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 The SailFish Optimizer (SFO) is a metaheuristic algorithm inspired by 

a group of hunting sailfish that alternate their attacks on a group of 

prey. The SFO algorithm takes advantage of using a simple method for 

providing a dynamic balance between the exploration and exploitation 

phases, creating the swarm diversity, avoiding local optima, and 

guaranteeing a high convergence speed. Nowadays, multi-agent 

systems and metaheuristic algorithms can provide high performance 

solutions for solving combinatorial optimization problems. These 

methods provide a prominent approach to reduce the execution time 

and improve the solution quality. In this paper, we elaborate a multi-

agent based and distributed method for sailfish optimizer (DSFO), 

which improves the execution time and speeds up the algorithm, while 

maintaining the optimization results in a high quality. The Graphics 

Processing Units (GPUs) using Compute Unified Device Architecture 

(CUDA) are used for the massive computation requirements in this 

approach. In depth of the study, we present the implementation details 

and performance observations of the DSFO algorithm. Also a 

comparative study of the distributed and sequential SFO is performed 

on a set of standard benchmark optimization functions. Moreover, the 

execution time of the distributed SFO is compared with other parallel 

algorithms to show the speed of the proposed algorithm to solve the 

unconstrained optimization problems. The final results indicate that 

the proposed method is executed about maximum 14 times faster than 

the other parallel algorithms and shows the ability of DSFO for solving 

the non-separable, non-convex, and scalable optimization problems. 
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1. Introduction 

A combination of metaheuristics such as 

computational intelligence and operational 

research work is called hybrid metaheuristic. The 

main reason of using this technique is to obtain the 

high-quality solutions with a reasonable computing 

time [1,2]. The hybrid metaheuristic algorithms 

usually use some advanced strategies like multi-

agent systems, decomposition of the search space, 

and parallel computation. However, taking a lot of 

time to solve NP complete and high-dimensional 

problems has become a challenge for the 

metaheuristic algorithms. Due to the independence 

of the metaheuristics components, their 

combination with parallel processing and multi-

agent systems is a good option to reduce the 

computational time and to increase the quality of 

the solutions. In intelligent multi-agent systems, a 

set of proactive agent acts individually for solving 

the problems collaboratively [3]. They are used in 

the metaheuristic algorithms to solve hard 
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optimization problems with their own intelligent 

skills and cooperation of different agents by 

distribution of the problem among agents and they 

are organized and coordinated into a complete way. 

The agent systems have shown a good performance 

for solving problems in large-scale distributed and 

dynamic systems [4]. In addition, the agents can 

react to environmental changes for adaptations 

with unpredictable events; this characteristic is 

very important for the intelligent systems [5]. In 

fact, it is up to the designer to determine how 

information is exchanged between the agents, 

which agents can share search space information 

such as solutions, sub-problems and the status of 

the agents, and how to control the solution process 

to acquire a better performance in various 

strategies. Compared with the centralized 

optimization algorithms, the distributed 

optimization algorithms based on the multi-agent 

systems provide a robust way to solve the large-

scale problems. These systems also have the ability 

to decompose the complex problems into simpler 

and smaller problems that are operated by various 

agents [6]. When the distributed algorithm is 

described as a multi-agent system, all agents 

operate asynchronously and use parallelization 

strategies for enhancing the efficiency and speed of 

the execution time compared to the centralized 

systems.   

In this paper, we describe a new distributed version 

of SailFish Optimizer (SFO) [7] based on the multi-

agent systems using the CUDA architecture. In this 

method, a large number of iterations is investigated 

to reach the high quality solutions to solve various 

optimization problems, and it has the ability to 

improve the SFO’s processing speed. Also the 

impacts of parallelism in high dimensionality 

problems are investigated. In addition, a large 

number of search agents are analyzed in order to 

achieve the desired SFO’s computational time 

compared to the sequential implementation and 

other previously metaheuristic algorithms on GPU 

using the CUDA architecture.  

The rest of this paper is organized as what follows. 

Section 2 describes the SFO algorithm and 

sketches the basic concepts of the GPU computing 

and CUDA architecture. Section 3 presents 

implementation of the distributed version of SFO 

to solve the optimization problems. The 

experimental results and analysis are discussed in 

Section 4. Finally, some concluding remarks and 

future works are given in Section 5. 

 

2. Related Works 

In much of the literature, the agent technologies 

have provided the practical framework for 

metaheuristic algorithms. Previously, a couple of 

multi-agent systems were applied to metaheuristic 

algorithms for examination of their performance in 

a team coordinated [8,9]. Each one of these 

research works provides different benefits of 

tackling search and problem solving. In [10] and 

[11], the autonomous agents have been used in 

Asynchronous Teams (A-Teams) that are 

associated via shared memory. Also a hybrid 

metaheuristic algorithm has been presented in [12], 

where each agent acts independently in the search 

space and it has collaborated with other agents 

through the multi-agent environment. The results 

obtained show the reduction of cost function by 

using the cooperation agents. In [13], a multi-agent 

based Gravitational Search Algorithm (GSA) has 

been presented and it has compared the execution 

time of the multiple agent implementation with the 

original GSA sequential implementation. In this 

method, different agents handle the small and 

simple components, and these multiple agents are 

used to express the parallelism strategy. Currently, 

the researchers show how we can use agent-based 

techniques for solving complex problems quickly. 

This manner has the potential flexibility and 

expandability to enhance the computational 

systems and creates a strong approach to the 

traditional multi-agent systems [14, 15]. 

Nowadays, the distributed optimization algorithms 

based on multi-agent systems have drawn much 

attention of the researchers and several algorithms 

have been proposed in the recent years [16-19]. In 

most of these methods, each agent computes the 

whole global minimizer. Map-building and 

classification are specific distributed optimization 

problems that can be solved by these approaches. 

In these problems, the data is physically distributed 

among their agents and the number of decision 

variables is independent from the number of 

agents. Therefore, due to this independence, they 

are good options for solving with distributed 

optimization algorithms. In [20], another 

distributed heuristic algorithm has been presented 

for detecting the optimal route between the three-

way and intersections. The packets are delivered 

based on the selected routes from a source to the 

destination in vehicular ad hoc network.  The 

results show the superiority of this algorithm over 

similar algorithms. Also the MOEA/D-TS 

algorithm is a hybrid metaheuristic algorithm that 

is derived from Multi-Objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) 

and Tabu Search (TS) [21]. This algorithm uses the 

neighborhood search authority of TS along with the 

parallel computing of MOEA/D to cover the 

totality of the Pareto front by uniformly distributed 
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solutions. According to the final results obtained, 

the MOEA/D-TS algorithm could produce fully 

satisfactory results and outperforms the previous 

algorithms.  

Moreover, the graphics processing units (GPUs) 

have become a strong tool to implement the parallel 

execution of hundreds of threads for metaheuristic 

algorithms [22]. Many parallel algorithms have 

been implemented with different designs that cover 

the use of GPUs to implement nature-inspired 

metaheuristics [23], and they offer different 

parallelism strategies and communication patterns 

of metaheuristics on GPUs [24]. Due to the 

independence of the metaheuristics components, 

combination of these algorithms by distributed 

optimization algorithms based on multi-agent 

systems and parallel processing can provide high 

performance solutions to quickly solve the 

combinatorial optimization problems. 

 

3. Preliminaries 

The main inspiration of the SFO algorithm will be 

described in this section. Then the proposed 

algorithm and the mathematical model are 

discussed in details.  

 

3.1. Sailfish Optimizer (SFO) 

The SFO algorithm presents a novel nature-

inspired metaheuristic optimization algorithm and 

mimics the strategy of the group of hunting sailfish 

[7]. This algorithm includes two types of 

population, the population of sailfish for 

intensification of the search space and the 

population of sardines for diversification of the 

search space. In order to describe the proposed 

algorithm, it is assumed that the positions of 

sailfish are the variables of all solutions, while the 

ith member at the kth search agent has a current 

position 𝑆𝐹𝑖,𝑘  in a d-dimensional search space. The 

position of all sailfish is saved to the matrix SF and 

the following matrix shows the fitness value for all 

solutions: 

𝑆𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

[
 
 
 
 

𝑓(𝑆𝐹1,1 𝑆𝐹1,2  ⋯ 𝑆𝐹1,𝑑)

𝑓(𝑆𝐹2,1 𝑆𝐹2,2  ⋯ 𝑆𝐹2,𝑑)

⋮         ⋮         ⋮         ⋮
𝑓(𝑆𝐹𝑚,1 𝑆𝐹𝑚,2  ⋯ 𝑆𝐹𝑚,𝑑)]

 
 
 
 

=

[
 
 
 

𝐹𝑆𝐹1
 

𝐹𝑆𝐹2
  

      ⋮      
𝐹𝑆𝐹𝑚

  ]
 
 
 

 
(1) 

 
 

 where 𝑆𝐹𝑖,𝑗 shows the value of the jth dimension of 

the ith sailfish, f calculates the cost function and 

will be saved in the matrix  𝑆𝐹𝐹𝑖𝑡, and m indicates 

the number of sailfish. Another significant 

incorporator is the group of sardines in the SFO 

algorithm. It is assumed that the school of sardines 

is also swimming in the search space and their 

positions will be saved to the matrix S so that their 

fitness values are utilized as follows: 

𝑆𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

[
 
 
 
𝑓(𝑆1,1 𝑆1,2  ⋯ 𝑆1,𝑑)

𝑓(𝑆2,1 𝑆2,2  ⋯ 𝑆2,𝑑)

⋮         ⋮         ⋮         ⋮
𝑓(𝑆𝑛,1 𝑆𝑛,2  ⋯ 𝑆𝑛,𝑑)]

 
 
 

=

[
 
 
 

𝐹𝑆1
 

𝐹𝑆2
  

      ⋮      
𝐹𝑆𝑛

  ]
 
 
 

 (2) 

 
 

where 𝑆𝑖,𝑗 indicates the value of the jth dimension 

of the ith sardine, f calculates the cost function of 

each sardine and saves in the matrix 𝑆𝐹𝑖𝑡, and n is 

the number of sardines. Moreover, the position of 

sailfish will be updated during the optimization. 

The new position of sailfish 𝑋𝑛𝑒𝑤_𝑆𝐹
𝑖  updates at the 

ith iteration as follows: 

𝑋𝑛𝑒𝑤𝑆𝐹

𝑖 = 𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖  

−𝜆𝑖 × (𝑟𝑎𝑛𝑑(0,1) × (
𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖 + 𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆

𝑖

2
) − 𝑋𝑜𝑙𝑑𝑆𝐹

𝑖 )       

(3) 

 

 

where 𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹
𝑖  and 𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆

𝑖  are the best 

positions of sailfish and the best positions of  

sardines, respectively, 𝑋𝑜𝑙𝑑_𝑆𝐹
𝑖   determines the 

current position of sailfish, 𝑟𝑎𝑛𝑑(0,1) is a random 

number between 0 and 1, and 𝜆𝑖 is generated as 

follows: 

𝜆𝑖 = 2 × 𝑟𝑎𝑛𝑑(0,1) × 𝑃𝐷 − 𝑃𝐷 (4) 

Due to the decrease in the number of prey during 

the group hunting, the 𝑃𝐷 parameter is a significant 

parameter for updating the position of sailfish 

around the prey school and shows the number of 

prey at each iteration as follows: 

(5) 
𝑃𝐷 = 1 − (

𝑁𝑆𝐹

𝑁𝑆𝐹 + 𝑁𝑆
) 

 

where 𝑁𝑆𝐹  and 𝑁𝑆 are the number of sailfish and 

sardines at each iteration, respectively. Figure 1 

shows a 2D position of sailfish after and before an 

alternative attack and encircling the prey during 

collaborative hunting. The proposed alternative 

attack and encircling mechanism create a circle-

shaped neighborhood around the solutions for 

approaching the prey from different directions by 

hunters.  

In addition, for mimicking to update the position of 

sardines at the ith iteration, it can be formulated as 

follows: 

𝑋𝑛𝑒𝑤_𝑆
𝑖 = 𝑟 × (𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 − 𝑋𝑜𝑙𝑑𝑆

𝑖 + 𝐴𝑃) (6) 

where 𝑟 is a random number between 0 and 1, 

𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹
𝑖  is the best position of sailfish formed until 

now, 𝑋𝑜𝑙𝑑_𝑆
𝑖   is the current position of sardines, and 
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the amount of sailfish’s attack power will be saved 

in 𝐴𝑃 parameter that is generated as follows: 

 

  𝐴𝑃 = 𝐴 × (1 − (2 × 𝐼𝑡𝑟 × 𝜀)) (7) 

where 𝐴 and 𝜀 are the coefficients for decreasing 

the value of power attack linearly from 𝐴 to 0. 

Using the 𝐴𝑃 parameter, the number of sardines 

that update their position (𝛼) and the number of 

variables of problem (𝛽) can be calculated as 

follows: 

where 𝑁𝑆 indicates the number of sardines and 𝑑𝑖 

is the number of variables at the ith iteration. In 

order to show a conceptual model of position 

updating of a sardine in search space, figure 2 is 

illustrated. The horizontal axis shows only one 

dimension that is one variable or parameter of a 

given problem. However, the SFO algorithm can 

utilize all the variables of the problem. As it can be 

seen in this figure, the red multiplication signs are 

the possible positions that can be chosen as the next 

position of the sardine over the course of iteration. 

Finally, to increase the chance of hunting the new 

prey, the position of sailfish substitutes the latest 

position of the hunted sardine. The adaptive 

formula is as follows: 

                    𝑋𝑆𝐹
𝑖 = 𝑋𝑠

𝑖       if   𝑓(𝑆𝑖) < 𝑓(𝑆𝐹𝑖) (10) 

where 𝑋𝑆𝐹
𝑖  shows the current position of sailfish 

and 𝑋𝑆
𝑖   indicates the current position of sardine the 

ith iteration. The pseudo-code of SFO is  

summarized in table 1. 

 

3.2. GPU Computing 

Nowadays, the graphics processing units (GPUs) 

have obtained a high performance computing with 

a lower cost compared to the CPU-based 

architectures. Although GPUs have been mainly 

used to support the graphical applications, in the 

recent years, they have been employed for highly 

parallel computations.  

This modern hardware has been successfully 

implemented in various fields such as image 

𝛼 =  𝑁𝑆 × 𝐴𝑃 (8) 

𝛽 = 𝑑𝑖 × 𝐴𝑃 (9) 
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Figure 1. 2D position vectors of sailfish and sardines simulated by MATLAB: (a) before updating 

sailfish position, (b) after updating sailfish position. A big magenta circle is drawn around the elite 

sailfish and a small magenta circle is drawn around the injured sardine. 
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Figure 2. Sardine’s position in one dimension with 

different r values stochastically. 
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processing [25], data mining [26], neural network 

computation [27], and data compression [28].  

Also GPU computing is efficient in executing such 

synchronized parallel algorithms that involve data 

transfers and regular computations. Nevertheless, 

to benefit from these advantages, more complex 

programs are provided to solve problems with high 

arithmetic intensity and distributed architectures 

[29]. 

3.3. An Overview of CUDA Architecture 

Computing Unified Device Architecture (CUDA) 

is a multi-threaded programming model and 

parallel computing platform that has been 

developed by NVIDIA [30]. The CUDA 

architecture employs the multi-core parallel 

processing of a GPU and use C as a high-level 

programming language for solving complex 

computational problems. High quality of solutions 

and good scalability are effective advantages for 

implementation of an algorithm distributed on the 

CUDA platform. Using this method, the 

metaheuristic algorithms can scale the problem in 

a natural and decent way. Also it can steer the 

optimization with a few control variables. 

The CUDA architecture is made up of an array of 

Streaming Multiprocessors (SMs) that have the 

ability to run several blocks in the kernel 

simultaneously. A kernel calls from CPU (named 

as host) and duplicates on the GPU (named as 

device), and is executed by a batch of threads. The 

Nvidia architecture supports several types of 

memory that the programmers can use to achieve a 

high execution speed in their kernels [31]. The 

largest memory is the global memory, and its 

content is visible to all threads of all launched 

kernels. However, the accessing global memory 

should be improved due to a high throughput and 

latency. Therefore, global memory is often used for 

moving data from one kernel to another one. 

Another type of memory is the constant memory 

that is a global memory with a special cache for 

efficient access. It often uses to provide the input 

value to kernel functions. Also registers and share 

memory are on-chip memories on GPU, and their 

variables can be accessed extremely fast and in 

parallel. For keeping the frequently accessed 

variables, a kernel will use the register memory, 

and the content of this memory is private to each 

thread. However, shared memory is allocated for 

threads within a block to collaborate to each other, 

and the contents of shared memory will be deleted 

after termination of a kernel. The GPU memory 

hierarchy is presented in figure 3.  

 

4. Implementing Distributed SFO using CUDA 

In this section, the main parts of the Distributed 

SFO (namely, DSFO) based on multi-agent 

systems have been developed. A single agent in 

DSFO algorithm implements each group of 

operations. Then the agents act in parallel for 

gathering information from other agents or 

environments and return the results to the other 

agents or environments. The input information is a 

combination of the current position and best 

position of the search agents, and this information 

will be saved in the memory over the course of 

iteration during parallelization.  

In order to reduce the consumed time and improve 

the optimization speed, DSFO is composed of the 

decision-maker agents, exploration agents, and 

exploitation agents. The implementation of 

Initialize the population of sailfish and sardine randomly 

Initialize parameters (A=4 and 𝜀 = 0.001). 
Compute the fitness of sailfish and sardines. 
Find the best sailfish and sardine and assume that they 

 are as elite sailfish and injured sardine, respectively. 

 While the termination conditions are not satisfied 
      for each sailfish 

          Calculate 𝜆𝑖 using(4). 
          Update the position of sailfish using (3) and (10). 

     end for 

     Calculate AttackPower using (7). 
          If  AttackPower < 0.5 

            Calculate 𝛼 using (8). 

            Calculate 𝛽 using (9). 

          Select a set of sardine based on the value of 𝛼 and 𝛽. 
  Update the position of the selected sardine by (6) and (10). 

     else 

       Update the position of all sardine by (6) and (10). 

         end if 

    Calculate the fitness of all sardine. 

        If there is a better solution in sardine population    Replace a 
sailfish with injured Sardine using (10).  

           Remove the hunted sardine from population. 

           Update the best sailfish and best sardine. 

       end if 

   end while 

Return best sailfish 

Table 1.   Pseudocode for the SFO algorithm. 

  

𝑆𝐼𝑀𝐷 𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 

𝑆ℎ𝑎𝑟𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦 

 
𝑅1 𝑅2 𝑅𝑛 
𝑃1 𝑃2 𝑃𝑛 

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 
𝑈𝑛𝑖𝑡 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶𝑎𝑐ℎ𝑒 

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐶𝑎𝑐ℎ𝑒 

𝐷𝑒𝑣𝑖𝑐𝑒 𝑀𝑒𝑚𝑜𝑟𝑦 

Figure 3. The GPU memory model 
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updating the sailfish’s and sardine’s positions is 

designed for the purpose of exploration and 

exploitation agents, respectively. In addition, the 

decision-maker agents calculate the cost of search 

agents and decide whether the current search agent 

in this iteration is the best or not.  

The DSFO algorithm is expressed in a CUDA-

based pseudo-code with six kernel functions. The 

first kernel generates random numbers on a GPU 

using the CURAND library [32]. The CURAND 

library is used to generate the high-quality random 

numbers for sailfish’s and sardine’s populations.  

In this kernel, using 𝑘 blocks of ℎ threads, the 

position of sailfish and sardine will be utilized on a 

GPU. For this initialization, the matrices SF and 𝑆 

have been converted to the arrays to realize the 

coalescing memory access. Conversion of the 

matrix 𝑆𝐹 to the array 𝑆𝐹𝑑 is shown in figure 4.  

In this figure, 𝑆𝐹1 ⋯ 𝑆𝐹𝑚 represents the position of 

sailfish, where 𝑚 and dim indicate the number of 

sailfish and the number of variables, respectively.  

Due to the limited number of threads per block and 

to prevent the production of unused threads in each 

block, we assumed that the size of the block in our 

GPU architecture was equal to 900, and the random 

numbers were allocated to 900 decent threads in 

each block. As shown in figure 4, each sub-swarm 

of sailfish and sardines is associated with one block 

of threads and each dimension is mapped onto a 

distinct thread. Each block is also considered as an 

agent to calculate the cost function and determine 

the best search agent in each iteration. 

The second kernel generates 

blocks of 900 threads to compute the objective  

functions for the sailfish’s and sardine’s 

populations, respectively. Calculation of the fitness 

value depends on the number of search agents so 

the time of calculation is proportional to the size of 

populations. In addition, in this kernel, the fitness 

value is calculated via shared memory. The reason 

for using the shared memory variables is the 

calculation of fitness value via global memory 

consuming a lot of time and will decrease the speed 

of optimization. Therefore, as shown in figure 5, 

the information of each block will be transferred to 

the shared memory variable with the same size and 

the fitness value of each search agent will be saved 

respect to a given dimension.  

Through another shared memory variable with the 

shared memory variable with the same size and the 

fitness value of each search agent will be saved 

through another shared memory variable with 

respect to a given dimension. When the calculation 

of cost functions is finished, all of the fitness values 

will be sorted in the shared memory. Due to the 

sorting operation, thread 0 contains the best value 

in this stage, and it is also responsible for writing 

the result to the global memory.  

After completing this process, the best value of 

each block will be transferred from the global 

memory to the share memory, and the current best 

values are compared with the previous values in the 

third kernel. Also using the --syncthreads() 

function, the tasks of  thread will be finished in the 

shared memory before any of them moving on to 

the next iteration. In this case, none of the threads 

would load their contents too early and destroy the 

input value for other threads. 

𝑆𝐹1 

𝑆𝐹2 

⋮

𝑆𝐹𝑚 

𝑑1 𝑑2 𝑑𝑑𝑖𝑚 ⋯ 

0 1 

⋯ 

⋯ 

⋮ ⋮ ⋮ 

899 

⋯ ⋯ 

900 1799 901 9101 

⋯ 

9100 (𝑚 ∗ 𝑑𝑖𝑚) − 1 

𝑡0 𝑡1 𝑡2 𝑡ℎ−1 

⋯ 

𝐵𝑙𝑜𝑐𝑘 0 

⋯ 

𝐵𝑙𝑜𝑐𝑘 1 𝐵𝑙𝑜𝑐𝑘 𝑘 − 1 

⋯ ⋯ ⋯ 

𝑆𝐹𝑑 = 

⋯ 

⋯ 

C
o

n
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Figure 4. Conversion of the matrix 𝑺𝑭 to the array 𝑺𝑭𝒅 and assigning random numbers to the threads and the  existing 

agents. 
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𝐴𝑔𝑒𝑛𝑡1 𝐴𝑔𝑒𝑛𝑡2 𝐴𝑔𝑒𝑛𝑡𝑚 ( dim) 900m 
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 In the third kernel, the decision-maker agents 

decide to update the current best value of the 

sailfish’s population (called elite sailfish) and the 

current best value of sardine’s population (called 

injured sardine) if they are smaller than the 

previous best values. In other words, the decision-

maker agents record the high-quality solutions, 

which are discovered during the optimization in the 

shared memory. Throughout this process, the 

threads of this kernel accordingly update the 

coordinates of the best values obtained so for. 

The fourth kernel updates the position of sailfish by 

the exploration agents that are independent from 

any other and act in parallel. If the exploration 

agents observe any improvement or insignificant 

improvement, the search will be stagnated and 

need to be diversified by updating the position of 

sailfish according to (3). In this kernel, the 

information of each block will be copied to the 

shared memory for decreasing the access latency 

and improving the performance of the algorithm. 

The fifth kernel updates the position of sardine by 

the exploitation agents using (6). These agents 

cooperate with the exploration agents when a more 

intensified search is required during the 

optimization. The positions of sardines are 

allocated to the threads of block. Thereafter, for 

updating the position of sardines, the info of block 

transfers to the shared memory for time-consuming 

reduction due to the high speed of computing in the 

shared memory. In the last kernel, each exploration 

agent decides whether it needs to substitute the 

latest position of the injured sardine with the   

position of the current sailfish or it can continue its 

process without information exchange. If the 

fitness value of the injured sardine is fitter than the 

elite sailfish, their positions will be replaced 

together according to (10) and the position of the 

injured sardine will be removed from their 

population (it means that the injured sardine is 

hunted by the elite sailfish). 

A flowchart of the DSFO implementation on 

CUDA is shown in figure 6. As shown in this 

figure, after generation of the initial populations, 

each swarm will be partitioned into separate sub-

swarms. Then the information of sub-swarms will 

be transferred to the shared memory for computing 

the fitness value and updating the position of the 

search agents according to the best solution 

obtained so far. This process continues until a 

number of maximum generations is given.  

 

5. Experimental Results and Analysis 

This section presents the experimental results that 

have been obtained using sequential and distributed 

SFO algorithm. The results are compared with 

another previous implementation on two 

performance measures, including speedup and 

quality. These measures are evaluated on four 

classical benchmarks that are often used to evaluate 

parallel optimization algorithms as listed in table 2. 

In this table, F1 and F4 are unimodal functions that 

are suitable for benchmarking the exploitation 

phase because of having one global optimum and 

no local optima. However, F2 and F3 are 

multimodal functions that have a massive number 

of local optima and there are suitable for 

benchmarking the exploration phase. A successful 

metaheuristic algorithm should have a great ability 

to provide the dynamic balance between 

exploration and exploitation phases on a given 

optimization problem. 

 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 

𝑆ℎ𝑎𝑟𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦 

𝐵𝑙𝑜𝑐𝑘 0 𝐵𝑙𝑜𝑐𝑘 1 𝐵𝑙𝑜𝑐𝑘 𝑘 − 1 

⋯ 

𝑀0 𝑀1 𝑀899 

𝑐0 ⋯ 

Calculate the Cost Function 

Copy to Shared Memory 

𝑏0 𝑏1 𝑏899 𝑏0 𝑏1 𝑏899 𝑏0 𝑏1 𝑏899 

𝑐𝑚 𝑐1 

Figure 5. To transfer the information of blocks to shared memory variables for calculation of cost function. 
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Figure 6. A flowchart of DSFO implementation on CUDA (SF is sailfish and S is sardine). 

Return best sailfish 

Table 2. Benchmark test functions. 
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The sequential and distributed SFO (DSFO) and 

executed using the same number of search agents 

and dimensions. Also, our tests were conducted 

using an Intel(R) Core i7(TM) with 8 GB RAM and 

an NVIDIA GeForce GTX980 GPU. In order to 

compile the distributed version, Microsoft Visual 

Studio 2012 Professional Edition and CUDA 4.2 

SDK was used and to compile the sequential 

version, MATLAB 2019 was used. The operating 

system was Windows 7 Professional SP1. To 

provide a fair comparison, every test function was 

solved with 30 candidate solutions on the 500 

iterations and the average results were reported 

after 20 times of run for each experiment. 

As mentioned earlier, the quality of solution is one 

of the most important issues to measure the 

performance of a distributed algorithm. The 

experimental results of the DSFO algorithm have 

proved that the quality of solutions is not sacrificed 

for the sake of speed-up. Table 3 presents the 

quality comparison of solutions for the CPU and 

GPU versions of the SFO algorithm. As it can be 

seen in this table, the DSFO algorithm evaluates 

the quality of the optimum points similar to the 

sequential version for all test problems (unimodal 

and multimodal functions). In fact, these results 

show that DSFO has been carefully explored 

during optimization. The reason of improving the 

exploration of search space and good quality of 

solutions is high diversity in the DSFO algorithm. 

The multi-core parallel processing power of a GPU 

generates the high-quality random numbers using 

the CURAND library that provides more diversity 

in the population. Furthermore, in figure 7, as we 

expected, when the population size increased, the 

distributed SFO was more successful for searching 

the optimal point especially with high dimensions 

(above 32). The population size significantly 

affects finding the global optima, and increasing 

the problem dimension affects the number of warp 

switches in the GPU architecture.  

Another metric that is used for compression 

between the sequential and distributed versions of 

algorithms is execution time. The execution time 

depends on the number of operators and types of 

function that are used inside a test function. In 

figure 8, the execution time of four benchmark 

functions are presented for a fixed number of 

iterations and dimensions. As shown in this figure, 

in the low population size of search agents such as 

the 30, 50 or 100 search agents, there is no 

significant difference between the execution time 

of the sequential and distributed SFO. In other 

words, the slope of the time-consuming curves is 

very steep in lower populations but gradually 

decreases with increase in the population size. In 

fact, GPU does not indicate an extraordinary 

performance in a small set of data. However, the 

execution time of GPU becomes less than the CPU 

version when the swarm population size is 

increased. The reason for this improvement is a 

single instruction in the GPU version works over a 

large block of data and all of them are applied in 

the same operation.  

Certainly, working in blocks of data at the same 

time reduces the time consumption and overhead 

during the optimization. Moreover, the decision-

maker agents, exploration agents, and exploitation 

agents in the DSFO algorithm can run in several 

processing cores simultaneously, and the execution 

time will be faster than using CPU definitely. 

As demonstrated in figure 8, the DSFO algorithm 

is able to evaluate four test problems with a high 

population size (1000 to 8000). This ability is 

possible through the use of shared memory 

configuration and multi-agent system, and this 

algorithm can decompose the complex problems 

into simpler and smaller problems that are operated 

by the various agents. 

We carried out another set of simulations to 

evaluate the execution time of DSFO compared to 

several algorithms such as the parallel GSA 

algorithm [33], GPU_sync and GPU_SPSO 

algorithms [34], and cuda 𝐷𝐸1 and FPDE 

algorithms [35] with different numbers of 

dimension and population size. Figure 9 shows the 

comparison of the computation time (second) of 

the DSFO and PGSA implementations across 

varying population sizes on the Rastrigin function 

of different dimensions (64, 128, and 256). 

Function   SFO DSFO 

F1 

 
Mean 

Std 

 10−13 ×6.55 

 10−12 ×1.11 

 10−14 ×7.1 

 10−14 ×4.21 

F2 

 
Mean 

Std 

 10−11 ×6.49 

 10−10 ×2.34 

 10−11 ×6.49 

 10−11× 5.76 

F3 

 
Mean 

Std 

 10−14 ×2.31 

 10−14 ×6.46 

 10−14 ×5.65 

 10−13 ×3.34 

F4 

 
Mean 

Std 

 10−7 ×3.86 

 10−7 ×5.38 

 10−6 ×1.42 

 10−6 ×4.04 

Table 3. Comparison of optimization results between the 

SFO and DSFO algorithms for the four benchmark 

functions. 
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We carried out another set of simulations to 

evaluate the execution time of DSFO compared to 

several algorithms such as the parallel GSA 

algorithm [33], GPU_sync and GPU_SPSO 

algorithms [34], and cuda 𝐷𝐸1 and FPDE 

algorithms [35] with different numbers of 

dimension and population size. Figure 9 shows the 

comparison of the computation time (second) of 

the DSFO and PGSA implementations across 

varying population sizes on the Rastrigin function 

of different dimensions (64, 128, and 256). Due to 

the limitation of the number of threads per block, 

data transfer between the shared memory and the 

global memory will increase, especially with 

increasing dimensions of the problems so it will 

increase the time consumed during optimization. 

However, as it can be seen in figure 9, the 

execution time of the DSFO algorithm is less than 

parallel GSA under the same number of iterations 

and it shows that DSFO is extremely effective at 

the unimodal and scalable functions according to 

table 2. 

Another comparison illustrated in figure 10 is 

between the DSFO algorithm and the other two 

algorithms, i.e. GPU_sync and GPU_SPSO, that 

are parallel versions of the SPSO algorithm.  

Figure 7. Fitness variation with population size for different dimensions.  

Figure 8. Execution time for distributed and sequential SFO implementation (iteration = 500 and dimension = 30). 
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From figure 10, it is clear that the DSFO algorithm 

takes less execution time than the others. Also from 

this evaluation, it appears that the DSFO algorithm 

has a great ability for solving the computing 

arithmetic intensive functions like the Rosenbrock 

function in a short time.  

Moreover, figure 11 shows that DSFO is very 

competitive compared with cuda 𝐷𝐸1 and FPDE. 

These results obtained indicate that the DSFO 

algorithm is suitable for the non-convex, scalable, 

and non-separable optimization problems. These 

types of problems are not relatively easy to solve 

and optimize because they have multiple local 

optimal points, and it takes a lot of time to find the 

global optima or sticks in the local optima.  

Also some of these functions cannot divide into 

sub-objective functions, and this will make it more 

difficult to solve the functions during optimization. 

Another property of the test problems is scalability. 

This ability responds well when the dimension of 

the search space increases. In the previous 

evaluations, several multi-dimensional scalable 

test functions were evaluated and the results 

showed that the DSFO algorithm had a great ability 

to optimize the scalable problems as well. Overall, 

the experimental results show that the DSFO 

algorithm outperforms the other algorithms with a 

less time-consuming optimization. Such an 

improvement in the speed-up promises to solve the 

optimization problems with a higher speed. 

 

5. Conclusions 
This paper presented a multi-agent based 

distributed SFO algorithm (DSFO). Also the 

implementation of this algorithm on GPU using the 

CUDA architecture was presented. The practical 

implications of DSFO suggest a multiple kernels 

solution, and each dimension is mapped onto a 

distinct thread, and the blocks are employed for 

saving the position of the search agents. This 

strategy distributes the computational load by the 

search agents to calculate and determine the 

optimal point during optimization. It exploits all 

the available SMs and reduces the global memory 

access delay using the data shared memory among 

different kernels. The results obtained showed the 

reduced execution time of DSFO implementation 

Figure 9. A comparison between distributed SFO 

(DSFO) and parallel GSA (PGSA) on Rastrigin 

function. 

 

Figure 10. A comparison between DSFO and two other 

algorithms on the Rosenbrock function. 

Figure 11. A comparison between DSFO and two other algorithms for four benchmark functions. 
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compared to the original sequential SFO 

implementation and other algorithms, while the 

optimizing quality was the same or even better.  

Our future work will present on ameliorating 

distributed SFO by providing an approach using 

reconfigurable hardware for increasing the speed of 

optimization and improving the quality of the 

solutions. 
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 .1400سال  ،اولشماره  ،دوره نهم ،کاویمجله هوش مصنوعی و داده                                                                                و همکاران                   شادروان

 

الگوریتم توزیع شده بادبان ماهی مبتنی بر سیستم های چند عامله جهت حل توابع غیر محدب و مقیاس 

 پذیر و پیاده سازی آن توسط پردازشگرهای گرافیکی 
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 .دانشکده کامپیوتر، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران 2

 .بردسیر، ایران، دانشکده علوم کامپیوتر، دانشگاه آزاد اسلامی واحد بردسیر 3

 24/07/2020 پذیرش؛ 06/06/2020 بازنگری؛ 18/02/2020 ارسال

 چکیده:

وچکتر ماهی های کالگوریتم بادبان ماهی یک الگوریتم فراابتکاری است که با الهام از شکار گروهی بادبان ماهی ها و از طریق حملات متناوب آنها به دسته 

تعادل پویا بین مراحل اکتشاف و بهره برداری، ایجاد تنوع در با استفاده از یک روش ساده مزایایی همانند فراهم کردن  SFO ابداع شده است. الگوریتم

امروزه ، سیستم های مبتنی بر چند محلی و تضمین همگرایی با سرعت بالا را تضمین نموده ست.  افتادن در دام بهینه تولید جمعیت اولیه، جلوگیری از

اند . این روش ها توانسته اند با ادغام با نموده  هایی با عملکرد بالا ارائه راه حلعامل و الگوریتم های فراابتکاری برای حل مسائل بهینه سازی ترکیبی 

محسوب گردند. در این مقاله، ما  و افزایش کیفیت راه حل های محاسباتی گزینه مناسبی برای کاهش زمان محاسباتیالگوریتم های موازی سازی شده 

که باعث بهبود زمان اجرا و سرعت به همراه   (DSFO)روش توزیع شده از الگوریتم بادبان ماهیمبتنی بر سیستم های چند عامله و یک  یک روش جدید

ارائه شده که  DSFO حفظ کیفیت راه حل های حل مسئله می باشد را ارائه داده ایم. در ادامه این مقاله، جزئیات پیاده سازی و ارزیابی عملکرد الگوریتم

بر روی مجموعه ای از توابع بهینه سازی محک استاندارد می باشد و همچنین با  الگوریتم بادبان ماهی توزیع شده زنشان دهنده یک مطالعه مقایسه ای ا

ارائه شده  جمقایسه آن با سایر الگوریتم های موازی سرعت بالای الگوریتم پیشنهادی برای حل مسائل بهینه سازی نامحدود به نمایش گذاشته است.  نتای

بالای این الگوریتم در حل مسائل بهینه سازی پیوسته، تجزیه ناپذیر، غیر محدب و مقیاس پذیر می باشد که همگی جزو مسائل دشوار  حاکی از توانایی

 بهینه سازی معرفی شده اند.

گرافیکی  پردازشگر ،اشتراکیحافظه  ،پردازش موازی ،های چند عاملهسیستم ،گوریتم توزیع شده بادبان ماهیال ،بهینه ساز بادبان ماهی کلمات کلیدی:

 .موازی

 


