposed approach 

formally. With model checking, a system is 

specified using a collection of timed automatons. 

Each automaton has a finite number of states and 

transitions between these states. The Clocks and 

Boolean expressions may guard these states and 

transitions [19]. Chan is used for synchronization 

in the system. 

We use the UPPAAL 4.1.19 model checker, 

which can check different kinds of real-time 

system's features and is used in order to model 

and verify the properties of our proposed 

approach [25-27]. The UPPAAL query language 

uses the features that are a subset of CTL 

(computation tree logic) for checking [28]. The 

automatons of our model including the Task 

Automaton, Scheduler Automaton, and Resource 

Automaton are presented as follows.  

 

6.1. Task Automaton 

The task automaton shown in Figure 6 is the most 

important automaton in our model. Different 

states that the task passes from arrival to the 

system till existing are modeled by in this 

automaton. Since in the cloud computing 

environment, the users send their requests 

irregularly and the tasks have irregular arrival 

times, we assume that the tasks in this model are 

aperiodic and independent.  

When a task arrives the system, it goes from the 

Initial state to the Release state, and it stays in the 

Release state. The Clock time is used for each task 

in order to define the time feature of the task. 

After passing the release time, the task will go 

from the Release state to the Ready state, and it 
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Figure 7. Scheduler automaton model. 

informs the scheduler of its arrival by using the 

ready channel, and then goes to the general queue 

of the scheduler. The task stays in the Ready state 

till the scheduler assigns a resource to it and then 

it goes to the Running state. If the scheduler could 

not guarantee execution of this task in its 

deadline, it will go to the Reject state and will not 

be accepted by the system. The run channel is 

used for synchronization between the task 

automaton and the resource automaton. The task 

will stay in the Running state till its execution on 

resource ends. The X clock is used for passing this 

time. After passing the time, if the task finishes in 

its deadline, it will go to the Done state, and if the 

deadline is missed, it will go to the Error state.  

 

6.2. Scheduler Automaton 

The scheduler automaton is depicted in Figure 7. 

The Scheduler locates the tasks that arrive the 

system in a general queue by their deadlines in an 

increasing order and then schedules them. 

At first, the scheduler is in an Idle state and the 

general queue of the scheduler in which the tasks 

are located is empty. The IsEmpty() function is 

used to check the fullness or emptiness of the 

general queue. Whenever a new task arrives the 

system, the scheduler goes from the Idle state to 

the Add state. This automaton selects the task 

from the heading of the queue for scheduling and 

goes to the Select state. The scheduler by using 

the is-system-vm() function, checks if there is a 

VM in the system that the cloud executes the task 

in its deadline.  

The success_schedule function checks the status 

of the allocated task execution on this VM. If this 

execution is not successful, the create-vm-success 

function checks whether by creating VM the 

deadline of the task will be guaranteed or not. If 

this creation meets the task deadline, the startup 

channel initiates a new VM creation and allocates 

task to this VM. Otherwise, the 

VerticalVmScaleUp_Success function checks 

whether by vertical scaling-up of VMs the task 

can be executed in its deadline, and then it will 

accept the task and guarantee its execution; 

otherwise, the task will not be accepted, and by 

using the Reject channel informs the task. 
 

6.3. Resource Automaton 

Figure 8 shows the automaton model of the 

resource. In this model, the resource can be used 

after passing its setting up time.  

At first, the resource is in the Initial state, which 

means that it is not ready to use and it is not set 
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 Figure 8. Resource automaton model. 

up. The resource will go to the Start state by the 

startup channel to synchronize the resource and 

scheduler automaton. The Vm-clock is used for 

each resource in order to control its scheduling 

features and after passing this time, the resource is 

ready to use and goes to the use-ready state. In 

this state, the resource for each task that is in its 

queue goes to the Inuse state; it stays in this state 

for a duration of time that the task is running on it. 

The Run channel is used for synchronizing 

between the resource and the task automaton. 

When the task is selected of the general queue for 

execution, it will be informed by this channel, and 

when the time of execution of the task on resource 

finished, the finished channel is used for 

informing resource of finishing the task to go to 

the use-ready state. In this state, the is-empty-

queue() function checks if the resource queue is 

empty, and it  goes to the Idle state, and it stays in 

this state till a task is allocated to it, and then goes 

to the use-ready state, or the time is more than one 

threshold and decides to delete it and goes to the 

Initial state. The threshold is determined by vm-

most-idle-time and vm-idle-time clock. 

 

7. Verification Results 

In this section, we present the analyzing results of 

our proposed approach, formally described in the 

previous section. The main goal of verification of 

the real-time task scheduling systems is the 

schedulability analysis via checking the safety and 

bounded liveness properties [29]. Schedulability 

expresses that a system, by the considering time 

constraints, scheduling policy, resources, and 

tasks would guarantee execution of all the 

accepted tasks in their deadline constraints.  

The different formulas of the Timed Computation 

Tree Logic (TCTL) specification language that we 

have used in our models are as follows: 

A [] φ: This formula denotes the safety property, 

and means that for all paths φ holds on all states.  

A [] not (φ): This formula denotes the bounded 

liveness property, and means that there is no path 

and no state such that the system is in φ. Note that 

A [] not φ can represent deadlock freeness if φ is 

logically a deadlock property.  

E<> Φ: This formula denotes that the reachability 

property is used for verification of schedulability. 

This property checks that a special event happens 

at least once in the system. Therefore, beginning 

from a primary state, it surely reaches the 

expected state. In fact, we use the reachability 

property for the schedulability analysis of the 

system in this work. If the Error state would not 

be reachable, the system will be schedulable. 

According to these formulas, we check the 

deadlock-freeness, reachability, bounded liveness 

of the system modeled with timed automata  

Reachability: We traverse the total space state in 

the proposed automatons using UPPAAL and 
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check whether all paths are in a condition that no 

task is located in the ERROR state or not. This 

property checks that a special event happens at 

least once in the system. Therefore, beginning 

from a primary state, it surely reaches the 

expected state. If the Error state would not be 

reachable, the system will be schedulable. We 

check that our proposed approach is schedulable 

with the following specifications in UPPAAL: 

A [] forall (i: task_id) not TASK (i).Error 

This formula checks that in all of the paths and 

states (total space state), considering time 

limitations, the location of ERROR cannot be 

reached from the task model; consequently, the 

system is schedulable. 

E<> forall( i : task_id )  TASK(i).Error 

This formula checks that in all of the paths and 

states (total space state), considering time 

limitations, location of ERROR can be reached 

from the task model; consequently, the system is 

not schedulable.  

Deadlock-freeness: One of the safety properties 

is the deadlock-freeness, which can be verified by 

the reachability analysis. Reachability checks that 

no possible state of a system ever reaches a 

deadlock and ensures that something bad never 

happens. We check that our proposed approach is 

deadlock-free with the following specification in 

UPPAAL: 

Scheduler[] not deadlock 

Task[] not deadlock 

Resource[] not deadlock 

Correctness: The main correctness criterion of 

our proposed approach is to ensure that whenever 

a task is submitted to a resource, the scheduler 

receives it eventually. Moreover, whenever the 

scheduler allocates a task to a VM, the VM 

receives it eventually.  

We check the correctness of our proposed 

approach using the following specification in 

UPPAAL:  

Task.Release --> Scheduler.Add 

Resource.Start --> Task.Running 

We have also evaluated the efficiency of our 

proposed ETC algorithm experimentally by 

comparing it with the ERECT [11] algorithm as a 

high related and popular work in terms of task 

deadline hit ratio and energy consumption of tasks 

and resource utilization. We also consider a non-

migration version of ETC and ERECT, namely 

NM-ETC and NM-ERECT, and compare them 

with ETC.  

We simulated our proposed approach using the 

CloudSim simulator [30]. We consider the 

simulation parameters as shown in Table 1.  

We also assume:   

 PM with processor performance, which is 

2660 and 1860 MIPS and rate of energy 

consuming 250,400 w. 

 Setting up time of a PM is 90 s and 

creation time of new VM on PM is 15 s. 

 Length of tasks is in uniform between 

random [100000, 200000] million 

instructions. 
 

Table 1. Simulation parameters. 

Parameter Fixed value Variable value 

Task count 1000 1000, 2000, 3000 

Min deadline 100 50, 100, 150, 200 

Task length [100000-200000]  
 

Figure 9 shows the deadline hit ratio of ETC, 

ERECT, NM-ETC, and NM-ERECT. As it is 

shown in this figure, the deadline hit ratio in ETC 

has improved in comparison to ERECT, about 

30% in average. Furthermore, NM-ETC has 

improved the deadline hit ratio in comparison to 

NM-ERECT about 34%. This improvement is 

because our EaRTs approach uses vertical scaling 

of VMs when horizontal scaling is not able to 

guarantee the real-time tasks. 
 

 
Figure 9. Deadline hit ratio comparison. 

 

The ETC algorithm uses the processor speed of 

PMs (in Mips) as far as possible, and executes 

more real-time tasks on PMs; consequently, it has 

improved the resource utilization rate in 

comparison to ERECT, in average 18%. Also 

NM-ETC has improved the resource utilization 

rate in average 23% in comparison to NM-

ERECT. These results are shown in Figure 10. 
 

 
Figure 10. Resource utilization rate comparison. 
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As shown in Figure 11, the energy consumption 

of the accepted tasks in the ETC algorithm has 

improved 13.66% in comparison to ERECT. 

Moreover, NM-ETC in comparison to NM-

ERECT has improved about 16.33% on average. 

Since we employed the VM consolidation 

technique and turned off the idle PMs in ETC, the 

energy consumption was decreased.  
 

 
Figure 11. Energy consumption of accepted tasks. 

We have also evaluated the impact of the real-

time task deadline on the ETC algorithm in 

different lengths. As shown in Figure 12, in 

shorter deadlines, as ETC and NM-ETC 

algorithms, where using vertical scaling, have 

performed better than ERECT and NM-ERECT.  

By increasing the deadline length, the ETC 

algorithm has improved the deadline hit ratio by 

an average 35.5% in comparison to ERECT. 

Moreover, NM-ETC has improved on average 

37.25% in comparison to NM-ERECT. 

 
Figure 12. Deadline hit ratio comparison in different 

lengths. 

Figure 13 compares the resource utilization rates. 

As shown in this figure, the ETC algorithm has 

improved it by about 26.25% on average in 

comparison to ERECT. Also NM-ETC has 

improved in comparison to NM-ERECT about 

39.25% on average.  

 
Figure 13. Resource utilization rate comparison. 

As shown in Figure 14, the ETC algorithm has 

improved the energy consumption rate of the 

accepted tasks by about 16.75% in comparison to 

ERECT. Also NM-ETC has improved on average 

about 15.5% in comparison to NM-ERECT. 
 

 
Figure 14. Energy consumption of accepted tasks. 

 

As shown in this section (ETC), since we 

employed vertical scalability, in a shorter 

deadline, due to the fact that it solves the effect of 

start-up time and creates a virtual machine for 

real-time tasks, it performs much better in terms 

of the guarantee ratio, energy consumption, and 

resource utilization.  

 

8. Conclusions 

In this paper, we proposed the energy-aware real-

time task (EaRTs) scheduling approach in a cloud 

computing environment. In order to guarantee the 

real-time tasks, the vertical scaling of VMs was 

used when the horizontal scaling could not 

guarantee the real-time task. Our approach 

included the four algorithms ETC, HVS, V2S, and 

PSD. Our proposed task scheduling approach was 

modelled formally in timed automata and the 

properties, namely reachability, deadlock-

freeness, and correctness, were analyzed and 

proved using the UPPAAL model checker. We 

checked the schedulability of EaRTs through the 

reachability property, and showed that our 

approach guaranteed that the deadlines of all tasks 

were met. Our experimental results showed higher 

remaining energies and resource utilization. 
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 درنگ آگاه از انرژی در یک محیط محاسبات ابری راهکار زمانبندی وظایف بی 

 

 *حسین مومنیو  ناهید مبهوت

 .ایران ،گرگان ،دانشگاه گلستان، مهندسی کامپیوتر گروه آموزشی

 10/10/1110 پذیرش؛ 01/11/1110 بازنگری؛ 10/01/1111 ارسال

 چکیده:

 یابرر انشیرا است. یمنابع مجاز یریپذ اسیآن مق یاصل لیدلکه  است افتهی شیافزا یبطور قابل توجه ریاخ یسالها یط یابر انشیراانگیزه استفاده از 

مهرم  اریبس فیانجام وظا یبرا یهوا  که در آن ملاحظات زمان و انرژ ینیبشیو پ محیطی ، نظارتگنالیمانند پردازش سدرنگ بی یهابرنامه شرفتیبه پ

درنرگ زمانبنردی وظرایف بری نیبنابرا دارد یدر پ یعواقب فاجعه بارزمانی وظایف  ، از دست دادن مهلتدرنگبی یهابرنامه در است، کمک کرده است.

و حفاظرت از  یاتیرعمل یهرا نهیمانند کاهش هز ییای، با توجه به مزایابر کز دادهامر یدر انرژ یی، صرفه جونیبر ا لاوهع است. یمسئله مهم و اساس کی

 کیرمقاله، مرا  نیا در مناسب کار قابل کاهش است. یزیمورد توجه قرار گرفته است و با برنامه ر ریاخ یسالها یاست که ط ی، مسئله مهمستیز طیمح

اسرتفاده  قیرو تلف یسراز یمجراز یهاکی. ما از تکنمیده یارائه م درنگکاربردهای بی یرا برا (EaRT)یآگاه از انرژ فهیوظ درنگزمانبندی بی کردیرو

افرزایش و  ، قیردر روش تلفگرردد. موعد زمانی وظایف مری تی، بهبود استفاده از منابع و رعایبه حداقل رساندن مصرف انرژ موجب امر نیکه ا میکنیم

 قیراثبرات دق یبرارایه خواهیم داد و ا تمیچهار الگور یشنهادیپ روشدر   کار را بهبود بخشد. یتواند عملکرد اجرا یم یساز یمنابع مجازکاهش تعداد 

کره دهرد نتایج ارزیابی نشران مری  .و به کمک آتوماتای زمانی استفاده خواهیم نمود  یمدل رسم راهکار پیشنهادی از روش  یو درست یزمانبند یژگیو

 یآگاه از انررژدرنگ بی فیوظازمانبندی  یها تمیالگور ریبا سا سهیدر مقا ی، استفاده از منابع و مصرف انرژمعیارهای موعد زمانیدر  ما یشنهادیروش پ

     کارآمدتر است.

 زمانبندی.  ،مقایس پایین ،مقیاس بالا ،محاسبات ابری ،درنگبی ،وظیفه :کلمات کلیدی


