
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 1, 2021, 59-71.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for

Solving Non-Convex and Scalable Optimization Problems Implemented on

GPU

Soodeh Shadravan 1, Hamid Reza. Naji 2* and Vahid Khatibi 3
1. Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.

2. Department of Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran.

3. Department of Computer Engineering, Kerman Branch, Islamic Azad University, Bardsir, Iran.

Article Info Abstract

Article History:
Received 18 February 2020

Revised 06 June 2020

Accepted 24 June 2020

DOI:10.22044/jadm.2020.9389.2075

 The SailFish Optimizer (SFO) is a metaheuristic algorithm inspired by

a group of hunting sailfish that alternate their attacks on a group of

prey. The SFO algorithm takes advantage of using a simple method for

providing a dynamic balance between the exploration and exploitation

phases, creating the swarm diversity, avoiding local optima, and

guaranteeing a high convergence speed. Nowadays, multi-agent

systems and metaheuristic algorithms can provide high performance

solutions for solving combinatorial optimization problems. These

methods provide a prominent approach to reduce the execution time

and improve the solution quality. In this paper, we elaborate a multi-

agent based and distributed method for sailfish optimizer (DSFO),

which improves the execution time and speeds up the algorithm, while

maintaining the optimization results in a high quality. The Graphics

Processing Units (GPUs) using Compute Unified Device Architecture

(CUDA) are used for the massive computation requirements in this

approach. In depth of the study, we present the implementation details

and performance observations of the DSFO algorithm. Also a

comparative study of the distributed and sequential SFO is performed

on a set of standard benchmark optimization functions. Moreover, the

execution time of the distributed SFO is compared with other parallel

algorithms to show the speed of the proposed algorithm to solve the

unconstrained optimization problems. The final results indicate that

the proposed method is executed about maximum 14 times faster than

the other parallel algorithms and shows the ability of DSFO for solving

the non-separable, non-convex, and scalable optimization problems.

Keywords:
SailFish Optimizer, Distributed

Sailfish Optimizer, Multi-agent

System, Parallel Processing,

Shared Memory, Graphic

Processing Units, CUDA.

*Corresponding author:
h.naji@kgut.ac.ir (H. Naji).

1. Introduction

A combination of metaheuristics such as

computational intelligence and operational

research work is called hybrid metaheuristic. The

main reason of using this technique is to obtain the

high-quality solutions with a reasonable computing

time [1,2]. The hybrid metaheuristic algorithms

usually use some advanced strategies like multi-

agent systems, decomposition of the search space,

and parallel computation. However, taking a lot of

time to solve NP complete and high-dimensional

problems has become a challenge for the

metaheuristic algorithms. Due to the independence

of the metaheuristics components, their

combination with parallel processing and multi-

agent systems is a good option to reduce the

computational time and to increase the quality of

the solutions. In intelligent multi-agent systems, a

set of proactive agent acts individually for solving

the problems collaboratively [3]. They are used in

the metaheuristic algorithms to solve hard

Naji et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

60

optimization problems with their own intelligent

skills and cooperation of different agents by

distribution of the problem among agents and they

are organized and coordinated into a complete way.

The agent systems have shown a good performance

for solving problems in large-scale distributed and

dynamic systems [4]. In addition, the agents can

react to environmental changes for adaptations

with unpredictable events; this characteristic is

very important for the intelligent systems [5]. In

fact, it is up to the designer to determine how

information is exchanged between the agents,

which agents can share search space information

such as solutions, sub-problems and the status of

the agents, and how to control the solution process

to acquire a better performance in various

strategies. Compared with the centralized

optimization algorithms, the distributed

optimization algorithms based on the multi-agent

systems provide a robust way to solve the large-

scale problems. These systems also have the ability

to decompose the complex problems into simpler

and smaller problems that are operated by various

agents [6]. When the distributed algorithm is

described as a multi-agent system, all agents

operate asynchronously and use parallelization

strategies for enhancing the efficiency and speed of

the execution time compared to the centralized

systems.

In this paper, we describe a new distributed version

of SailFish Optimizer (SFO) [7] based on the multi-

agent systems using the CUDA architecture. In this

method, a large number of iterations is investigated

to reach the high quality solutions to solve various

optimization problems, and it has the ability to

improve the SFO’s processing speed. Also the

impacts of parallelism in high dimensionality

problems are investigated. In addition, a large

number of search agents are analyzed in order to

achieve the desired SFO’s computational time

compared to the sequential implementation and

other previously metaheuristic algorithms on GPU

using the CUDA architecture.

The rest of this paper is organized as what follows.

Section 2 describes the SFO algorithm and

sketches the basic concepts of the GPU computing

and CUDA architecture. Section 3 presents

implementation of the distributed version of SFO

to solve the optimization problems. The

experimental results and analysis are discussed in

Section 4. Finally, some concluding remarks and

future works are given in Section 5.

2. Related Works

In much of the literature, the agent technologies

have provided the practical framework for

metaheuristic algorithms. Previously, a couple of

multi-agent systems were applied to metaheuristic

algorithms for examination of their performance in

a team coordinated [8,9]. Each one of these

research works provides different benefits of

tackling search and problem solving. In [10] and

[11], the autonomous agents have been used in

Asynchronous Teams (A-Teams) that are

associated via shared memory. Also a hybrid

metaheuristic algorithm has been presented in [12],

where each agent acts independently in the search

space and it has collaborated with other agents

through the multi-agent environment. The results

obtained show the reduction of cost function by

using the cooperation agents. In [13], a multi-agent

based Gravitational Search Algorithm (GSA) has

been presented and it has compared the execution

time of the multiple agent implementation with the

original GSA sequential implementation. In this

method, different agents handle the small and

simple components, and these multiple agents are

used to express the parallelism strategy. Currently,

the researchers show how we can use agent-based

techniques for solving complex problems quickly.

This manner has the potential flexibility and

expandability to enhance the computational

systems and creates a strong approach to the

traditional multi-agent systems [14, 15].

Nowadays, the distributed optimization algorithms

based on multi-agent systems have drawn much

attention of the researchers and several algorithms

have been proposed in the recent years [16-19]. In

most of these methods, each agent computes the

whole global minimizer. Map-building and

classification are specific distributed optimization

problems that can be solved by these approaches.

In these problems, the data is physically distributed

among their agents and the number of decision

variables is independent from the number of

agents. Therefore, due to this independence, they

are good options for solving with distributed

optimization algorithms. In [20], another

distributed heuristic algorithm has been presented

for detecting the optimal route between the three-

way and intersections. The packets are delivered

based on the selected routes from a source to the

destination in vehicular ad hoc network. The

results show the superiority of this algorithm over

similar algorithms. Also the MOEA/D-TS

algorithm is a hybrid metaheuristic algorithm that

is derived from Multi-Objective Evolutionary

Algorithm based on Decomposition (MOEA/D)

and Tabu Search (TS) [21]. This algorithm uses the

neighborhood search authority of TS along with the

parallel computing of MOEA/D to cover the

totality of the Pareto front by uniformly distributed

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems

Implemented on GPU

61

solutions. According to the final results obtained,

the MOEA/D-TS algorithm could produce fully

satisfactory results and outperforms the previous

algorithms.

Moreover, the graphics processing units (GPUs)

have become a strong tool to implement the parallel

execution of hundreds of threads for metaheuristic

algorithms [22]. Many parallel algorithms have

been implemented with different designs that cover

the use of GPUs to implement nature-inspired

metaheuristics [23], and they offer different

parallelism strategies and communication patterns

of metaheuristics on GPUs [24]. Due to the

independence of the metaheuristics components,

combination of these algorithms by distributed

optimization algorithms based on multi-agent

systems and parallel processing can provide high

performance solutions to quickly solve the

combinatorial optimization problems.

3. Preliminaries

The main inspiration of the SFO algorithm will be

described in this section. Then the proposed

algorithm and the mathematical model are

discussed in details.

3.1. Sailfish Optimizer (SFO)

The SFO algorithm presents a novel nature-

inspired metaheuristic optimization algorithm and

mimics the strategy of the group of hunting sailfish

[7]. This algorithm includes two types of

population, the population of sailfish for

intensification of the search space and the

population of sardines for diversification of the

search space. In order to describe the proposed

algorithm, it is assumed that the positions of

sailfish are the variables of all solutions, while the

ith member at the kth search agent has a current

position 𝑆𝐹𝑖,𝑘 in a d-dimensional search space. The

position of all sailfish is saved to the matrix SF and

the following matrix shows the fitness value for all

solutions:

𝑆𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

[

𝑓(𝑆𝐹1,1 𝑆𝐹1,2 ⋯ 𝑆𝐹1,𝑑)

𝑓(𝑆𝐹2,1 𝑆𝐹2,2 ⋯ 𝑆𝐹2,𝑑)

⋮ ⋮ ⋮ ⋮
𝑓(𝑆𝐹𝑚,1 𝑆𝐹𝑚,2 ⋯ 𝑆𝐹𝑚,𝑑)]

=

[

𝐹𝑆𝐹1

𝐹𝑆𝐹2

 ⋮
𝐹𝑆𝐹𝑚

]

(1)

 where 𝑆𝐹𝑖,𝑗 shows the value of the jth dimension of

the ith sailfish, f calculates the cost function and

will be saved in the matrix 𝑆𝐹𝐹𝑖𝑡, and m indicates

the number of sailfish. Another significant

incorporator is the group of sardines in the SFO

algorithm. It is assumed that the school of sardines

is also swimming in the search space and their

positions will be saved to the matrix S so that their

fitness values are utilized as follows:

𝑆𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

[

𝑓(𝑆1,1 𝑆1,2 ⋯ 𝑆1,𝑑)

𝑓(𝑆2,1 𝑆2,2 ⋯ 𝑆2,𝑑)

⋮ ⋮ ⋮ ⋮
𝑓(𝑆𝑛,1 𝑆𝑛,2 ⋯ 𝑆𝑛,𝑑)]

=

[

𝐹𝑆1

𝐹𝑆2

 ⋮
𝐹𝑆𝑛

]

 (2)

where 𝑆𝑖,𝑗 indicates the value of the jth dimension

of the ith sardine, f calculates the cost function of

each sardine and saves in the matrix 𝑆𝐹𝑖𝑡, and n is

the number of sardines. Moreover, the position of

sailfish will be updated during the optimization.

The new position of sailfish 𝑋𝑛𝑒𝑤_𝑆𝐹
𝑖 updates at the

ith iteration as follows:

𝑋𝑛𝑒𝑤𝑆𝐹

𝑖 = 𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖

−𝜆𝑖 × (𝑟𝑎𝑛𝑑(0,1) × (
𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖 + 𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆

𝑖

2
) − 𝑋𝑜𝑙𝑑𝑆𝐹

𝑖)

(3)

where 𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹
𝑖 and 𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆

𝑖 are the best

positions of sailfish and the best positions of

sardines, respectively, 𝑋𝑜𝑙𝑑_𝑆𝐹
𝑖 determines the

current position of sailfish, 𝑟𝑎𝑛𝑑(0,1) is a random

number between 0 and 1, and 𝜆𝑖 is generated as

follows:

𝜆𝑖 = 2 × 𝑟𝑎𝑛𝑑(0,1) × 𝑃𝐷 − 𝑃𝐷 (4)

Due to the decrease in the number of prey during

the group hunting, the 𝑃𝐷 parameter is a significant

parameter for updating the position of sailfish

around the prey school and shows the number of

prey at each iteration as follows:

(5)
𝑃𝐷 = 1 − (

𝑁𝑆𝐹

𝑁𝑆𝐹 + 𝑁𝑆
)

where 𝑁𝑆𝐹 and 𝑁𝑆 are the number of sailfish and

sardines at each iteration, respectively. Figure 1

shows a 2D position of sailfish after and before an

alternative attack and encircling the prey during

collaborative hunting. The proposed alternative

attack and encircling mechanism create a circle-

shaped neighborhood around the solutions for

approaching the prey from different directions by

hunters.

In addition, for mimicking to update the position of

sardines at the ith iteration, it can be formulated as

follows:

𝑋𝑛𝑒𝑤_𝑆
𝑖 = 𝑟 × (𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 − 𝑋𝑜𝑙𝑑𝑆

𝑖 + 𝐴𝑃) (6)

where 𝑟 is a random number between 0 and 1,

𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹
𝑖 is the best position of sailfish formed until

now, 𝑋𝑜𝑙𝑑_𝑆
𝑖 is the current position of sardines, and

Naji et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

62

the amount of sailfish’s attack power will be saved

in 𝐴𝑃 parameter that is generated as follows:

 𝐴𝑃 = 𝐴 × (1 − (2 × 𝐼𝑡𝑟 × 𝜀)) (7)

where 𝐴 and 𝜀 are the coefficients for decreasing

the value of power attack linearly from 𝐴 to 0.

Using the 𝐴𝑃 parameter, the number of sardines

that update their position (𝛼) and the number of

variables of problem (𝛽) can be calculated as

follows:

where 𝑁𝑆 indicates the number of sardines and 𝑑𝑖

is the number of variables at the ith iteration. In

order to show a conceptual model of position

updating of a sardine in search space, figure 2 is

illustrated. The horizontal axis shows only one

dimension that is one variable or parameter of a

given problem. However, the SFO algorithm can

utilize all the variables of the problem. As it can be

seen in this figure, the red multiplication signs are

the possible positions that can be chosen as the next

position of the sardine over the course of iteration.

Finally, to increase the chance of hunting the new

prey, the position of sailfish substitutes the latest

position of the hunted sardine. The adaptive

formula is as follows:

 𝑋𝑆𝐹
𝑖 = 𝑋𝑠

𝑖 if 𝑓(𝑆𝑖) < 𝑓(𝑆𝐹𝑖) (10)

where 𝑋𝑆𝐹
𝑖 shows the current position of sailfish

and 𝑋𝑆
𝑖 indicates the current position of sardine the

ith iteration. The pseudo-code of SFO is

summarized in table 1.

3.2. GPU Computing

Nowadays, the graphics processing units (GPUs)

have obtained a high performance computing with

a lower cost compared to the CPU-based

architectures. Although GPUs have been mainly

used to support the graphical applications, in the

recent years, they have been employed for highly

parallel computations.

This modern hardware has been successfully

implemented in various fields such as image

𝛼 = 𝑁𝑆 × 𝐴𝑃 (8)

𝛽 = 𝑑𝑖 × 𝐴𝑃 (9)

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100
1

23

4

5

6
7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

Sailfish

Sardine

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100
1

23

4

5

6
7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

Sailfish

Sardine

(a)

(b)

Sardine

Sailfish

Figure 1. 2D position vectors of sailfish and sardines simulated by MATLAB: (a) before updating

sailfish position, (b) after updating sailfish position. A big magenta circle is drawn around the elite

sailfish and a small magenta circle is drawn around the injured sardine.

Current position of Sardine
New position of Sardine

Current position of Sailfish

P
o
si

ti
o
n
 i

n
 o

n
e

d
im

en
si

o
n

Figure 2. Sardine’s position in one dimension with

different r values stochastically.

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems

Implemented on GPU

63

processing [25], data mining [26], neural network

computation [27], and data compression [28].

Also GPU computing is efficient in executing such

synchronized parallel algorithms that involve data

transfers and regular computations. Nevertheless,

to benefit from these advantages, more complex

programs are provided to solve problems with high

arithmetic intensity and distributed architectures

[29].

3.3. An Overview of CUDA Architecture

Computing Unified Device Architecture (CUDA)

is a multi-threaded programming model and

parallel computing platform that has been

developed by NVIDIA [30]. The CUDA

architecture employs the multi-core parallel

processing of a GPU and use C as a high-level

programming language for solving complex

computational problems. High quality of solutions

and good scalability are effective advantages for

implementation of an algorithm distributed on the

CUDA platform. Using this method, the

metaheuristic algorithms can scale the problem in

a natural and decent way. Also it can steer the

optimization with a few control variables.

The CUDA architecture is made up of an array of

Streaming Multiprocessors (SMs) that have the

ability to run several blocks in the kernel

simultaneously. A kernel calls from CPU (named

as host) and duplicates on the GPU (named as

device), and is executed by a batch of threads. The

Nvidia architecture supports several types of

memory that the programmers can use to achieve a

high execution speed in their kernels [31]. The

largest memory is the global memory, and its

content is visible to all threads of all launched

kernels. However, the accessing global memory

should be improved due to a high throughput and

latency. Therefore, global memory is often used for

moving data from one kernel to another one.

Another type of memory is the constant memory

that is a global memory with a special cache for

efficient access. It often uses to provide the input

value to kernel functions. Also registers and share

memory are on-chip memories on GPU, and their

variables can be accessed extremely fast and in

parallel. For keeping the frequently accessed

variables, a kernel will use the register memory,

and the content of this memory is private to each

thread. However, shared memory is allocated for

threads within a block to collaborate to each other,

and the contents of shared memory will be deleted

after termination of a kernel. The GPU memory

hierarchy is presented in figure 3.

4. Implementing Distributed SFO using CUDA

In this section, the main parts of the Distributed

SFO (namely, DSFO) based on multi-agent

systems have been developed. A single agent in

DSFO algorithm implements each group of

operations. Then the agents act in parallel for

gathering information from other agents or

environments and return the results to the other

agents or environments. The input information is a

combination of the current position and best

position of the search agents, and this information

will be saved in the memory over the course of

iteration during parallelization.

In order to reduce the consumed time and improve

the optimization speed, DSFO is composed of the

decision-maker agents, exploration agents, and

exploitation agents. The implementation of

Initialize the population of sailfish and sardine randomly

Initialize parameters (A=4 and 𝜀 = 0.001).
Compute the fitness of sailfish and sardines.
Find the best sailfish and sardine and assume that they

 are as elite sailfish and injured sardine, respectively.

 While the termination conditions are not satisfied
 for each sailfish

 Calculate 𝜆𝑖 using(4).
 Update the position of sailfish using (3) and (10).

 end for

 Calculate AttackPower using (7).
 If AttackPower < 0.5

 Calculate 𝛼 using (8).

 Calculate 𝛽 using (9).

 Select a set of sardine based on the value of 𝛼 and 𝛽.
 Update the position of the selected sardine by (6) and (10).

 else

 Update the position of all sardine by (6) and (10).

 end if

 Calculate the fitness of all sardine.

 If there is a better solution in sardine population Replace a
sailfish with injured Sardine using (10).

 Remove the hunted sardine from population.

 Update the best sailfish and best sardine.

 end if

 end while

Return best sailfish

Table 1. Pseudocode for the SFO algorithm.

𝑆𝐼𝑀𝐷 𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑆ℎ𝑎𝑟𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦

𝑅1 𝑅2 𝑅𝑛
𝑃1 𝑃2 𝑃𝑛

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝑈𝑛𝑖𝑡

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶𝑎𝑐ℎ𝑒

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐶𝑎𝑐ℎ𝑒

𝐷𝑒𝑣𝑖𝑐𝑒 𝑀𝑒𝑚𝑜𝑟𝑦

Figure 3. The GPU memory model

Naji et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

64

updating the sailfish’s and sardine’s positions is

designed for the purpose of exploration and

exploitation agents, respectively. In addition, the

decision-maker agents calculate the cost of search

agents and decide whether the current search agent

in this iteration is the best or not.

The DSFO algorithm is expressed in a CUDA-

based pseudo-code with six kernel functions. The

first kernel generates random numbers on a GPU

using the CURAND library [32]. The CURAND

library is used to generate the high-quality random

numbers for sailfish’s and sardine’s populations.

In this kernel, using 𝑘 blocks of ℎ threads, the

position of sailfish and sardine will be utilized on a

GPU. For this initialization, the matrices SF and 𝑆

have been converted to the arrays to realize the

coalescing memory access. Conversion of the

matrix 𝑆𝐹 to the array 𝑆𝐹𝑑 is shown in figure 4.

In this figure, 𝑆𝐹1 ⋯ 𝑆𝐹𝑚 represents the position of

sailfish, where 𝑚 and dim indicate the number of

sailfish and the number of variables, respectively.

Due to the limited number of threads per block and

to prevent the production of unused threads in each

block, we assumed that the size of the block in our

GPU architecture was equal to 900, and the random

numbers were allocated to 900 decent threads in

each block. As shown in figure 4, each sub-swarm

of sailfish and sardines is associated with one block

of threads and each dimension is mapped onto a

distinct thread. Each block is also considered as an

agent to calculate the cost function and determine

the best search agent in each iteration.

The second kernel generates

blocks of 900 threads to compute the objective

functions for the sailfish’s and sardine’s

populations, respectively. Calculation of the fitness

value depends on the number of search agents so

the time of calculation is proportional to the size of

populations. In addition, in this kernel, the fitness

value is calculated via shared memory. The reason

for using the shared memory variables is the

calculation of fitness value via global memory

consuming a lot of time and will decrease the speed

of optimization. Therefore, as shown in figure 5,

the information of each block will be transferred to

the shared memory variable with the same size and

the fitness value of each search agent will be saved

respect to a given dimension.

Through another shared memory variable with the

shared memory variable with the same size and the

fitness value of each search agent will be saved

through another shared memory variable with

respect to a given dimension. When the calculation

of cost functions is finished, all of the fitness values

will be sorted in the shared memory. Due to the

sorting operation, thread 0 contains the best value

in this stage, and it is also responsible for writing

the result to the global memory.

After completing this process, the best value of

each block will be transferred from the global

memory to the share memory, and the current best

values are compared with the previous values in the

third kernel. Also using the --syncthreads()

function, the tasks of thread will be finished in the

shared memory before any of them moving on to

the next iteration. In this case, none of the threads

would load their contents too early and destroy the

input value for other threads.

𝑆𝐹1

𝑆𝐹2

⋮

𝑆𝐹𝑚

𝑑1 𝑑2 𝑑𝑑𝑖𝑚 ⋯

0 1

⋯

⋯

⋮ ⋮ ⋮

899

⋯ ⋯

900 1799 901 9101

⋯

9100 (𝑚 ∗ 𝑑𝑖𝑚) − 1

𝑡0 𝑡1 𝑡2 𝑡ℎ−1

⋯

𝐵𝑙𝑜𝑐𝑘 0

⋯

𝐵𝑙𝑜𝑐𝑘 1 𝐵𝑙𝑜𝑐𝑘 𝑘 − 1

⋯ ⋯ ⋯

𝑆𝐹𝑑 =

⋯

⋯

C
o

n
v
er

t

Figure 4. Conversion of the matrix 𝑺𝑭 to the array 𝑺𝑭𝒅 and assigning random numbers to the threads and the existing

agents.

𝑡0 𝑡1 𝑡2 𝑡ℎ−1 𝑡0 𝑡1 𝑡2 𝑡ℎ−1

⋯ ⋯

𝐴𝑔𝑒𝑛𝑡1 𝐴𝑔𝑒𝑛𝑡2 𝐴𝑔𝑒𝑛𝑡𝑚 (dim) 900m

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems

Implemented on GPU

65

 In the third kernel, the decision-maker agents

decide to update the current best value of the

sailfish’s population (called elite sailfish) and the

current best value of sardine’s population (called

injured sardine) if they are smaller than the

previous best values. In other words, the decision-

maker agents record the high-quality solutions,

which are discovered during the optimization in the

shared memory. Throughout this process, the

threads of this kernel accordingly update the

coordinates of the best values obtained so for.

The fourth kernel updates the position of sailfish by

the exploration agents that are independent from

any other and act in parallel. If the exploration

agents observe any improvement or insignificant

improvement, the search will be stagnated and

need to be diversified by updating the position of

sailfish according to (3). In this kernel, the

information of each block will be copied to the

shared memory for decreasing the access latency

and improving the performance of the algorithm.

The fifth kernel updates the position of sardine by

the exploitation agents using (6). These agents

cooperate with the exploration agents when a more

intensified search is required during the

optimization. The positions of sardines are

allocated to the threads of block. Thereafter, for

updating the position of sardines, the info of block

transfers to the shared memory for time-consuming

reduction due to the high speed of computing in the

shared memory. In the last kernel, each exploration

agent decides whether it needs to substitute the

latest position of the injured sardine with the

position of the current sailfish or it can continue its

process without information exchange. If the

fitness value of the injured sardine is fitter than the

elite sailfish, their positions will be replaced

together according to (10) and the position of the

injured sardine will be removed from their

population (it means that the injured sardine is

hunted by the elite sailfish).

A flowchart of the DSFO implementation on

CUDA is shown in figure 6. As shown in this

figure, after generation of the initial populations,

each swarm will be partitioned into separate sub-

swarms. Then the information of sub-swarms will

be transferred to the shared memory for computing

the fitness value and updating the position of the

search agents according to the best solution

obtained so far. This process continues until a

number of maximum generations is given.

5. Experimental Results and Analysis

This section presents the experimental results that

have been obtained using sequential and distributed

SFO algorithm. The results are compared with

another previous implementation on two

performance measures, including speedup and

quality. These measures are evaluated on four

classical benchmarks that are often used to evaluate

parallel optimization algorithms as listed in table 2.

In this table, F1 and F4 are unimodal functions that

are suitable for benchmarking the exploitation

phase because of having one global optimum and

no local optima. However, F2 and F3 are

multimodal functions that have a massive number

of local optima and there are suitable for

benchmarking the exploration phase. A successful

metaheuristic algorithm should have a great ability

to provide the dynamic balance between

exploration and exploitation phases on a given

optimization problem.

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦

𝑆ℎ𝑎𝑟𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦

𝐵𝑙𝑜𝑐𝑘 0 𝐵𝑙𝑜𝑐𝑘 1 𝐵𝑙𝑜𝑐𝑘 𝑘 − 1

⋯

𝑀0 𝑀1 𝑀899

𝑐0 ⋯

Calculate the Cost Function

Copy to Shared Memory

𝑏0 𝑏1 𝑏899 𝑏0 𝑏1 𝑏899 𝑏0 𝑏1 𝑏899

𝑐𝑚 𝑐1

Figure 5. To transfer the information of blocks to shared memory variables for calculation of cost function.

Naji et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

66

 Name Function Characteristics Range Optimal

U
n

im
o
d

a
l

sphere
𝒇𝟏(𝒙) = ∑ 𝒙𝒊

𝟐
𝒏

𝒊=𝟏

Convex,
Scalable, Separable [-100,100] 0

Rastrigin

𝑭𝟐(𝒙) = ∑ [𝒙𝒊
𝟐

𝒏

𝒊=𝟏
− 𝟏𝟎𝐜𝐨𝐬(𝟐𝝅𝒙𝒊) + 𝟏𝟎]

Convex,

Scalable, Separable
[-5.12,5.12] 0

M
u

lt
im

o
d

a
l

Griewank

𝑭3(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐
𝒏

𝒊=𝟏

− ∏ 𝐜𝐨𝐬 (
𝒙𝒊

√𝒊
) + 𝟏

𝒏

𝒊=𝟏

Non Convex,
Scalable, Non

Separable [-600,600] 0

Rosenbrock
𝒇𝟒(𝒙) = ∑ [𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊

𝟐)
𝟐

𝒏−𝟏

𝒊=𝟏

+ (𝒙𝒊 − 𝟏)𝟐]

Non Convex,

Scalable, Non

Separable
[-30,30]

0

CPU GPU

Start DSFO initialize

parameters

G
lo

b
al

 M
em

o
ry

Generate initial population

 Compute fitness function

S
h

ar
ed

M
em

o
ry

 Find the best solution

 Update the position

 Substitute the fitter value

S
h

ar
ed

M
em

o
ry

S
h

ar
ed

M
em

o
ry

Terminate?

No

Yes

Invoke generate_pop kernel for SF and S

Invoke obj_function kernel for SF and S

Invoke get_best kernel for SF and S

Invoke update_sailfish and update_sardine kernels

Invoke eating_sardine kernel

Return results

Return results

Return results

Return results

Return results

D
ec

is
io

n
 M

a
k
er

 A
g
e
n
ts

E

x
p

lo
ra

ti
o

n
 a

n
d

ex
p

lo
it

at
io

n
 A

g
en

ts

Figure 6. A flowchart of DSFO implementation on CUDA (SF is sailfish and S is sardine).

Return best sailfish

Table 2. Benchmark test functions.

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems

Implemented on GPU

67

The sequential and distributed SFO (DSFO) and

executed using the same number of search agents

and dimensions. Also, our tests were conducted

using an Intel(R) Core i7(TM) with 8 GB RAM and

an NVIDIA GeForce GTX980 GPU. In order to

compile the distributed version, Microsoft Visual

Studio 2012 Professional Edition and CUDA 4.2

SDK was used and to compile the sequential

version, MATLAB 2019 was used. The operating

system was Windows 7 Professional SP1. To

provide a fair comparison, every test function was

solved with 30 candidate solutions on the 500

iterations and the average results were reported

after 20 times of run for each experiment.

As mentioned earlier, the quality of solution is one

of the most important issues to measure the

performance of a distributed algorithm. The

experimental results of the DSFO algorithm have

proved that the quality of solutions is not sacrificed

for the sake of speed-up. Table 3 presents the

quality comparison of solutions for the CPU and

GPU versions of the SFO algorithm. As it can be

seen in this table, the DSFO algorithm evaluates

the quality of the optimum points similar to the

sequential version for all test problems (unimodal

and multimodal functions). In fact, these results

show that DSFO has been carefully explored

during optimization. The reason of improving the

exploration of search space and good quality of

solutions is high diversity in the DSFO algorithm.

The multi-core parallel processing power of a GPU

generates the high-quality random numbers using

the CURAND library that provides more diversity

in the population. Furthermore, in figure 7, as we

expected, when the population size increased, the

distributed SFO was more successful for searching

the optimal point especially with high dimensions

(above 32). The population size significantly

affects finding the global optima, and increasing

the problem dimension affects the number of warp

switches in the GPU architecture.

Another metric that is used for compression

between the sequential and distributed versions of

algorithms is execution time. The execution time

depends on the number of operators and types of

function that are used inside a test function. In

figure 8, the execution time of four benchmark

functions are presented for a fixed number of

iterations and dimensions. As shown in this figure,

in the low population size of search agents such as

the 30, 50 or 100 search agents, there is no

significant difference between the execution time

of the sequential and distributed SFO. In other

words, the slope of the time-consuming curves is

very steep in lower populations but gradually

decreases with increase in the population size. In

fact, GPU does not indicate an extraordinary

performance in a small set of data. However, the

execution time of GPU becomes less than the CPU

version when the swarm population size is

increased. The reason for this improvement is a

single instruction in the GPU version works over a

large block of data and all of them are applied in

the same operation.

Certainly, working in blocks of data at the same

time reduces the time consumption and overhead

during the optimization. Moreover, the decision-

maker agents, exploration agents, and exploitation

agents in the DSFO algorithm can run in several

processing cores simultaneously, and the execution

time will be faster than using CPU definitely.

As demonstrated in figure 8, the DSFO algorithm

is able to evaluate four test problems with a high

population size (1000 to 8000). This ability is

possible through the use of shared memory

configuration and multi-agent system, and this

algorithm can decompose the complex problems

into simpler and smaller problems that are operated

by the various agents.

We carried out another set of simulations to

evaluate the execution time of DSFO compared to

several algorithms such as the parallel GSA

algorithm [33], GPU_sync and GPU_SPSO

algorithms [34], and cuda 𝐷𝐸1 and FPDE

algorithms [35] with different numbers of

dimension and population size. Figure 9 shows the

comparison of the computation time (second) of

the DSFO and PGSA implementations across

varying population sizes on the Rastrigin function

of different dimensions (64, 128, and 256).

Function SFO DSFO

F1

Mean

Std

 10−13 ×6.55

 10−12 ×1.11

 10−14 ×7.1

 10−14 ×4.21

F2

Mean

Std

 10−11 ×6.49

 10−10 ×2.34

 10−11 ×6.49

 10−11× 5.76

F3

Mean

Std

 10−14 ×2.31

 10−14 ×6.46

 10−14 ×5.65

 10−13 ×3.34

F4

Mean

Std

 10−7 ×3.86

 10−7 ×5.38

 10−6 ×1.42

 10−6 ×4.04

Table 3. Comparison of optimization results between the

SFO and DSFO algorithms for the four benchmark

functions.

Naji et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

68

We carried out another set of simulations to

evaluate the execution time of DSFO compared to

several algorithms such as the parallel GSA

algorithm [33], GPU_sync and GPU_SPSO

algorithms [34], and cuda 𝐷𝐸1 and FPDE

algorithms [35] with different numbers of

dimension and population size. Figure 9 shows the

comparison of the computation time (second) of

the DSFO and PGSA implementations across

varying population sizes on the Rastrigin function

of different dimensions (64, 128, and 256). Due to

the limitation of the number of threads per block,

data transfer between the shared memory and the

global memory will increase, especially with

increasing dimensions of the problems so it will

increase the time consumed during optimization.

However, as it can be seen in figure 9, the

execution time of the DSFO algorithm is less than

parallel GSA under the same number of iterations

and it shows that DSFO is extremely effective at

the unimodal and scalable functions according to

table 2.

Another comparison illustrated in figure 10 is

between the DSFO algorithm and the other two

algorithms, i.e. GPU_sync and GPU_SPSO, that

are parallel versions of the SPSO algorithm.

Figure 7. Fitness variation with population size for different dimensions.

Figure 8. Execution time for distributed and sequential SFO implementation (iteration = 500 and dimension = 30).

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems

Implemented on GPU

69

From figure 10, it is clear that the DSFO algorithm

takes less execution time than the others. Also from

this evaluation, it appears that the DSFO algorithm

has a great ability for solving the computing

arithmetic intensive functions like the Rosenbrock

function in a short time.

Moreover, figure 11 shows that DSFO is very

competitive compared with cuda 𝐷𝐸1 and FPDE.

These results obtained indicate that the DSFO

algorithm is suitable for the non-convex, scalable,

and non-separable optimization problems. These

types of problems are not relatively easy to solve

and optimize because they have multiple local

optimal points, and it takes a lot of time to find the

global optima or sticks in the local optima.

Also some of these functions cannot divide into

sub-objective functions, and this will make it more

difficult to solve the functions during optimization.

Another property of the test problems is scalability.

This ability responds well when the dimension of

the search space increases. In the previous

evaluations, several multi-dimensional scalable

test functions were evaluated and the results

showed that the DSFO algorithm had a great ability

to optimize the scalable problems as well. Overall,

the experimental results show that the DSFO

algorithm outperforms the other algorithms with a

less time-consuming optimization. Such an

improvement in the speed-up promises to solve the

optimization problems with a higher speed.

5. Conclusions
This paper presented a multi-agent based

distributed SFO algorithm (DSFO). Also the

implementation of this algorithm on GPU using the

CUDA architecture was presented. The practical

implications of DSFO suggest a multiple kernels

solution, and each dimension is mapped onto a

distinct thread, and the blocks are employed for

saving the position of the search agents. This

strategy distributes the computational load by the

search agents to calculate and determine the

optimal point during optimization. It exploits all

the available SMs and reduces the global memory

access delay using the data shared memory among

different kernels. The results obtained showed the

reduced execution time of DSFO implementation

Figure 9. A comparison between distributed SFO

(DSFO) and parallel GSA (PGSA) on Rastrigin

function.

Figure 10. A comparison between DSFO and two other

algorithms on the Rosenbrock function.

Figure 11. A comparison between DSFO and two other algorithms for four benchmark functions.

Naji et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

70

compared to the original sequential SFO

implementation and other algorithms, while the

optimizing quality was the same or even better.

Our future work will present on ameliorating

distributed SFO by providing an approach using

reconfigurable hardware for increasing the speed of

optimization and improving the quality of the

solutions.

References
[1] C. Blum et al., "Hybrid metaheuristics in

combinatorial optimization: A survey" Applied Soft

Computing, vol.11, no. 6, pp. 4135 – 4151, 2011.

[2] I. Boussaid et al., "A survey on optimization

metaheuristics" Information Sciences, vol. 237, pp. 82–

117, 2013.

[3] M.B. Ayhan et al., "A multi-agent based approach

for change management in manufacturing enterprises"

Journal of Intelligent Manufacturing, vol. 26, no. 5, pp.

975-988, 2015.

[4] M.A. Hale and J. Craig, "Preliminary development

of agent technologies for a design integration

framework" Proc. 5th Symp. Multidisciplinary Analysis

and Optimization, Panama City, FL, 1994.

[5] N. Jennings and M. Wooldridge, "Intelligent Agents:

Theory and Practice" The Knowledge Eng. Rev, vol. 10,

no. 2, pp. 115–152, 1995.

[6] J. M Vidal et al., "Inside an Agent" IEEE Internet

Computing, 2001.

[7] S. Shadravan et al., "The Sailfish Optimizer: A novel

nature-inspired metaheuristic algorithm for solving

constrained engineering optimization problem"

Engineering Applications of Artificial Intelligence, vol.

88, pp. 20–34, 2019.

[8] M. E. Aydin, "Meta-heuristic agent teams for job

shop scheduling problems" Lecture Notes in Artificial

Intelligence, vol. 4659, pp. 185-194, 2007.

[9] M. Hammami and K. Ghediera, "COSATS, X-

COSATS: Two multi-agent systems cooperating

simulated annealing, tabu search and X-over operator

for the K-Graph Partitioning problem" Lecture Notes in

Computer Science, vol. 3684, pp. 647-653, 2005.

[10] S. Talukdar et al., "Asynchronous teams:

Cooperation schemes for autonomous agents" Journal

of Heuristics, vol. 4, no. 4, pp. 295–321, 1998.

[11] S. Talukdar, S. Murthy and R. Akkiraju

"Asynchronous teams. In Handbook of Metaheuristics,

ser. International Series in Operations Research &

Management Science" Springer US, vol. 57, pp. 537–

556, 2013.

[12] Maria Amélia Lopes Silva et al. "A Multiagent

Metaheuristic Optimization Framework with

Cooperation" Brazilian Conference on Intelligent

Systems IEEE, pp. 104-109, 2015.

[13] H. R. Naji, M. Sohrabi, and E. Rashedi, "A High

Speed and Performance Optimization Algorithm Based

on Gravitational Approach" IEEE Journal of Computing

in Science and Engineering, vol. 14, no. 5, pp. 56-62,

2013.

[14] H. R. Naji, "Solving Large Computational

Problems using Multi-Agents Implemented in

Hardware" Computing in Science and Engineering,

IEEE CS and American Institute of Physics, vol. 10, no.

5, pp. 54-63, 2008.

[15] H.R. Naji and B.E. Wells, " On incorporating multi-

agents in combined hardware/software based

reconfigurable systems, a general architectural

framework" Symposium on System Theory, Huntsville,

AL, 2002.

[16] G. Binetti et al., "Distributed consensus-based

economic dispatch with transmission losses" IEEE

Trans. Power Syst., vol. 29, no. 4, pp. 1711–1720, 2014.

[17] Z. Qiu, S. Liu and L. Xie, " Distributed constrained

optimal consensus of multi-agent systems" Automatica,

vol. 68, pp. 209–215, 2016.

[18] R. Carli et al., "Analysis of newton-raphson

consensus for multi-agent convex optimization under

asynchronous and lossy communications" in IEEE 54th

Annual Conference on Decision and Control (CDC).

IEEE, pp. 418–424, 2015.

[19] H. Zhang et al., "Adaptive consensus-based

distributed target tracking with dynamic cluster in

sensor network" IEEE Trans. Cybern., vol. 49, no. 5, pp.

1580–1591, 2019.

[20] R. Yarinezhad and A, Sarabi, "A New Routing

Algorithm for Vehicular Ad-hoc Networks based on

Glowworm Swarm Optimization Algorithm" Journal of

AI and Data Mining, vol. 7, no. 1, pp. 69-76, 2019.

[21] Sh. Lotfi and F. Karimi, "A Hybrid MOEA/D-TS

for Solving Multi-Objective Problems" Journal of AI

and Data Mining, vol. 5, no. 2, pp. 183-195, 2017.

[22] M. Essaid et al., " GPU parallelization strategies for

metaheuristics: a survey" International Journal of

Parallel, Emergent and Distributed Systems, vol. 34, no.

5, pp. 497-522, 2018.

[23] P. Krömer, J. Platoš and V. Snášel. "Nature-

inspired meta-heuristics on modern GPUs: state of the

art and brief survey of selected algorithms" Int J Parallel

Program, vol. 42, no. 5, pp. 681–709, 2014.

[24] E. Alba, G. Luque and S. Nesmachnow, " Parallel

metaheuristics: recent advances and new trends"

International Trans Oper Res, vol. 20, no. 1, pp. 1–48,

2013.

 [25] Z. Yang, Y. Zhu and Y. Pu, " Parallel image

processing based on CUDA" In: 2008 International

Conference on Computer Science and Software

Engineering, pp. 198–201, 2008.

[26] W. Fang et al., "Parallel data mining on graphics

processors" Technical Report HKUST-CS08-07. Hong

A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems

Implemented on GPU

71

Kong, China: Hong Kong University of Science and

Technology, 2008.

[27] Z.W. Luo et al., "Artificial Neural Network

Computation on Graphic Process Unit" IEEE

International Joint Conference on Neural Networks, pp.

622–626, 2005.

[28] R.A. Patel et al., "Parallel lossless data compression

on the GP" San Jose (CA): IEEE, 2012.

[29] A. Brodtkorb et al., "State-of-the-art in

heterogeneous computing" Sci. Program, vol. 18, no. 1,

pp. 1-33, 2012.

[30] NVIDIA, NVIDIA CUDA Programming version

6.0, 2014.

[31] DB. Kirk, WH. Wen-Mei, "Programming

massively parallel processors: a hands-on approach"

Morgan kaufmann, 2016.

[32] NVIDIA: CURAND Library 7.5., 2015.

http://docs.nvidia.com/cuda/pdf/CURAND Library.pdf.

[33] A. Zarrabi et al., "Gravitational search algorithm

using CUDA: a case study in high-performance

metaheuristics" Springer Science+Business Media New

York, vol. 71, no. 4, pp. 1277-1296, 2014.

[34] R.V. Krishna and S.S. Reddy, "Performance

Evaluation of Particle Swarm Optimization Algorithms

on GPU using CUDA" I J C S S E I T, vol. 5, no. 1, pp.

65-81, 2012.

[35] A.K. Qin et al., "An Improved CUDA-Based

Implementation of Differential Evolution on GPU"

ACM New York, NY, USA, pp. 991-998, 2012.

 .1400سال ،اولشماره ،دوره نهم ،کاویمجله هوش مصنوعی و داده و همکاران شادروان

الگوریتم توزیع شده بادبان ماهی مبتنی بر سیستم های چند عامله جهت حل توابع غیر محدب و مقیاس

 پذیر و پیاده سازی آن توسط پردازشگرهای گرافیکی

 3وحید خطیبی و ،*2حمید رضا ناجی ، 1سوده شادروان

 .کرمان، ایران، دانشکده علوم کامپیوتر، دانشگاه آزاد اسلامی واحد کرمان 1

 .دانشکده کامپیوتر، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران 2

 .بردسیر، ایران، دانشکده علوم کامپیوتر، دانشگاه آزاد اسلامی واحد بردسیر 3

 24/07/2020 پذیرش؛ 06/06/2020 بازنگری؛ 18/02/2020 ارسال

 چکیده:

وچکتر ماهی های کالگوریتم بادبان ماهی یک الگوریتم فراابتکاری است که با الهام از شکار گروهی بادبان ماهی ها و از طریق حملات متناوب آنها به دسته

تعادل پویا بین مراحل اکتشاف و بهره برداری، ایجاد تنوع در با استفاده از یک روش ساده مزایایی همانند فراهم کردن SFO ابداع شده است. الگوریتم

امروزه ، سیستم های مبتنی بر چند محلی و تضمین همگرایی با سرعت بالا را تضمین نموده ست. افتادن در دام بهینه تولید جمعیت اولیه، جلوگیری از

اند . این روش ها توانسته اند با ادغام با نموده هایی با عملکرد بالا ارائه راه حلعامل و الگوریتم های فراابتکاری برای حل مسائل بهینه سازی ترکیبی

محسوب گردند. در این مقاله، ما و افزایش کیفیت راه حل های محاسباتی گزینه مناسبی برای کاهش زمان محاسباتیالگوریتم های موازی سازی شده

که باعث بهبود زمان اجرا و سرعت به همراه (DSFO)روش توزیع شده از الگوریتم بادبان ماهیمبتنی بر سیستم های چند عامله و یک یک روش جدید

ارائه شده که DSFO حفظ کیفیت راه حل های حل مسئله می باشد را ارائه داده ایم. در ادامه این مقاله، جزئیات پیاده سازی و ارزیابی عملکرد الگوریتم

بر روی مجموعه ای از توابع بهینه سازی محک استاندارد می باشد و همچنین با الگوریتم بادبان ماهی توزیع شده زنشان دهنده یک مطالعه مقایسه ای ا

ارائه شده جمقایسه آن با سایر الگوریتم های موازی سرعت بالای الگوریتم پیشنهادی برای حل مسائل بهینه سازی نامحدود به نمایش گذاشته است. نتای

بالای این الگوریتم در حل مسائل بهینه سازی پیوسته، تجزیه ناپذیر، غیر محدب و مقیاس پذیر می باشد که همگی جزو مسائل دشوار حاکی از توانایی

 بهینه سازی معرفی شده اند.

گرافیکی پردازشگر ،اشتراکیحافظه ،پردازش موازی ،های چند عاملهسیستم ،گوریتم توزیع شده بادبان ماهیال ،بهینه ساز بادبان ماهی کلمات کلیدی:

 .موازی

