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Article Info Abstract

Periodic noise reduction is a fundamental problem in image
processing, which severely affects the visual quality and the
subsequent application of the data. Most of the conventional
approaches are only dedicated to either the frequency or the spatial
domain. In this research work, we propose a dual-domain approach by
converting the periodic noise reduction task into an image
Image Noise Removal, Periodic decomposition problem. We introduce a bio-inspired computational
Noise, Spectrogram, Genetic model to separate the original image from the noise pattern without
Algorithm. having any a priori knowledge about its structure or
statistics. Experiments on both the synthetic and non-synthetic noisy
images are carried out in order to validate the effectiveness and
efficiency of the proposed algorithm. The obtained results demonstrate
the effectiveness of the proposed method both qualitatively and
guantitatively.
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1. Introduction
A digital image is created in digital image total S number of sinusoids with different
acquisition from a physical scene. In this parameters [8], as follows:

process, any random variation of the pixel value n(y)=3" ASin([ZﬂUO,(XJrBX,)/M] J (8]
or color is known as the image noise [1]. Periodic V)= 2B 2y, (y+ 8, ) IN]

noise is one type of image noise. It is generated by

electrical or magnetic interference [2]. This
noise can be seen in some visual applications
such as medicine [3], traffic control [4], remote
sensing [5, 6], television [7], and real-time
applications. Due to its frequent
occurrence, periodic noise removal is one of the
important issues in image processing. In the
spatial domain, periodic noise appears as a
repetitive pattern on the image and degrades the
image quality. Periodic noise not only sharply
degrades the image quality in the visual effect but
also risks its suitability for the subsequent
processing, e.g. image un-mixing and
classification. Thus, periodic noise must be
removed, and image quality must be improved
before the subsequent interpretation.

Periodic noise for an image of size mxN s
spatially modeled through the summation of a

where A denotes the amplitude, u, and v, are

the i™ sinusoidal frequency along the axes X and
y,and By and By; are the phase displacements

with respect to the origin and sez™.

Periodic noises are often represented by the
unintended and the spurious  repetitive
patterns. These patterns cover the entire image in
the spatial domain. Conversely, these are, by
nature, well-localized in the corresponding
Fourier domain image spectrum.

Remove the periodic noise structures from noisy
images efficiently, though the spatial domain
filtering techniques confront several troubles
(blurred  outputs/artifacts, etc.) To the
contrary, noisy spectral components can easily be
notified by the Fourier  domain-based
operations. Periodic noises appear as spiky-
peaks/star-shaped peak areas in the corresponding
image spectrum.
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The goal of this research work was to exploit the
capability of the spatial and spectral methods to
construct a dual-domain method in order to
eliminate global periodic noise. Hence, the term
dual-domain: spectral decomposition is done in
the frequency domain and the results obtained are
sent to the next phase for the spatial domain
operations.

The structure of this paper is organized as
follows. In the next section, a review on some
conventional periodic noise reduction algorithms
is presented. The proposed method is described in
the third section. Comparison results between the
proposed algorithm and some conventional
methods are given and discussed in the fourth
section. The final section presents the conclusion.

2. Literature Review

Periodic noise is divided into the global, local, and
stripping categories [9]. In general, the periodic
noise reduction methods are divided into two
categories: spatial-based approaches and spectral
approaches.

Spatial-based approaches can be categorized into
several main groups. The first family uses the
statistical property of the data. The main idea in
these methods is to correct the distribution of the
sensors to a reference distribution [10]. As typical
examples, moment matching [11] and histogram
modification [12] are the relatively early methods
in this group. The second family of spatial
methods are considered as an ill-posed inverse
problem [13]. They are based on constraining
image via some regularization terms and
estimating it from the noisy image. As
examples, maximum a posteriori framework
[14], low-rank matrix recovery [15] and
unidirectional  total variation and sparse
representation [16] are the methods in this group.
While the spatial methods have already proved
their efficiency for de-striping applications, they
have rarely been used for global and local periodic
noise reduction. The soft morphological filter is a
spatial method introduced for global periodic
noise [17].

Despite the dispersion of periodic noise in the
spatial domain, it is concentrated in one or more
adjoining  coefficients in the frequency
domain. Thus, spectral methods are usually
preferred.

In the frequency domain, noise reduction is
performed in two steps. The first step is to find the
location of the noisy frequencies. The second step
is how to repair the noisy frequencies and to get
the restored image. Spectral approaches can be
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divided into sub-categories according to the
function they provide.

The first subcategory consists of the algorithms
that try to detect the peaks such as the threshold-
based methods [2, 18, 19], histogram analysis-
based methods [8], clustering-based methods
[20], spectral modeling methods [21, 22], and
statistical-based methods [6, 23-27].

The second subcategory consists of the algorithms
that try to repair noise frequencies, for
example, windowed Gaussian notch filter [19, 24,
27], Gaussian-star filter [28], Sinc-based filter [8,
29, 30] and replacement with zero [20,
23], median [22, 25], minimum [2] value of the
neighbors.

3. Proposed Method
The major elements of the proposed method are as
follow:
— A 2D spectrogram of image
— A weakened version of the noise-less image
— An intensified version of the periodic noise
pattern
— An image decomposer with a Genetic
Algorithm (GA) optimizer
The diagram of the proposed method is shown in
figure 1, and it is described in the following sub-
sections.

3.1. Short-Time Fourier Transform (STFT)
In the literature, STFT has been used to separate
audio signals. In these references, the Short-Time
Fourier Transform (STFT) is applied to the
observed signals for two reasons:

1. The non-stationary property of audio signals

2. To get a sparse representation of the data
However, in our work, the STFT method was
taken into account for computational resources
(computing time and memory space), which
permit reducing the computation complexity and a
shorter length for the chromosomes.
Space/frequency representation of a 1-D signal is
necessarily a 2-D function of x and frequency u
since it must show a 1-D frequency distribution
for every point in the signal. Of course, it can
represent an image as a vector. However, in this
case, it loses information about the pixels
neighborhood, and the spectral peaks are not
similar, especially at the junction of rows
(columns). Furthermore, we have to take into
account the peak similarity and the computational
complexity considerations
simultaneously. Thus, we present a configured
spectrogram corresponding to the image signal
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Figure 1. Schematic representation of the proposed
method.

3.1.1. Spectrogram of an Image

If the original signal were a 2-D function of x and
y (an image), then the space/frequency
representation would be a 4-D function of x and
y and two frequencies, u and v.

In practice, a set of overlapping patches span the
whole image. For each point in the image, a
square neighborhood of the surrounding pixels is
extracted. Each patch is transformed into the
frequency domain wusing the 2-D Fourier
transform. Then each spectrum is converted into a
vector representation and form the spectrogram
columns.

Then the complex-valued STFT is decomposed
into the magnitude and phase components. Due to
the symmetry property of the Fourier
transform, only half of the Fourier space can be
used in the next step.

3.2. Decomposition with a GA optimizer
Genetic algorithm is a meta-heuristic search and
optimization technique based on the principles
present in natural evolution [31]. It has been
successfully used in many optimization problems
[32]. In a genetic algorithm, a population of
candidate individuals is evolved toward better
individuals for an optimization problem
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3.2.1. Chromosome Representation

The spectrogram consists of Fourier transforms of
image patches with similar noise pattern. Thus, all
columns of the spectrogram have similar
peaks. The goal is to decompose the spectrogram
into the periodic noise and restored image
spectrogram.

The number of genes in a chromosome is equal to
the number of rows in the spectrogram and the
value of each component is a random number in
[0 ]. Of course, it should be noted that the

number of spectrogram rows in the GA block is
half of the original spectrogram rows. In fact, the
symmetry property of the Fourier transform yields
the chromosomes with a shorter length, and
therefore, it gives the algorithm memory
efficiency

3.2.2. Initialization of Population

An efficient population initialization plays an
important role in the process of solving a problem
based on GA. Often, the initial population is
generated randomly allowing the entire range of
possible solutions in the search space. Thus, each
component of a chromosome can have an
arbitrary value from [0 ] .

The proposed method emphasizes a faster
convergence speed and reducing the number of
generations, so the initial population manner has
been carried out to increase the quality of the
initial population as follows:

Sabs(1)=X%4 V(i j)i=L2.....P )
Peaks= findpeaks(Szps )

Locs={ Peaks—1, Peaks, Peaks+1}

1

Ck=

Lpa
Ck (locs)=rand ()
where v is the magnitude spectrogram of size
PxQ, and S, is the row summation of v .
Equation (2) is used to highlight the noisy peak
positions. Peaks determines the peak positions in
S.ns - Locs S the genes that have a non-zero value
in the chromosome and consist of peak position
and its previous and next position. c (k) is the k™
chromosome of the initial population whose
values is 1 in all elements except that its Locs
positions are replaced by random values.

3.2.3. Decoding Chromosome
In order to decode the chromosomes,
chromosome values is multiplied by

the
the
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spectrogram columns. The resulting spectrogram
is converted to its original size by conjunction
operation and then transferred to the spatial
domain.

This process should be repeated again with the
value of 1-c(k) but, in this work, the restored

image is obtained from subtracting the noise
pattern from the noisy image. This is, of course, to
reduce the computational burden. Thus at this
stage, an estimation of periodic noise pattern and
the restored image is obtained in the spatial
domain.

3.2.4. Fitness Evaluation

The solutions will be evaluated in the spatial
domain. For this purpose, an approximation of the
noise pattern and restored image are used as a
base. The fitness for a given chromosome iis:

Fit(i)=U[ R(i)+Fo(i)+Fa(i) ] 3
(=0 %0 (Mo (=N J(ON ) -ON ()

" [\/z S (Naor, (o= ) o Z"(CN“)WCT(”)ZJ

(2020 (Rae (Do =RrJ(CR(0)CRE))

[\/zm S0 (Rugr. gy Ry ) zn(CR(i)mn—W(i))zJ
(0 Zn (CN(i),,~CN(D))(CR(i),,, ~CR(7)))

{Zo 20 (080, -ONG) 0 (R0, -SR] |

Fy(i)=1-

Fy(i)=1-
|

where CN(i) is the noise pattern obtained from the
i" chromosome, CcR(i) is the restored image

obtained from the i™ chromosome, N, is the
approximated noise pattern, R,, is the
approximated restored image, F(i) shows the
similarity of cN(i) and N,, , F(i) shows the
similarity of cr(i) and R,,, and F,(i) shows the
similarity of cR(i) and cN(i). The goal is to
maximize the fitness function.

The goal is that the periodic noise pattern
extracted from the chromosome is similar to the
basic (approximated) noise pattern, and the noise-
less image extracted from the chromosome is
similar to the basic (approximated) noise-less
image. On the other hand, the noise pattern should
not be seen in the recovered image, so the two

images extracted from the chromosome should not
be as similar as possible.

Apr.

3.2.5. Genetic Operators
Selection: selection strategy exploits the fitness
information to guide the search into promising
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search space regions. In this work, the roulette-
wheel is used for selection.

Cross-over: cross-over is usually the most
important operator to explore the search space. In
this work, we employ the affine cross-over
operator as follows:

O =4 R+4 P, (4)
O,=4R+4 R

A4, €R, A +4,=1

where O, and O, are the parents, and P, and P,
are the offsprings; 4,4, are used to compute the
weighted average of two vectors.

Mutation: mutation is used to maintain genetic
diversity from one generation of a population to
the next. In the proposed method, the mutation
may be applied to the individuals in two
ways: one gene in a chromosome is changed with
probability 0.5 and a new chromosome is added to
the population with probability 0.5.

3.3. Filtering and Inverse Short Time Fourier
Transform (ISTFT)

In this step, the separator is taken from the GA
block and used to separate the original noisy
image spectrogram. Finally, the algorithm
performs inverse short time Fourier transform to
reconstruct the restored image.

3.4. Approximation of Periodic Noise Pattern
The approximate noise pattern can be obtained
using the following equation:

R=(Fimage xconj(Fimage)) xsign(Fimage) 5)
where Fimage is the Fourier transform of a
corrupted image and x denotes the element-wise
multiplication (also called the Hadamard product).
The reason behind using (5) can be explained as
follows: a noisy image includes clear peaks in its
spectrum. The mentioned relationship increases
the magnitude of frequency, and as a
result, increases the noise peaks, and
consequently, the noise strength. In this way, we
can obtain an approximation of the periodic noise
pattern in the spatial domain. Figure 2 shows the
approximation of a sample noise pattern. In this
figure, a sample image is contaminated with
periodic noise. NoiseHat(R) is the noise pattern

derived from (5).
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Figure 2. Calculating (5) to create an approximation of
the noise pattern.

3.5. Approximation of Restored Image

LFR contains smooth information of the image
itself. Equation (5) can also be used to obtain the
restored image approximation because LFR in the
R spectrum magnitude is also high. On the other
hand, Fourier transforms of a noisy image contain
the image details and the noise components.

In order to obtain an approximation of the noise-
less image, the noisy spectrum is used, and LFR
values are gradually increased from the initial
values. This increase is achieved using the LFR
values of the R spectrum until the noise pattern
does not appear on the image.

In fact, if the LFR components of the noisy image
spectrum are replaced by the LFR components of
R, gradually a very smooth version of the
restored image will be formed, and after a
while, the noise pattern will emerge.

4. Implementation and Experimental Results
The proposed method was implemented in the
MATLAB environment. All simulations were run
on a PC computer with Intel Dual Core 2.50 GHz
processor and 4GB RAM. The performance of
this method was objectively and subjectively
assessed with other state-of-the-art algorithms in
term of the Mean Absolute Error (MAE)
[33], Peak Signal-to-Noise Ratio (PSNR)
[22], mean Structural Similarity Index Measure (
ssiM) [34], and Edge Accuracy (EAcc) and
precision ( EPrec ).

4.1. Accuracy and Precision of Edge Pixels

One of the obvious effects of the periodic noise is
seen on the edge pixels, i.e. periodic noise may
introduce some extra edges or destroy some of the
edges. A good restoration algorithm must be able
to remove the undesired edges and to reconstruct
the decayed ones. In this case, the restored edge-
map approaches closer to the original edge-
map. Hence, the performance of the restoration
algorithms can also be evaluated in terms of the
edge accuracy (EAcc) and edge precision ( EPrec)
[29]. For calculating those parameters, we need
the information about the true edge points and
false edge points. Here, the Canny method is
employed for edge detection. If f and f are the
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noise-less image and the restored image of size
MxN , respectively, these objective performance
metrics are defined by:

LTt Ty ] (6)
EAcc = MxN
M N T
EPrec = —szzlgy:l[ ‘]
Zx:lzy:l[Te+ Fg]

_{1 if O( f,f)=tand R(f,f)=1

0  otherwise

_{1 if O( f,f)=0and R( f,f)=0

0  otherwise

F_{l if O(f,f)=0and R(f,)=1
0  otherwise

where 0 and R are the edge images of the original
image (f) and the restored image, (f)
respectively. An efficient algorithm in noise
reduction would have a high value of
SSIM, PSNR, EAcc , and EPrec and a low value of
MAE .

The performance of the proposed method is
compared with Windowed Adaptive Switching
Minimum Filter (WASMF) [21], Adaptive
Threshold Based Frequency domain filter (ATBF)
[2], Laplacian-based Frequency Domain Filter
(LFDF) [22], Median filter in spectral domain
(Median) [25], Mean filter in spectral domain
(Mean) [23], Windowed Gaussian Notch Filter
(WGNF) [24], Adaptive Gaussian Notch Filter
(AGNF) [19], Adaptive Optimum Notch Filter
(AONF) [18], A-Contrario Automated Removal
of quasi-Periodic noise using frequency domain
statistics (ACARP) [7], Automated Removal of
quasi-Periodic noise using frequency domain
statistics (ARP) [27], soft morphological filter
(SMF) [17], Adaptive Sinc Restoration Filter
(ASRF) [29]. Table 1 shows the parameters of the
compared methods.

5. Results and Discussion
The proposed method was tested in several
steps, as follow:

— Synthetic periodic noise
o Low-frequency periodic noise
o High-frequency periodic noise
o Multi-frequency periodic noise

— Non-synthetic periodic noise
Afterward, the computational complexity analysis
of the proposed method is discussed. The
synthetic corrupted images are created by adding
artificially the generated sinusoidal noise patterns



Alibabaie & Latif/ Journal of Al and Data Mining, Vol. 9, No. 1, 2021

to the uncorrupted reference images. The
performance of spectral domain techniques is
strongly dependent on the test image and the noise
parameters; therefore, the results were averaged
over the 20 repetitions under the test
conditions. In all tests, the test images were
256256 pixels.

In the experiments, to implement STFT in
spectrogram generation, the window is of the
rectangular type and its length has been set to
21x21 and overlapping size of 10 for both
dimensions.

In all tables, the “noisy image” column was added
to evaluate the quality of the degraded noisy
image. For that, the performance values are
averaged for each set of noisy images.

Table 1. Parameters of the compared methods.

Method Parameter Value
Window size 11x11
Mean threshold 7
Normalizing Divider 50
) Window size 11x11
Median Threshold 7
Window size 11x11
Threshold 7
WGNF A
0.1
B 1.0
ARP Patch size 128
Patch size 128
ACARP
logNFAthresh 0
WASMF & 04
C, 1.1
ATBF alpha 1.8
G, 0.4
LFDF c, 1.1
Yy 0.9
w 3
AGNF A 1.0
B 0.01
AONF w 3
SMF Structure element size 5
C, 10
ASRF Cz ) 25
Structure element size 5
Smallest filtering window(P) 2
Number of Iteration 100
Proposed Pop. size 60
Method Crossover rate 0.8
Mutation rate 0.2

5.1. Synthetic Periodic Noise

5.1.1. Low-frequency Periodic Noise

In this step, the low-frequency periodic noise
structures are considered as a noise source. In this
case, the simulations are carried out on the images

with noise pattern of (1) with ugv,c[2.14]. The

simulation results are shown in table 2.

At this step, a number of spatial methods, spectral
methods, and spectral-spatial methods were
considered. Most of the spectral methods exclude
a specific region from detection by selecting the
LFR radius. This radius may not be optimum. It
decreases their performance in face of low-
frequency periodic noise. The methods like SMF
perform only spatial operations. They are
associated with a small improved outcome but
they have no viewpoint about the noise pattern
and the original image.

5.1.2. High-frequency Periodic Noise

In this step, high-frequency periodic noise
structures are considered as a noise source. In this
case, the simulations are carried out on the images
with noise pattern of (1) with uyv,>20. The

simulation results are shown in table 3. It is
clearly evident from tables 2 and 3 that the
restoration algorithms have a better performance
in high-frequency periodic noise fading.

In table 3, the proposed method is also compared
with the spectral, spatial, and spectral-spatial
methods. Increasing noise power tends to decrease
the performance of the spatial-domain methods
regardless of frequency bands.

The concentration of periodic noise in one or
more adjacent coefficients in the frequency
domain causes the spectral approaches to be
simpler than the spatial method. These methods
face other challenges yet. A noisy image at best is
pure periodic noise that affects only a frequency
component. Reconstructing the noisy image is
done by reinstating this component. In a more
complex case, periodic noise will be quasi-
periodic noise. In other words, when the
bandwidth of the periodic noise increases, several
rows or columns of the spectrum may be
involved. In this case, detecting the fundamental
frequency and its harmonics of the periodic noise
is also a challenging task.

Table 3 shows that the proposed algorithm
outperforms the most recent state-of-the-art
algorithms.

5.1.3. Multi-frequency Periodic Noise
Generally, the restoration algorithms work well
for a single frequency periodic noise but multi-
frequency periodic noise fading is a challenging
problem. Most of the non-synthetic images are
also corrupted by the multi-frequency periodic
noise.
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Table 2. Comparison amongst different restoration algorithms for restoring sample images corrupted by low-frequency
periodic noise in terms of performance metrics.

3 § % L o
8 § £ Eg £ 2 & = & 2 L & <
FE g gt& 2 g S g Q < & 2 ©
< S S
PSNR 13.85 13.84 14.63 12.42 16.10 15.95 14.20 15.83 16.26
'% SSIM 0.374 0.370 0.434 0.302 0.570 0.567 0.239 0.563 0.531
i ;.Cf 2 MAE 17.01 17.00 15.24 20.96 12.20 12.60 16.34 12.96 11.81
B EAcc. 0.261 0.246 0.284 0.225 0.443 0.405 0.093 0.318 0.449
E EPrec. 0.824 0.820 0.842 0.818 0.881 0.883 0.785 0.889 0.893
? PSNR 15.56 15.69 15.87 14.37 17.53 17.59 15.20 16.11 17.77
qé SSIM 0.509 0.507 0.524 0.424 0.641 0.623 0.281 0.569 0.705
£ % puc MAE 17.61 17.60 16.97 19.91 14.33 14.67 17.96 16.70 13.80
§ - EAcc. 0.330 0.323 0.335 0.268 0.352 0.370 0.098 0.395 0.403
EPrec. 0.831 0.829 0.837 0.813 0.854 0.846 0.776 0.838 0.854

Table 3. Comparison amongst different restoration algorithms for restoring sample images corrupted by high-frequency
periodic noise in terms of performance metrics.

g & ] N
g & £ E££ E 5 &5 Z g z L Z <
F E g £ £ z % - 9: = 2 D 2 o
< g S
PSNR 20.32 25.45 24.22 19.84 25.39 24.35 22.09 28.21 28.54
.% © SSIM 0.419 0.731 0.666 0.408 0.727 0.861 0.637 0.875 0.916
2| 8§ @ | maE | 100 5.72 6.98 1115 5.82 6.41 793 398 391
E S EAcc. 0.649 0.777 0.607 0.580 0.785 0.820 0.337 0.837 0.882
E EPrec. 0.894 0.947 0.908 0.880 0.952 0.958 0.855 0.966 0.975
§ PSNR 13.90 17.85 15.33 13.80 17.50 17.75 16.67 17.90 18.16
% . SSIM 0.157 0.545 0.292 0.154 0.469 0.560 0.571 0.518 0.574
i § g MAE 17.39 8.60 14.27 17.60 9.79 9.12 9.25 9.01 8.40
._I‘:f’ EAcc. 0.824 0.816 0.606 0.611 0.825 0.771 0.419 0.832 0.866
EPrec. 0.941 0.971 0.899 0.899 0.971 0.960 0.883 0.967 0.980

Table 4. Comparison amongst different restoration algorithms for restoring sample images corrupted by multi-frequency
periodic noise in terms of performance metrics.

8 s
® g 82 g w w T8 c L w L o
Q 2 e's = m [a) z I zZ p @ <
> o B >
F E 8% 2 5 5 2 = = Z 2 2 ©
b o
o pz4
PSNR | 19.39 23.29 20.98 17.95 23.34 22.76 20.20 23.47 23.60 23.80
2 SSIM | 0374 0.668 0512 0331 0.654 0.702 0.499 0.676 0.712 0.738
Z | 8 | MAE 9.45 5.02 7.42 17.07 5.14 4.95 7.80 4.95 4.65 4.46
S [a0]
2 EAcc. | 0644 0.795 0.614 0526 0.778 0.709 0271 0.741 0.813 0.831
& EPrec. | 0.905 0.949 0.907 0.876 0.923 0.894 0.825 0.933 0.945 0.979
g PSNR | 17.80 19.70 18.39 17.90 19.84 18.53 18.25 19.93 20.14 20.34
(5]
2 SSIM | 0355 0.547 0.424 0.362 0546 0583 0533 0.568 0.639 0.643
(<]
&= £ | MAE 8.66 5.83 7.81 19.88 5.84 7.39 7.67 5.64 5.30 5.12
; = | EAcc. | 0624 0.623 0.594 0567 0.604 0.590 0.298 0.625 0.658 0.687
EPrec. | 0.923 0.923 0916 0910 0.934 0.928 0.857 0.923 0.946 0.961
In this simulation, the reference images are added with noise pattern of (1) with sc{12,3,45}. The

case, the simulations are carried out on the images
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5.2. Non-Synthetic Periodic Noise

The performance of the proposed method is
evaluated in a real situation. In this case, the
images from various fields, contaminated with
different types of non-synthetic periodic noise
structures are tested as a benchmark.

As the distortion-free reference image is not
within reach, the performance evaluation metrics
cannot be computed. Hence, the performance is
compared visually only. Figure 3 shows the
restored outputs of the proposed algorithm, while
restoring a few non-synthetically corrupted
images.

b. Rested ipng
» imae

c. Noisy Tree d. Restored Tree

f. Restored woman

e. Noisy woman
Figure 3. Real images corrupted by different non-
synthetic periodic noise structures, and restored images
using the proposed method.

5.3. Periodic Noise Removal in RGB Images
The proposed method can easily generalize from
grayscale images to RGB images. For this
purpose, image planes are separated from each
other.

Then the periodic noise reduction method is
applied to each separated plane. The final RGB
image is obtained from a combination of these
results. Figure 4 shows the restored outputs of the
proposed algorithm while restoring the corrupted
color image.
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6. Computational Resource Analysis

In the proposed method, some considerations have
to be taken into account for computational
resources (computing time and memory space), as
follows.

6.1. Memory Space Analysis

Memory consumption analysis can be used to
identify the memory resources that are allocated
and released over time. Let decomposition of a
noisy image of size MxN be considered. If the
number of populations in GA is Pop and the
cross-over rate is cr and the mutation
rate is mr, then a generation requires
Memory =M x N x(Popx(cr +mr + )). In the proposed

method, STFT is used in order to improve the
memory consumption. In this case, the
overlapping patches and their spectrum are
considered of size pxq. Due to the symmetry
property of Fourier transform, a chromosome will
have CM =(pxq) genes. Thus for the

mentioned example, a generation requires
Memory = M xNx( Popx(cr +mr + )).

6.2. Computing Time Analysis

If fast Fourier transform is used, the complexity
would be O( pxgxlog pxq) [35] for a patch of size
pxq. Each spectrogram column is obtained from
the 2-D Fourier transform of a patch. Periodic
noise appears on all spectrogram columns as
similar peaks. The whole spectrogram is
decomposed in fitness evaluation, while in the
implementation, the emphasis is on computational
efficiency. Computational efficiency is achieved
through the selection of a Part Of the Image (POI)
in fitness evaluation. Since periodic noise is
scattered throughout the whole image, the
selecting of a part of the whole taken as
representative of the whole image. POI like the
original image has similar peaks on its
spectrogram but the number of their columns is
different. Therefore, if a separator chromosome
can decompose the POI spectrogram correctly, it
will also be able to decompose the original
spectrogram  along  with  improving the
computational  efficiency and saving the
computational time.

If the POI spectrogram of size M, xN;,M;<M,N;<N

is used in the GA block and the hop size
is axb, the complexity of the ISTFT would be
equal to O(M/axN bxpxqgxlog(pg)). The running

time for a generation with the number of
population Pop and the crossover rate cr and the
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mutation rate mr and number of iteration Itr is as
follows:

6(T 2)=( Pop-+Pop(cr+mr ) JxItrx(My/a)x(Ny/b)x pxaxlog( pq )

7. Conclusion

In this work, blind periodic noise decomposition
from digital images was proposed using a genetic
algorithm (GA). In the proposed method, the
frequency and spatial domain image information
can be considered and optimized in GA

simultaneously. On the other, GA in the problem
of periodic noise reduction faces challenges in

terms of computational resources. However, the
use of image characteristics and optimization in
the area can also be useful for solving periodic
noise reduction. Both of the advantages and
disadvantages of GA are formulated in the
proposed method in such a way that its
disadvantages are minimized and its advantages
are used. Nonetheless, a fully automatic method
for periodic noise reduction is preferred, which
will be considered in the future research work.

a. Noisy image b. ATBF

c. LFDF d. Mean

e. WGNF f. AONF

g. Median h. SMF

i. AGNF
Figure 4. Visual comparisons for different de-noising algorithms for a non-synthetically corrupted image Oldprintwoman.

j. WASMF
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