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 Periodic noise reduction is a fundamental problem in image 

processing, which severely affects the visual quality and the 

subsequent application of the data. Most of the conventional 

approaches are only dedicated to either the frequency or the spatial 

domain. In this research work, we propose a dual-domain approach by 

converting the periodic noise reduction task into an image 

decomposition problem. We introduce a bio-inspired computational 

model to separate the original image from the noise pattern without 

having any a priori knowledge about its structure or 

statistics. Experiments on both the synthetic and non-synthetic noisy 

images are carried out in order to validate the effectiveness and 

efficiency of the proposed algorithm. The obtained results demonstrate 

the effectiveness of the proposed method both qualitatively and 

quantitatively. 
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1. Introduction 

A digital image is created in digital image 

acquisition from a physical scene. In this 

process, any random variation of the pixel value 

or color is known as the image noise [1]. Periodic 

noise is one type of image noise. It is generated by 

electrical or magnetic interference [2]. This  

noise can be seen in some visual applications  

such as medicine [3], traffic control [4], remote 

sensing [5, 6], television [7], and real-time 

applications. Due to its frequent 

occurrence, periodic noise removal is one of the 

important issues in image processing. In the 

spatial domain, periodic noise appears as a 

repetitive pattern on the image and degrades the 

image quality. Periodic noise not only sharply 

degrades the image quality in the visual effect but 

also risks its suitability for the subsequent 

processing, e.g. image un-mixing and 

classification. Thus, periodic noise must be 

removed, and image quality must be improved 

before the subsequent interpretation. 

Periodic noise for an image of size    M N  is 

spatially modeled through the summation of a 

total S number of sinusoids with different 

parameters [8], as follows: 
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where 
iA denotes the amplitude, 0iu  and 0iv  are 

the 
 thi sinusoidal frequency along the axes x  and 

y , and  Bxi  and Byi  are the phase displacements 

with respect to the origin and S Z . 

Periodic noises are often represented by the 

unintended and the spurious repetitive 

patterns. These patterns cover the entire image in 

the spatial domain. Conversely, these are, by 

nature, well-localized in the corresponding 

Fourier domain image spectrum. 

Remove the periodic noise structures from noisy 

images efficiently, though the spatial domain 

filtering techniques confront several troubles 

(blurred outputs/artifacts, etc.)  To the 

contrary, noisy spectral components can easily be 

notified by the Fourier domain-based 

operations. Periodic noises appear as spiky-

peaks/star-shaped peak areas in the corresponding 

image spectrum. 

mailto:Alatif@yazd.ac.ir(A


Alibabaie & Latif/ Journal of AI and Data Mining, Vol. 9, No. 1, 2021 

 

20 
 

The goal of this research work was to exploit the 

capability of the spatial and spectral methods to 

construct a dual-domain method in order to 

eliminate global periodic noise. Hence, the term 

dual-domain: spectral decomposition is done in 

the frequency domain and the results obtained are 

sent to the next phase for the spatial domain 

operations. 

The structure of this paper is organized as 

follows. In the next section, a review on some 

conventional periodic noise reduction algorithms 

is presented. The proposed method is described in 

the third section. Comparison results between the 

proposed algorithm and some conventional 

methods are given and discussed in the fourth 

section. The final section presents the conclusion. 

 

2. Literature Review  

Periodic noise is divided into the global, local, and 

stripping categories [9]. In general, the periodic 

noise reduction methods are divided into two 

categories: spatial-based approaches and spectral 

approaches. 

Spatial-based approaches can be categorized into 

several main groups. The first family uses the 

statistical property of the data. The main idea in 

these methods is to correct the distribution of the 

sensors to a reference distribution [10]. As typical 

examples, moment matching [11] and histogram 

modification [12] are the relatively early methods 

in this group. The second family of spatial 

methods are considered as an ill-posed inverse 

problem [13]. They are based on constraining 

image via some regularization terms and 

estimating it from the noisy image. As 

examples, maximum a posteriori framework 

[14], low-rank matrix recovery [15] and 

unidirectional total variation and sparse 

representation [16] are the methods in this group. 

While the spatial methods have already proved 

their efficiency for de-striping applications, they 

have rarely been used for global and local periodic 

noise reduction. The soft morphological filter is a 

spatial method introduced for global periodic 

noise [17]. 

Despite the dispersion of periodic noise in the 

spatial domain, it is concentrated in one or more 

adjoining coefficients in the frequency 

domain. Thus, spectral methods are usually 

preferred. 

In the frequency domain, noise reduction is 

performed in two steps. The first step is to find the 

location of the noisy frequencies. The second step 

is how to repair the noisy frequencies and to get 

the restored image. Spectral approaches can be 

divided into sub-categories according to the 

function they provide. 

The first subcategory consists of the algorithms 

that try to detect the peaks such as the threshold-

based methods [2, 18, 19], histogram analysis-

based methods [8], clustering-based methods 

[20], spectral modeling methods [21, 22], and 

statistical-based methods [6, 23-27]. 

The second subcategory consists of the algorithms 

that try to repair noise frequencies, for 

example, windowed Gaussian notch filter [19, 24, 

27], Gaussian-star filter [28], Sinc-based filter [8, 

29, 30] and replacement with zero [20, 

23], median [22, 25], minimum [2] value of the 

neighbors. 

 

3. Proposed Method  
The major elements of the proposed method are as 

follow: 

  A 2D spectrogram of image 

  A weakened version of the noise-less image 

  An intensified version of the periodic noise 

pattern 

  An image decomposer with a Genetic 

Algorithm (GA) optimizer 

 The diagram of the proposed method is shown in 

figure 1, and it is described in the following sub-

sections. 

 

3.1. Short-Time Fourier Transform (STFT)  
In the literature, STFT has been used to separate 

audio signals. In these references, the Short-Time 

Fourier Transform (STFT) is applied to the 

observed signals for two reasons: 

1. The non-stationary property of audio signals 

2. To get a sparse representation of the data 

However, in our work, the STFT method was 

taken into account for computational resources 

(computing time and memory space), which 

permit reducing the computation complexity and a 

shorter length for the chromosomes. 

Space/frequency representation of a 1-D signal is 

necessarily a 2-D function of x and frequency u

since it must show a 1-D frequency distribution 

for every point in the signal. Of course, it can 

represent an image as a vector. However, in this 

case, it loses information about the pixels 

neighborhood, and the spectral peaks are not 

similar, especially at the junction of rows 

(columns). Furthermore, we have to take into 

account the peak similarity and the computational 

complexity considerations 

simultaneously. Thus, we present a configured 

spectrogram corresponding to the image signal 
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Figure 1. Schematic representation of the proposed 

method. 

 

3.1.1. Spectrogram of an Image 

If the original signal were a 2-D function of x  and 

y  (an image), then the space/frequency 

representation would be a 4-D function of x  and 

y  and two frequencies, u  and v . 

In practice, a set of overlapping patches span the 

whole image. For each point in the image, a 

square neighborhood of the surrounding pixels is 

extracted. Each patch is transformed into the 

frequency domain using the 2-D Fourier 

transform. Then each spectrum is converted into a 

vector representation and form the spectrogram 

columns. 

Then the complex-valued STFT is decomposed 

into the magnitude and phase components. Due to 

the symmetry property of the Fourier 

transform, only half of the Fourier space can be 

used in the next step. 

 

3.2. Decomposition with a GA optimizer  
Genetic algorithm is a meta-heuristic search and 

optimization technique based on the principles 

present in natural evolution [31]. It has been 

successfully used in many optimization problems 

[32]. In a genetic algorithm, a population of 

candidate individuals is evolved toward better 

individuals for an optimization problem 

 

3.2.1. Chromosome Representation 

The spectrogram consists of Fourier transforms of 

image patches with similar noise pattern. Thus, all 

columns of the spectrogram have similar 

peaks. The goal is to decompose the spectrogram 

into the periodic noise and restored image 

spectrogram. 

The number of genes in a chromosome is equal to 

the number of rows in the spectrogram and the 

value of each component is a random number in 

 0 . Of course, it should be noted that the 

number of spectrogram rows in the GA block is 

half of the original spectrogram rows. In fact, the 

symmetry property of the Fourier transform yields 

the chromosomes with a shorter length, and 

therefore, it gives the algorithm memory 

efficiency 

 

3.2.2. Initialization of Population 

An efficient population initialization plays an 

important role in the process of solving a problem 

based on GA. Often, the initial population is 

generated randomly allowing the entire range of 

possible solutions in the search space. Thus, each 

component of a chromosome can have an 

arbitrary value from  0 . 

The proposed method emphasizes a faster 

convergence speed and reducing the number of 

generations, so the initial population manner has 

been carried out to increase the quality of the 

initial population as follows: 

   1   ,  ,  1,2, , 
Q

abs jS i V i j i P    

 absPeaks findpeaks S  

   1,  ,  1Locs Peaks Peaks Peaks    

1

1
 

1
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Ck

P

 
 
 
 
 
  

M
 

    C locs randk   

(2) 

where V  is the magnitude spectrogram of size 

   P Q , and absS  is the row summation of V . 

Equation (2) is used to highlight the noisy peak 

positions. Peaks  determines the peak positions in 

absS . Locs  is the genes that have a non-zero value 

in the chromosome and consist of peak position 

and its previous and next position.  C k  is the thk  

chromosome of the initial population whose 

values is 1 in all elements except that its Locs  

positions are replaced by random values. 

 

3.2.3. Decoding Chromosome 

In order to decode the chromosomes, the 

chromosome values is multiplied by the 
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spectrogram columns. The resulting spectrogram 

is converted to its original size by conjunction 

operation and then transferred to the spatial 

domain. 

This process should be repeated again with the 

value of  1 C k  but, in this work, the restored 

image is obtained from subtracting the noise 

pattern from the noisy image. This is, of course, to 

reduce the computational burden. Thus at this 

stage, an estimation of periodic noise pattern and 

the restored image is obtained in the spatial 

domain. 

 

3.2.4. Fitness Evaluation 

The solutions will be evaluated in the spatial 

domain. For this purpose, an approximation of the 

noise pattern and restored image are used as a 

base. The fitness for a given chromosome i is: 

 

       1 2 31  /Fit i F i F i F i      (3) 
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where  CN i  is the noise pattern obtained from the 

thi  chromosome,   CR i  is the restored image 

obtained from the thi  chromosome, 
.AprN  is the 

approximated noise pattern, 
.AprR  is the 

approximated restored image,   1F i  shows the 

similarity of  CN i  and 
.AprN ,  2F i  shows the 

similarity of  CR i  and 
.AprR , and  3F i  shows the 

similarity of  CR i  and  CN i . The goal is to 

maximize the fitness function. 

The goal is that the periodic noise pattern 

extracted from the chromosome is similar to the 

basic (approximated) noise pattern, and the noise-

less image extracted from the chromosome is 

similar to the basic (approximated) noise-less 

image. On the other hand, the noise pattern should 

not be seen in the recovered image, so the two 

images extracted from the chromosome should not 

be as similar as possible. 

 

3.2.5. Genetic Operators  

Selection: selection strategy exploits the fitness 

information to guide the search into promising 

search space regions. In this work, the roulette-

wheel is used for selection. 

 

Cross-over: cross-over is usually the most 

important operator to explore the search space. In 

this work, we employ the affine cross-over 

operator as follows: 

 

1 1 1 2 2     O P P    

2 1 2 2 1     O P P    

1 2 1 2
,  , 1      R     

(4) 

where 
1O  and 

2O  are the parents, and 1P  and 
2P  

are the offsprings; 
1 2,    are used to compute the 

weighted average of two vectors. 

 

Mutation: mutation is used to maintain genetic 

diversity from one generation of a population to 

the next. In the proposed method, the mutation 

may be applied to the individuals in two 

ways: one gene in a chromosome is changed with 

probability 0.5 and a new chromosome is added to 

the population with probability 0.5. 

 

3.3. Filtering and Inverse Short Time Fourier 

Transform (ISTFT) 
In this step, the separator is taken from the GA 

block and used to separate the original noisy 

image spectrogram. Finally, the algorithm 

performs inverse short time Fourier transform to 

reconstruct the restored image. 

 

3.4. Approximation of Periodic Noise Pattern  
The approximate noise pattern can be obtained 

using the following equation: 

 

            R Fimage conj Fimage sign Fimage    (5) 

where Fimage  is the Fourier transform of a 

corrupted image and .  denotes the element-wise 

multiplication (also called the Hadamard product). 

The reason behind using (5) can be explained as 

follows: a noisy image includes clear peaks in its 

spectrum. The mentioned relationship increases 

the magnitude of frequency, and as a 

result, increases the noise peaks, and 

consequently, the noise strength. In this way, we 

can obtain an approximation of the periodic noise 

pattern in the spatial domain. Figure 2 shows the 

approximation of a sample noise pattern. In this 

figure, a sample image is contaminated with 

periodic noise.   NoiseHat R  is the noise pattern 

derived from (5). 
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Figure 2. Calculating (5) to create an approximation of 

thenoise pattern. 

 

3.5. Approximation of Restored Image 
LFR contains smooth information of the image 

itself. Equation (5) can also be used to obtain the 

restored image approximation because LFR  in the 
R  spectrum magnitude is also high. On the other 

hand, Fourier transforms of a noisy image contain 

the image details and the noise components. 

In order to obtain an approximation of the noise-

less image, the noisy spectrum is used, and LFR  

values are gradually increased from the initial 

values. This increase is achieved using the LFR  

values of the R  spectrum until the noise pattern 

does not appear on the image. 

In fact, if the LFR  components of the noisy image 

spectrum are replaced by the LFR  components of 
R , gradually a very smooth version of the 

restored image will be formed, and after a 

while, the noise pattern will emerge. 

 

4. Implementation and Experimental Results 
The proposed method was implemented in the 

MATLAB environment. All simulations were run 

on a PC computer with Intel Dual Core 2.50 GHz 

processor and 4GB RAM. The performance of 

this method was objectively and subjectively 

assessed with other state-of-the-art algorithms in 

term of the Mean Absolute Error ( MAE ) 

[33], Peak Signal-to-Noise Ratio ( PSNR ) 

[22], mean Structural Similarity Index Measure (

SSIM ) [34], and Edge Accuracy ( EAcc ) and 

precision ( EPrec ). 

 

4.1. Accuracy and Precision of Edge Pixels 

One of the obvious effects of the periodic noise is 

seen on the edge pixels, i.e. periodic noise may 

introduce some extra edges or destroy some of the 

edges. A good restoration algorithm must be able 

to remove the undesired edges and to reconstruct 

the decayed ones. In this case, the restored edge-

map approaches closer to the original edge-

map. Hence, the performance of the restoration 

algorithms can also be evaluated in terms of the 

edge accuracy ( EAcc ) and edge precision ( EPrec ) 

[29]. For calculating those parameters, we need 

the information about the true edge points and 

false edge points. Here, the Canny method is 

employed for edge detection. If f  and f̂  are the 

noise-less image and the restored image of size 

   M N , respectively, these objective performance 

metrics are defined by: 
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(6) 

where  O  and R are the edge images of the original 

image ( f ) and the restored image, ( f̂ ) 

respectively. An efficient algorithm in noise 

reduction would have a high value of 

SSIM , PSNR , EAcc , and EPrec  and a low value of 

MAE . 

The performance of the proposed method is 

compared with Windowed Adaptive Switching 

Minimum Filter (WASMF) [21], Adaptive 

Threshold Based Frequency domain filter (ATBF) 

[2], Laplacian-based Frequency Domain Filter 

(LFDF) [22], Median filter in spectral domain 

(Median) [25], Mean filter in spectral domain 

(Mean) [23], Windowed Gaussian Notch Filter 

(WGNF) [24], Adaptive Gaussian Notch Filter 

(AGNF) [19], Adaptive Optimum Notch Filter 

(AONF) [18], A-Contrario Automated Removal 

of quasi-Periodic noise using frequency domain 

statistics (ACARP) [7], Automated Removal of 

quasi-Periodic noise using frequency domain 

statistics (ARP) [27], soft morphological filter 

(SMF) [17], Adaptive Sinc Restoration Filter 

(ASRF) [29]. Table 1 shows the parameters of the 

compared methods. 

 

5. Results and Discussion  

The proposed method was tested in several 

steps, as follow: 
 

  Synthetic periodic noise 

o Low-frequency periodic noise 

o High-frequency periodic noise 

o Multi-frequency periodic noise 

  Non-synthetic periodic noise 
Afterward, the computational complexity analysis 

of the proposed method is discussed. The 

synthetic corrupted images are created by adding 

artificially the generated sinusoidal noise patterns 
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to the uncorrupted reference images. The 

performance of spectral domain techniques is 

strongly dependent on the test image and the noise 

parameters; therefore, the results were averaged 

over the 20 repetitions under the test 

conditions. In all tests, the test images were 

256   256  pixels. 

In the experiments, to implement STFT in 

spectrogram generation, the window is of the 

rectangular type and its length has been set to 

21 21  and overlapping size of 10 for both 

dimensions. 

In all tables, the―noisyimage‖columnwasadded

to evaluate the quality of the degraded noisy 

image. For that, the performance values are 

averaged for each set of noisy images. 

 
Table 1. Parameters of the compared methods. 

Method Parameter Value 

Mean 

Window size 

threshold 

Normalizing Divider 

11 1  1  

7 

50 

Median 
Window size 

Threshold 

11 1  1  

7 

WGNF 

Window size 

Threshold 

A 

B 

11 1  1  

7 

0.1 

1.0 

ARP Patch size 128 

ACARP 
Patch size 

logNFAthresh 

128 

0 

WASMF 
   

   

0.4 

1.1 

ATBF alpha 1.8 

LFDF 

   

   

  

0.4 

1.1 

0.9 

AGNF 

w 

A 

B 

3 

1.0 

0.01 

AONF w 3 

SMF Structure element size 5 

ASRF 

   

   

Structure element size 

Smallest filtering window(P) 

10 

2.5 

5 

2 

Proposed 

Method 

Number of Iteration 

Pop. size 

Crossover rate 

Mutation rate 

100 

60 

0.8 

0.2 

 

5.1. Synthetic Periodic Noise 

5.1.1. Low-frequency Periodic Noise 

In this step, the low-frequency periodic noise 

structures are considered as a noise source. In this 

case, the simulations are carried out on the images 

with noise pattern of (1) with  0 0,   2,14u v  . The 

simulation results are shown in table 2. 

At this step, a number of spatial methods, spectral 

methods, and spectral-spatial methods were 

considered. Most of the spectral methods exclude 

a specific region from detection by selecting the 

LFR radius. This radius may not be optimum. It 

decreases their performance in face of low-

frequency periodic noise. The methods like SMF 

perform only spatial operations. They are 

associated with a small improved outcome but 

they have no viewpoint about the noise pattern 

and the original image. 

 

5.1.2. High-frequency Periodic Noise 

In this step, high-frequency periodic noise 

structures are considered as a noise source. In this 

case, the simulations are carried out on the images 

with noise pattern of (1) with 0 0, 20u v  . The 

simulation results are shown in table 3. It is 

clearly evident from tables 2 and 3 that the 

restoration algorithms have a better performance 

in high-frequency periodic noise fading. 

In table 3, the proposed method is also compared 

with the spectral, spatial, and spectral-spatial 

methods. Increasing noise power tends to decrease 

the performance of the spatial-domain methods 

regardless of frequency bands. 

The concentration of periodic noise in one or 

more adjacent coefficients in the frequency 

domain causes the spectral approaches to be 

simpler than the spatial method. These methods 

face other challenges yet. A noisy image at best is 

pure periodic noise that affects only a frequency 

component. Reconstructing the noisy image is 

done by reinstating this component. In a more 

complex case, periodic noise will be quasi-

periodic noise. In other words, when the 

bandwidth of the periodic noise increases, several 

rows or columns of the spectrum may be 

involved. In this case, detecting the fundamental 

frequency and its harmonics of the periodic noise 

is also a challenging task. 

Table 3 shows that the proposed algorithm 

outperforms the most recent state-of-the-art 

algorithms. 

 

5.1.3. Multi-frequency Periodic Noise 

Generally, the restoration algorithms work well 

for a single frequency periodic noise but multi-

frequency periodic noise fading is a challenging 

problem. Most of the non-synthetic images are 

also corrupted by the multi-frequency periodic 

noise. 
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Table 2. Comparison amongst different restoration algorithms for restoring sample images corrupted by low-frequency 

periodic noise in terms of performance metrics. 
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PSNR 13.85 13.84 14.63 12.42 16.10 15.95 14.20 15.83 16.26 

SSIM 0.374 0.370 0.434 0.302 0.570 0.567 0.239 0.563 0.531 
MAE 17.01 17.00 15.24 20.96 12.20 12.60 16.34 12.96 11.81 

EAcc. 0.261 0.246 0.284 0.225 0.443 0.405 0.093 0.318 0.449 

EPrec. 0.824 0.820 0.842 0.818 0.881 0.883 0.785 0.889 0.893 

L
a

k
e 

0
.6

 

PSNR 15.56 15.69 15.87 14.37 17.53 17.59 15.20 16.11 17.77 

SSIM 0.509 0.507 0.524 0.424 0.641 0.623 0.281 0.569 0.705 

MAE 17.61 17.60 16.97 19.91 14.33 14.67 17.96 16.70 13.80 

EAcc. 0.330 0.323 0.335 0.268 0.352 0.370 0.098 0.395 0.403 

EPrec. 0.831 0.829 0.837 0.813 0.854 0.846 0.776 0.838 0.854 

 

Table 3. Comparison amongst different restoration algorithms for restoring sample images corrupted by high-frequency 

periodic noise in terms of performance metrics. 
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PSNR 20.32 25.45 24.22 19.84 25.39 24.35 22.09 28.21 28.54 
SSIM 0.419 0.731 0.666 0.408 0.727 0.861 0.637 0.875 0.916 

MAE 10.91 5.72 6.98 11.15 5.82 6.41 7.93 3.98 3.91 

EAcc. 0.649 0.777 0.607 0.580 0.785 0.820 0.337 0.837 0.882 

EPrec. 0.894 0.947 0.908 0.880 0.952 0.958 0.855 0.966 0.975 

L
e
n
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0
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PSNR 13.90 17.85 15.33 13.80 17.50 17.75 16.67 17.90 18.16 

SSIM 0.157 0.545 0.292 0.154 0.469 0.560 0.571 0.518 0.574 
MAE 17.39 8.60 14.27 17.60 9.79 9.12 9.25 9.01 8.40 

EAcc. 0.824 0.816 0.606 0.611 0.825 0.771 0.419 0.832 0.866 

EPrec. 0.941 0.971 0.899 0.899 0.971 0.960 0.883 0.967 0.980 
 

Table 4. Comparison amongst different restoration algorithms for restoring sample images corrupted by multi-frequency 

periodic noise in terms of performance metrics. 
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PSNR 19.39 23.29 20.98 17.95 23.34 22.76 20.20 23.47 23.60 23.80 

SSIM 0.374 0.668 0.512 0.331 0.654 0.702 0.499 0.676 0.712 0.738 
MAE 9.45 5.02 7.42 17.07 5.14 4.95 7.80 4.95 4.65 4.46 

EAcc. 0.644 0.795 0.614 0.526 0.778 0.709 0.271 0.741 0.813 0.831 

EPrec. 0.905 0.949 0.907 0.876 0.923 0.894 0.825 0.933 0.945 0.979 

L
e
n

a
 

PSNR 17.80 19.70 18.39 17.90 19.84 18.53 18.25 19.93 20.14 20.34 

SSIM 0.355 0.547 0.424 0.362 0.546 0.583 0.533 0.568 0.639 0.643 

MAE 8.66 5.83 7.81 19.88 5.84 7.39 7.67 5.64 5.30 5.12 
EAcc. 0.624 0.623 0.594 0.567 0.604 0.590 0.298 0.625 0.658 0.687 

EPrec. 0.923 0.923 0.916 0.910 0.934 0.928 0.857 0.923 0.946 0.961 

 

In this simulation, the reference images are added 

with multi-frequency periodic noise. In this 

case, the simulations are carried out on the images 

with noise pattern of (1) with      1,2,3,4,5S  . The 

simulation results are shown in table 4. 
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5.2. Non-Synthetic Periodic Noise 

The performance of the proposed method is 

evaluated in a real situation. In this case, the 

images from various fields, contaminated with 

different types of non-synthetic periodic noise 

structures are tested as a benchmark. 

As the distortion-free reference image is not 

within reach, the performance evaluation metrics 

cannot be computed. Hence, the performance is 

compared visually only. Figure 3 shows the 

restored outputs of the proposed algorithm, while 

restoring a few non-synthetically corrupted 

images. 
 

  
a. Stripping image b. Restored Stripping 

image 

  
c. Noisy Tree d. Restored Tree 

  
e. Noisy woman f. Restored woman 

Figure 3. Real images corrupted by different non-

synthetic periodic noise structures, and restored images 

using the proposed method. 

 

5.3. Periodic Noise Removal in RGB Images 

The proposed method can easily generalize from 

grayscale images to RGB images. For this 

purpose, image planes are separated from each 

other.  

Then the periodic noise reduction method is 

applied to each separated plane. The final RGB 

image is obtained from a combination of these 

results. Figure 4 shows the restored outputs of the 

proposed algorithm while restoring the corrupted 

color image. 

 

6. Computational Resource Analysis 
In the proposed method, some considerations have 

to be taken into account for computational 

resources (computing time and memory space), as 

follows. 

 

6.1. Memory Space Analysis 

Memory consumption analysis can be used to 

identify the memory resources that are allocated 

and released over time. Let decomposition of a 

noisy image of size    M N  be considered. If the 

number of populations in GA is Pop  and the 

cross-over rate is cr  and the mutation  

rate is mr , then a generation requires 

                     Memory M N Pop cr mr      . In the proposed 

method, STFT is used in order to improve the 

memory consumption. In this case, the 

overlapping patches and their spectrum are 

considered of size    p q . Due to the symmetry 

property of Fourier transform, a chromosome will 

have          CM p q   genes. Thus for the 

mentioned example, a generation requires 

         Memory M N Pop cr mr      . 

 

6.2. Computing Time Analysis 

If fast Fourier transform is used, the complexity 

would be     O p q log p q    [35] for a patch of size 

p q . Each spectrogram column is obtained from 

the 2-D Fourier transform of a patch. Periodic 

noise appears on all spectrogram columns as 

similar peaks. The whole spectrogram is 

decomposed in fitness evaluation, while in the 

implementation, the emphasis is on computational 

efficiency. Computational efficiency is achieved 

through the selection of a Part Of the Image (POI) 

in fitness evaluation. Since periodic noise is 

scattered throughout the whole image, the 

selecting of a part of the whole taken as 

representative of the whole image. POI like the 

original image has similar peaks on its 

spectrogram but the number of their columns is 

different. Therefore, if a separator chromosome 

can decompose the POI spectrogram correctly, it 

will also be able to decompose the original 

spectrogram along with improving the 

computational efficiency and saving the 

computational time. 

If the POI spectrogram of size 1 1 1 1  , ,M N M M N N    

is used in the GA block and the hop size  

is a b , the complexity of the ISTFT would be 

equal to   /   O M a N b p q log pq    . The running 

time for a generation with the number of 

population Pop  and the crossover rate cr  and the 
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mutation rate mr  and number of iteration Itr  is as 

follows: 
 

          1 12 / / logT Pop Pop cr mr Itr M a N b p q pq         

 

7. Conclusion 
In this work, blind periodic noise decomposition 

from digital images was proposed using a genetic 

algorithm (GA). In the proposed method, the 

frequency and spatial domain image information 

can be considered and optimized in GA 

simultaneously. On the other, GA in the problem 

of periodic noise reduction faces challenges in 

terms of computational resources. However, the 

use of image characteristics and optimization in 

the area can also be useful for solving periodic 

noise reduction. Both of the advantages and 

disadvantages of GA are formulated in the 

proposed method in such a way that its 

disadvantages are minimized and its advantages 

are used. Nonetheless, a fully automatic method 

for periodic noise reduction is preferred, which 

will be considered in the future research work. 

 

  

    
a. Noisy image b. ATBF c. LFDF d. Mean 

    
e. WGNF f. AONF g. Median h. SMF 

    
i. AGNF j. WASMF k. ASRF l. Proposed Method 

Figure 4. Visual comparisons for different de-noising algorithms for a non-synthetically corrupted image Oldprintwoman. 
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 چکیده:

 ظااهر تصاویر فرکانسای طیاف در هااییپیک صورت به نویز این. شودمی آن کیفیت تخریب باعث تصویر روی بر مشابه الگوهای افزودن با متناوب نویز

 از متنااوب ناویز کاور جداساازی بار پاووه  این. است تصویر پردازش در رایج مسائل از یکی همپوشان یا شده ترکیب تصاویر کور جداسازی. شودمی

 کاور جداسازی روال. گیردمی قرار توجه مورد همزمان طور به فرکانس و مکان حوزه در تصویر اطلاعات منظور این برای. است متمرکز دیجیتال تصاویر

 جداسااز انتهاا در. گارددمی انجام مکان حوزه در معیار تابع سازی بهینه و فرکانس حوزه در تفکیک عملیات آن در و شودمی انجام ژنتیک الگوریتم در

 است شده انجام زمان و حافظه زمینه در ملاحظاتی. آیدمی دست به شده بازسازی تصویر و شده اعمال نویزی تصویر روی بر فرکانس حوزه در شده ارائه

 مستقل ژنتیک الگوریتم در موجود محاسبات دیگر طرف از و نباشد وابسته تصویر اندازه به ژنتیک الگوریتم در شده ارائه جداساز اندازه  آن واسطه به که

 سازیشبیه نتایج. گردید بررسی غیرمصنوعی و مصنوعی نویز به آغشته محک تصویر تعدادی روی پیشنهادی روش عملکرد. پذیرد انجام تصویر اندازه از

 .است آن قبولقابل عملکرد از حاکی کمی و کیفی معیارهای از استفاده با

 .ژنتیک الگوریتم نگاره، طیف متناوب، نویز تصویر، نویز حذف :کلمات کلیدی

 


