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Scouring, occurring when the water flow erodes the bed materials
around the bridge pier structure, is a serious safety assessment problem
for which there are many equations and models available in the
literature in order to estimate the approximate scour depth. This
research work is aimed to study how the surrogate models estimate the
scour depth around circular piers, and compare the results with those
of the empirical formulations. To this end, the pier scour depth is
estimated in non-cohesive soils based on a sub-critical flow and live
bed conditions using the artificial neural networks (ANNSs), group
method of data handling (GMDH), multivariate adaptive regression
splines (MARS), and Gaussian process models (Kriging). A database
containing 246 lab data gathered from various studies is formed, and
the data is divided into three random parts: 1) training, 2) validation,
and 3) testing in order to build the surrogate models. The statistical
error criteria such as the coefficient of determination (R?), root mean
squared error (RMSE), mean absolute percentage error (MAPE), and
absolute maximum percentage error (MPE) of the surrogate models are
then found and compared with those of the popular empirical
formulations. The results obtained reveal that the surrogate models’
test data estimations are more accurate than those of the empirical
equations; Kriging has better estimations than the other models. In
addition, the sensitivity analyses of all the surrogate models show that
the pier width’s dimensionless expression (b/y) has a greater effect on
estimating the normalized scour depth (D4/y).

1. Introduction

The bridge pier local scour, which is a vital
limiting factor involved to assign the minimum
substructure depth, is the removal of the river bed
materials from around the pier foundation. This
issue is important because if the scour depth is
overestimated, the result will be an increased
foundation depth, and an increased pier base
design depth, and hence, the increased project
implementation costs; and if it is underestimated,
there will be an increased bridge destruction risk.
Shirhole and Holt [1] believed that the bridge
failure due to hydraulic factors (scour, ice, and

debris) was more serious compared to the other
factors involved (overloading, collision, structural
details, earthquake, etc.). Therefore, a correct
estimation of this phenomenon is a very effective
parameter in bridge safety evaluations. However,
due to the natural complexity of the phenomenon
and thus its modeling, many researchers such as
Breusers et al. [2], Melville & Coleman [3],
Richardson & Davis [4], and Sheppard & Miller
[5] studied the case and proposed different
empirical relations based on a specific dataset and
different input variables. The important point is
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that most of the existing models do not yield a
proper estimation accuracy, and often provide
different, highly conservative, and overestimated
scour depths. Therefore, their estimations of the
maximum scour depth are not satisfactory, and
their use in the design of real-world cases is
unreliable since it generally leads to higher
foundation design costs [6].

Since different sources have stated that a single
reliable equation does not exist in order to
estimate the scour depth for various ranges,
alternative methods (e.g. surrogate modeling)
have been widely used, and have become effective
tools to provide more accuracy in the hydraulic
design problems. Although they have performed
much better than the methods that are mostly
regression-based, some of them cannot provide an
explicit relation between the scour depth and its
decision variables [7, 8].

ANNs, MARS, GMDH, and Kriging find
relations between a set of effective variables as
the model inputs and the local scour depth as the
target variable. Many studies have shown the
efficiency of these methods in the engineering
problems, and many researchers ([9-13]) have
used them successfully to solve the hydraulic
problems.

In order to estimate the scour depth, the
researchers have used different ANNs, GMDH
MARS, and Kriging models. Bateni et al. [7] have
applied MLP/BP (multi-layer perception) and
RBF/OLS (radial basis) (two ANN models) along
with ANFIS (adaptive neuro-fuzzy inference
system) and numerous lab data in order to
estimate the scour depth around bridge piers by
modeling the equilibrium scour depth as a
function of five variables including the flow
depth, mean velocity, critical flow velocity, mean
grain diameter, and pier diameter. In order to
check the estimation accuracy of the mentioned
models, their results have been compared with
those of 8 other empirical relations, and it has
been confirmed that the proposed approaches are
much more accurate in estimating the scour depth.
Firat and Gungor [14] have studied the ANN’s
ability in order to estimate the scour depth around
circular bridge piers, have compared the results
obtained with those of the empirical formulae, and
have shown that the Generalized Regression
Neural Network (GRNN) model can not only do
the task successfully but is also more reliable and
accurate.

Najafzadeh et al. [15] have compared the results
of the GMDH network and the traditional
equations for estimation of the scour depth in
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cohesive soils, proving that the former is much
more successful than the latter.

Bateni et al. [8] have utilized the GEP (genetic
expression programming) and MARS models in
order to estimate the equilibrium scour depth
around pile groups; they compared their
performance with those of the empirical equations
and showed that they could estimate the
equilibrium scour depth more accurately than the
existing equations; MARS was more accurate than
GEP.

The studies that have evaluated the performance
of these models in order to estimate the scour
depth are numerous; however, Kriging has not
been widely used so far in this domain. In order to
show its capabilities in other fields, Qin et al. [16]
have successfully applied a hybrid Kriging model-
genetic algorithm to modify the FEM (finite
element method) analyses of complex bridge
structures, showing that the Kriging surrogate
model performed well in estimating the structural
response and reducing the computational costs.
Fan et al. [17] have examined if the Kriging
surrogate models could optimally design crane-
bridge systems based on reliability, showing that
it could considerably improve the computational
efficiency with a good accuracy. Lu et al. [18]
have used the Kriging model in to estimate the
bridge static load, showing that Kriging has a
good accuracy, and the results obtained conform
well to those of the static load tests. Therefore, the
above-mentioned studies and their results show
that the performance and effectiveness of the
proposed method are acceptable for the estimation
or optimization purpose.

In this work, we investigated the efficiency of the
Kriging model in comparison with the GMDH,
ANN, and MARS models, and some existing
traditional equations in order to estimate the pier
scour depth under live bed conditions with
uniform  sediments in  non-cohesive  soils
considering the influence of the effective
parameters on the performance of the surrogate
models to estimate the scour depth.

2. Local Scour Around a Pier and Data
Collection

Soil materials are eroded from around bridge piers
or other hydraulic structures built in flowing
water. Since this sediment removal (also called
local scouring) phenomenon, due to the flow-pier
interaction (figure 1), is a main bridge-failure
factor, because it undermines the foundation, we
are required to precisely estimate the pier-vicinity
scour hole in order to take the necessary measures
to prevent the structure from erosion-related
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failures all through its service life. Nevertheless,
since the pier obstruction and sediment erosion,
which form the scour hole, are complicated
interactions between different fluid flow patterns
and the scour affecting variables are many,
making a dependable numerical/analytical model
that can consider different inter-related controlling
factors, without having to oversimplify the case, is
not easy. The local scour depth estimation is not

possible by an accurate method; hence, empirical
methods are used for this purpose since different
designers have varied opinions and use different
equations. Since this issue depends on such
parameters as the fluid, flow, bed sediment, and
pier geometry, many research works have been
done by many colleagues in order to investigate
the factors that affect the scour depth around
bridge piers.

Figure 1. Sketch of local scour of pier.

After Azamathulla et al. [19] compared the GP
performance with those of ANNs and regression
equations and concluded that the former was more
effective, they used it as an alternative to HEC-18
(conventional regression-based equations) in order
to find the scouring of bridge piers.

They expressed the factors affecting the
equilibrium scour depth at piers as a function of
the following variables:

Ds :f(V,y, DSO’ o, b! Lyg) (1)

where V and y are the approach flow velocity and
depth, respectively, Dsy is the mean particle
diameter, o is the standard deviation of the grain
size distribution, b and L are the pier width and
length, respectively, and g is the gravity-caused
acceleration.

Since the non-dimensional parameters vyielded
better scour depth estimations than the
dimensional ones, some papers [20-22] analyzed
models with a non-dimensional dataset and found
the following equation with 5 decision variables
using the dimensional analysis method:
ng[F b h,k,aj

y y'y @)
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where Dy, bly, Dsoly, L1y, F;, and o are the scour
depth, pier width, mean particle diameter, pier
length (all non-dimensional), Froude number, and
standard deviation of the grain size distribution,
respectively.

Hence, the decision variables are, next, reduced as
follows using the dimensional analysis technique:

D, =f(V,y, D, o, b,g) 3)
Hence, using the circular-section piers in this

work led to their equilibrium scour depth to be a
function of the variables mentioned below:

&=f[5,9,%,aJ @
y y 'y

The above parameters were used in order to
develop the surrogate models and the results
obtained were compared with those of four
empirical equations in order to evaluate the
efficiency of the developed models. The selected
equations (table 1) included: 1) modified HN/GC
[23], 2) Laursen and Toch [24], 3) Johnson [25],
and 4) FHWA HEC-18 [26] (based on the
Colorado State University ‘CSU’ Equation).
Tables 2 and 3 show the surrogate models
developed for uniform sand bed materials using a
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dataset of totally 246 cases, out of which 99 were and a sub-critical flow regime (F; < 1). Since the
reported by Chiew [27], 75 by Chabert and armoring phenomenon would probably occur at o
Engeldinger [28], 50 by Chee [29], 15 by Jain and > 1.3, lower values (0 < 1.3) were considered
Fischer [30, 31], and 7 by Chen [32], all gathered [33].

through observations of live bed scour (V > V)
Table 1. Empirical methods used for comparison.

Reference Equation Notes
Laursen and Toch (1956) D, =1.35b%"y®?
D098 - 021 (-0.24) Ds4
Johnson (1992) D, =2.02y(=)"F “c o=—""2%
y D50
D b \%
CSU (1993 = =2.0K,K,K K, (5)*®F*® F=—"
( ) y 102Ny A(y) \/a
modified HN/GC (2016) _ D) 30k, K, tanh(—P )] H= ,—V
b0‘52y0,38 B 177273 1.970_1,5 g(sg)DSO

Dso = Median grain size;

K; and K, = Correction coefficient pier nose
shape and flow angle of attack, respectively. For a
circular pier, both K; and K, are equal to one;

Ks; = Correction factor for bed conditions (for
clear water (K3 = 1.1) and live bed (1.1 < K3 <
1.3);

V = Mean approach velocity;

g = Gravitational acceleration

Sy = Specific gravity of the sediment

where:

D = Predicted pier scour depth;

o = Sediment gradation coefficient;

F = Approach flow Froude number defined as

H = Hager number (densimetric particle Froude
number (F,));

b = Pier width;

y = Approach flow depth;

Dgs = Sediment diameters for which 84% of the
sediment material is finer;

Table 2. Data sources.
Source Chiew (1984) Chabert and Engeldinger (1956)  Chee (1982) Jain and Fischer (1979,1980) Chen (1980) SUM

Number Of Data 99 75 50 15 7 246

Table 3. Range of data.

Parameters Maximum Average Minimum  Std. Deviation

F 0.999 0.606 0.201 0214

o 1.28 1.185 1.094 0.048

Dsoly 0.035 0.008 0.0015 0.007

bly 150 0513 0.132 0.342

Ddy 175 0.669 0.156 0.365
Figure 2 shows the input-output variable positive/negative inter-variable correlations. Since
correlationship assessed through the Pearson b/y has the highest correlation, b/y-D¢/y has a
correlation analysis. Here, heatmaps represent the strong positive linear correlationship; that of other
absolute values of the correlation coefficients. input-output variables is negligible.

Those in yellow/pink mean strong
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Figure 2. Heatmap of correlationship between the input and output variables.

3.  Surrogate Models and  Statistical
Performance Measures

Surrogate (Meta) models are used in order to
simulate and find the relationships between the
different input variables and how they affect the
outputs in complex models. The general steps in
buildingg a  surrogate  model are: 1)
Generating/defining its input parameters and their
variation range, 2) Determining its structure/type,
3) Estimating its training parameters, and 4)
Evaluating its performance [34].

Since the accuracy/success of these methods

highly depends on the data points and sample

locations, the database was randomly divided
(figure 3) into: 1) A training subset (with 172 data
or 70%) to construct the surrogate model and
avoid overfitting, 2) A validation subset (with 37
data or 15%) in order to evaluate the model’s
generalization capability, check its performance
throughout the training stage, and finally,
determine the model’s optimum input parameters,
and 3) A test subset (with 37 data or 15%) to
evaluate the performance of the developed
surrogate models through comparisons with the
existing empirical equations.
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Figure 3. Properties of dataset used for estimating Dy/y.

In this work, we used the ANNs, GMDH, MARS,
and Kriging techniques of the surrogate modeling
in order to estimate the pier scour depth. Next, the
RMSE (root mean square error), R? (coefficient of
determination), MAPE (mean absolute percent
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error), and MPE (maximum percent error)
performance measures ((5)-(8)) were applied to
compare each model’s accuracy/efficiency.
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scour depth, n is the number of data points, and

D

S

( y ]A and [ y JP are the measured and model-
estimated mean data values, respectively. The

D

S

MApEzlzn: @) m_odel performance was evaluated gsing RMSE
ni= ( D, ) with a range of 0 to +oo (optimum zero);
y ) generally, a low RMSE/MAPE/MPE and a high

R? mean a more efficient model performance. The
general framework for this research work is
shown in figure 4.
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Figure 4. Research framework.
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3.1. Artificial Neural Networks (ANNSs)

The ANNs model is an intelligent system capable
of modeling complex problems and solving
complicated systems in many fields such as the
optimization,  prediction,  estimation, and
simulation. Its structure consists of some input,
hidden, and output layers, each of which has a
network of artificial neurons called "nodes”. The
nodes in the input and output layers are
indications of the independent and dependent
variables, respectively, and one or more hidden
layers, which are neither input nor output, can
constitute the ANNs network. In a layer, all the
nodes send signals to interact and make links with
those in the adjacent layers for the ANNSs network
to be fully connected. Since each node applies a
typical activation function (tansig, purelin, etc.) to
generate its output signal, the output variables are
produced by merging the  connection
weights/biases with each input node after passing
through an activation function. The target values
(y(x)) are, therefore, calculated as follows:

y(x) = iaiw(ai)’&ai = iwijxj +ﬂj 9)

where o, w, and B are the network’s uncertain
parameters (weights, bias terms, etc.), @(x) is a
transfer function, m is the number of neurons in
the hidden layer, and p is the number of inputs
[34]. Next, the multilayered perceptron method

e = e = s = e = e = e = e = e e e s e = = =,

\

and back-propagation algorithm were used in
order to find the optimal ANNs network structure
to determine the number of hidden layers and
nodes as well as the type of the activation function
in each layer.

The ANNSs network first uses the training dataset
to train itself and then the validation dataset in
order to evaluate its performance; the process
continues until MSE reaches its minimum:

l n

MSE =~ > (E;

i
i=1

—N) (10)
where N; are the measured data, E; are the model
estimation, and n is the number of data points.
Thus this network, with variable hidden layers and
nodes and various activation functions (tansig,
purelin) is investigated until the error of the
validation set is minimized and the best
performance is achieved.

Figure 5 shows this work’s optimal ANNs
structure extracted with four neurons in the input
layer corresponding to four input data

oy
Y ¥ ). The best results were obtained
after many trials and errors using the back-
propagation algorithm with one hidden layer and
5 neurons and tansig and purelin as the optimal
activation functions in the hidden and output
layers, respectively.

e " N
! ; Purelin S
- 7

~ \
a Tansig f :

D: ly

Figure 5. Final properties of the optimal ANNs model.
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3.2. Group Method of Data Handling (GMDH)

First proposed by Ivakhnenko based on the
principle of heuristic self-organization, GMDH is
a kind of ANNs learning machine algorithm
capable of being used in such various problems as
the complex system modeling, function
approximation, non-linear regression, pattern
recognition, and so on. It presents a model as a set
of neurons different pairs of which are linked in
each layer through quadratic polynomials to
generate new neurons in the next layer. The main
objective of the identification problem is to find a
good approximation function f that can estimate
the actual output ¢ for a given input vector X =
(X1, X, ... Xp)-

Thus for a given set of n samples (multi-input-
single-output data pairs), we will have:

Yi = f (X0 X000 %) (i=12,...,m) (11)

The GMDH model is now trained in order to
estimate the target g; for any given input vector X
as follows:

g, = fA(xil,xi2 ..... %,) (i=12...,m) (12)

and minimizes the squared difference between the
real and predicted values as:

E- min[i(f(Xil,Xiz,~~~inn)_ Yi )2]

> (13)

The basic form of the GMDH algorithm (figure 6)
that yielded the input-output variables relationship
could, therefore, be shown by the VKG (Volterra—
Kolmogorov—Gabor) polynomial transfer function
as follows [35, 36]:

Yo =2 +leanX. +D D XX,

i=1 j=1

n

n n
+Z Za”kx,xjxk...,
=1k

i=1 j=1k=1

where a, is the bias component, X = (Xg, Xo, ...,
Xn) IS the vector of input variables, A = (ay, a, ...,
a,) is the vector of weights, and y is the output
variable in each node.

In this scenario, the network layers contain similar
PD polynomial orders, and that of each neuron
(PN) is kept unchanged throughout the network.
For instance, if the first layer PN polynomials are
quadratic:

9=G(xi,xj)=a0+aixi +8,X; +aX X, +a,X] +aX; (15)
Here, the network is designed with a similar
procedure since all of its layers’ neurons’
polynomials are similar; compared to the
quadratic polynomials, the tri-quadratic and 3rd-
order ones form a more sophisticated network,
whereas the bilinear polynomials produce less
complex structures. Earlier studies have revealed
that selecting polynomials may be dependent on
the objective function’s minimum error and the
polynomial type complications. In this work, we
used the quadratic polynomials to model the
bridge-pier vicinity scour depth, and regression
techniques in order to find the weighting
coefficients in (15) to minimize the difference
between y and § (actual and calculated outputs)
for each Xx;, x; pair (input variables). Hence, the
weighting coefficients of the quadratic function G;
were obtained as follows to optimally fit the
output in the whole set of the input—output data
pair:

2 (% —G0) (16)

E= — min

p
. a

'
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Figure 6. Schematic architecture of GMDH networks [36].
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Also in order to optimize such GMDH parameters
as the maximum number of neurons/layers and the
selection pressure by the training/validation
datasets, the trial-and-error method was used so
that the network was first trained by the training
dataset and was then evaluated by the validation
dataset until the mean squared error was
minimized to yield the best performance. In the
optimal structure, the maximum number of
neurons, layers, and selection pressure were found
to be 14, 4 and 0.675, respectively.

3.3. Kriging Model

The Gaussian process regression or Kriging is a
semi-parametric  meta-modeling interpolation
method that estimates, based on the known
observed information, the unknown information at
a point as follows [37, 38]:

G(x)=F(x,p)= 7 (x)B+2(x)

where F(x,) (constant or polynomial) is the
regression base representing the Kriging trend,
g(x) is supposedly the random process realization,
f(x) is the Kriging basis, and B is the regression
coefficient. Different forms of f'(x)p are usually

(17)

N
ordinary (Bo), linear (’8°+z":1’3”X”) or quadratic
N
(BO +Z:‘:1ann +Z:‘12Bnkxnxk]
k=1 , n is the

dimension of the random input vector X, and z(x)
is the Kriging interpolation following a stationary
Gaussian process with zero mean and a
covariance matrix between the points X; and X;
defined as follows:

COV (Z(%),Z(x;))=0"R(x%.%;:0)

]

(18)

where o” is the process variance or the generalized
mean squared error from the regression part based
on the best linear unbiased predictor, R(x;X;;0) is
the correlation (kernel) function representing the
process correlation function with hyper-parameter
0 that has a significant impact on the Kriging
performance.

The Kriging model used in this work was an
ordinary type, and the correlation functions
(linear, exponential, Gaussian, cubic, spherical,
and spline) along with constant, linear, and
guadratic polynomials (degree 0, 1 and 2,
respectively) were evaluated in order to find the
optimal model parameters. After approximating
the training dataset, the model created for
different functions and degrees was evaluated by
the wvalidation dataset with the MSE index.
Finally, the 2nd-order and exponential functions
were selected as the best approximations for the
analyses.
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3.4. Multivariate Adaptive Regression Splines
(MARS)

A non-linear nonparametric method  first
introduced by Friedman, MARS defines the
relationship between some sets of input-output
variables in a high-dimensional data region using
a group of coefficients and piecewise-defined
polynomials [39].

MARS, which is a non-parametric non-linear
method of developing relationships among
different sets of input and dependent variables in
an n-dimensional data region without requiring
any special assumptions about the input variables-
output underlying functional relationships, is
based on a divide-and-conquer strategy wherein
the training data divides into separate splines of
varying slopes. Knots or segments’ end points
mark the end of one data region and the start of
another. This enables the basis functions (plotted
piecewise curves) to make the models more
flexible and allow a linear function to have bends,
thresholds, and other departures. A linear union of
the basis functions (BFs) and their interactions
can help the MARS model f(X) to be formed as
follows [40]:

£(X) = Bo+iﬁmxm (X)

where A, is a basis function; either of one spline
or the product of two or more; in this work, we
assumed a maximum 2nd-order function to
simplify the purposes, although higher orders are
also possible if the data guarantees. The least-
squares method is used to estimate P, which is
constant, and BFs are smooth polynomials
(splines) with piecewise linear/cubic functions.
The form of a piecewise linear function is max (0,
x—1t). It is used for simplicity and has a knot at
value t. Max (.) means its value is zero unless the
positive part is used:

X—t x>t
max (0,x —t) = .
0 otherwise

(19)

(20)

In order to generate BFs, MARS searches
stepwise among all variables’ interactions and
over all possible univariate knot locations, the
selection of which is by an adaptive regression
algorithm. To construct a MARS model, use is
made of a technique with a forward phase to add
functions to find the performance improvement
knots until the highest predetermined number of
terms are found and an intentionally over-fitted
model is obtained, and a backward phase that
eliminates the most ineffective terms to prevent
overfitting using the GCV (Generalized Cross-
Validation) method, which is a goodness of fit test
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that fines for excess BFs and lessens the
overfitting chance. The GCV equation for a set of
training data with N observations is as follows
[41]:

NIl — ]

M +dx(M —1)/2}2

GCV = (21)

N

where M is the number of BFs, N shows the
number of observations, f(x;) are the MARS
model’s estimated values, and d is the fine
parameter (cost per basis function optimization to
make the procedure smooth. Its larger values
mean fewer knots, and hence, less fluctuating
estimates. Since Friedman [39] has suggested
2<d<4, preferably 3 as an optimum value, (this
research work has taken d = 3).

Equation (19) is minimized when a basis function
is omitted at each step so that a good and
acceptable fitting model is yielded. Since BF and
the variable knot location selection are both data-
based and problem-specific, MARS is considered
as an adaptive procedure.

In the data-driven MARS modeling, ANOVA
(analysis of variance) decomposition is used in
order to evaluate the input variables’ contributions
and BFs by testing and comparing variables for
statistical significance by placing all BFs with one
variable in one group and all those with pairwise
interactions (or higher when applicable) in another
after the optimal MARS model has been
determined.

4. Results and Discussion

4.1. Optimal Structure of Surrogate Models

In this section, we evaluate the performance of the
surrogate models by plotting actual non-
dimensional scour depths (Dsy) against the
estimated values. Table 4 and figures 7-11
illustrate the performance and results of the
optimized ANNs, GMDH, Kriging, and MARS
models for training and validation datasets. The
RMSE, R%} MAPE, and MPE statistical
parameters obtained from (5)-(8) are compared to
evaluate the performance of these methods.
According to the results obtained, all the surrogate
models estimated D¢/y acceptably for the training
and validation datasets. The regression lines had
good R? values (0.897-0.9997) for the training set
but slightly smaller values (0.852-0.990) for the
validation set; Kriging and MARS had,
respectively, the higher and lower values in both
cases.
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A comparison of the RMSE, MAPE, and MPE
statistical indicators showed that in the training
part, they were lower for the Kriging model
(0.0070%, 0.002%, and 10.7%) and higher for the
MARS model (0.122%, 0.144%, and 81.1%). The
same was the case in the validation part but with
different values; (0.0033%, 0.047%, and 17.2%)
for Kriging and (0.129%, 0.162%, and 40.6%) for
MARS models.

A results review showed that among all the
models, the optimized Kriging had the highest R?
and the lowest RMSE, MAPE, and MPE, and
contrary to other models, all its estimated values
were within an accuracy range of -20% to +20%
(figure 9).

According to figure 11, the values estimated in
both the training and validation sets had trends
similar to the actual values.
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Table 4. Performance of surrogate models in the training and validation sets.

Models Dataset Number of data R? RMSE MAPE MPE (%)
GMDH Train 172 0.951 0.085 0.108 68.8
Validation 37 0.956 0.068 0.1 30.1
Kiai Train 172 0.9997 0.007 0.002 10.7
riging
Validation 37 0.990 0.033 0.047 17.2
Train 172 0.897 0.122 0.144 81.1
MARS
Validation 37 0.852 0.129 0.162 40.6
Train 172 0.979 0.055 0.066 27.3
ANNs
Validation 37 0.988 0.035 0.06 20.9
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Figure 11. Schematic comparison of the optimal networks estimated in the training and validation sets: (A) GMDH, (B)

Kriging, (C) MARS, and (D) ANNSs.

4.2. Performance Evaluation of Developed
Surrogate Models

In the previous sections, the surrogate models
were developed using the training and validation
datasets but this section is aimed to use the test
dataset in order to evaluate the performance of the
developed models through a comparison with the
results of some traditional equations.

The optimal structures extracted from GMDH,
Kriging, MARS, and ANNSs were used to estimate
Dy/y for the test dataset, and the results obtained
were compared with those of the modified
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HN/GC (2016), Laursen-Toch (1956), Johnson
(1992), and FHWA HEC-18 (1993) empirical
equations. Figures 12-15 and table 5 compare the
surrogate models and traditional equations in
estimating D¢y for the test dataset, and conclude
that the former did the estimation more accurately
than the latter; Kriging and ANNs had better
estimates than GMDH and MARS. Kriging with
R? = 0.947, RMSE = 0.065, MAPE = 0.067, and
an MPE of 25.1% performed the best compared to
the other models.
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Although the empirical methods used in this work average, for CSU and modified HN/GC,
had a reasonable R? their RMSE, MAPE, and respectively, and the RMSE and MPE for CSU
MPE rates were much higher, leading to were 0.393 and 269.8%, respectively. However,
conservative results and overestimated D.ly. the Johnson and Laursen-Toch equations had
Figures 12-13 show that most surrogate models’ reasonable results for this test dataset compared to
estimated values are in the -20% to +20% the mentioned equations. All in all, the statistical
accuracy range, and most values obtained from parameters show that the surrogate models’
the empirical equations are beyond this range. estimation performance is satisfactory compared
According to table 5, the highest D¢y were to the traditional methods.

overestimated by 85.3 and 58.8% (MAPE), on

Table 5. Performance indices of various D¢y estimation methods.

Models Type of data  Number of data R? RMSE MAPE MPE (%)

2 GMDH Test 37 0.803 0.121 0.125 65.5
-é Kriging Test 37 0.947  0.065 0.067 25.1
% Mars Test 37 0.839 0.11 0.149 72.8
2 ANNs Test 37 0.919 0.078 0.094 229
Johnson (1992) Test 37 0.781 0.211 0.257 774

g é Laursen and Toch (1956) Test 37 0.826  0.166 0.356 120.3
GE; % CSU (1993) Test 37 0.713  0.393 0.853 269.8
HN/GC (2016) Test 37 0.795  0.254 0.588 175.6
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5. Sensitivity Analysis

The importance of each input variable and its
effects on the surrogate model outputs were
checked by the sensitivity analysis, which is, in
fact, a fundamental modeling tool for a proper
model application since it enables the user to find
the relative importance of the input parameters
and consider the effects of their errors on the
model output. In this analysis, one input variable
of (4) was deleted each time to evaluate its effect
on the output [42].

In this research work, we analyzed the sensitivity
of the estimated D4/y to the input variables in the
GMDH, Kriging, MARS, and ANNs models,
extracted the optimal structure of each model
based on the inputs of each scenario and the
training and validation datasets, and used the test
dataset in order to evaluate the performance of
each scenario (tables 6 and 7).

Table 6. Sensitivity analysis results for the parameters in (4).

Scenarios  Models Dataset Number of data R? RMSE MAPE MPE (%)
Train 172 0379 0301  0.399 283.3
GMDH ™\ lidation 37 044 0242 0399 127
Test 37 0415 022 0388 132.1
= - Train 172 0.8564 0.1446 01156  80.95
2 Kging ™ alidation 37 0483 0238 0284 1193
) Test 37 0.733 0163  0.269 73.2
<L Train 172 0171 0348 0513 216.6
4 Mars ™\ alidation 37 0213 0299 0555 199
af Test 37 0241 0279  0.595 159.9
Train 172 0813 0165  0.19 78.4
ANNS ™\ zlidation 37 0747 0163  0.196 774
Test 37 366 2846 1072 32355
Train 172 0952 0084  0.109 67.5
GMBH ™ Validation 37 0955 007 0106 303
Test 37 0811 0119 0.3 60.2
= iging Train 172 09997 00066 00022  10.71
S Validation 37 0.982 0.045 0.062 37.9
: Test 37 0834 0111  0.093 432
= e Train 172 0.897 0122  0.144 811
> Validation 37 0852 0129  0.162 40.6
= Test 37 0839 011  0.149 72.8
Train 172 0971 0066  0.085 54.5
ANNS ™z lidation 37 0986 0039 0066 24.4
Test 37 0828 0114 0128 47.7
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Table 7. Sensitivity analysis results for the parameters in (4).

Scenarios  Models Dataset Number of data R? RMSE MAPE MPE (%)

Train 172 0.952  0.084 0.111 64.9

GMDH  Validation 37 0.963 0.063 0.102 30.3

Test 37 0.803 0.122 0.136 58.9

= Train 172 0.9997 0.0066  0.0022 10.71
B>-\ Kriging  Validation 37 0.983 0.046 0.067 26.5
a Test 37 0.882 0.096 0.086 35.7
q&'—_i Train 172 0.897 0.122 0.144 81.1
'\>'\ Mars  Validation 37 0.852  0.129 0.162 40.6
a Test 37 0.839 0.11 0.149 72.8
Train 172 0.992 0.035 0.051 43.6

ANNs  Validation 37 0.973 0.056 0.078 22.2

Test 37 0.917  0.079 0.099 36.1

Train 172 0914  0.112 0.129 60.6

GMDH  Validation 37 0901  0.116 0.159 455

Test 37 0.838 0.11 0.134 435

= Train 172 0.9679 0.0684 0.0573 33.85
‘:: Kriging Validation 37 0.935 0.086 0.078 36.9
E Test 37 0927  0.075 0.076 23.6
g Train 172 0.897 0.122 0.144 81.1
% Mars  Validation 37 0852 0129  0.62 406
e Test 37 0839 041  0.149 72.8
Train 172 0.956 0.08 0.081 38.7

ANNs  Validation 37 0.946  0.077 0.094 34.8

Test 37 0.924  0.077 0.094 38.8

In scenario 1, Dy/y was assumed to be a function
of F, o, and Dsly; all the surrogate models
yielded a very poor estimation of Dy in the test
dataset (table 6), concluding that the assumed
input variables had a low modeling importance. In
this scenario, ANNs performed the worst in the
test dataset despite its slightly reasonable
performance in estimating the training and
validation datasets. Overall, herein the Kriging
model has had the best performance among all
models.

In scenario 2, Dy/y was assumed to be a function
of F, o, and bly; all the surrogate models yielded
better results than scenario 1 (table 6). In general,
all models had a similar performance, Kriging
was slightly better, and MARS was slightly worse
in the training and validation datasets.

In scenario 3, the non-dimensional scour depth
was assumed to be a function of F, Dsly, and bly
decision variables (table 7). All the surrogate
models performed reasonably but ANNs and
Kriging were better than the others.

In the last scenario, 0, Dsp/y, and b/y were defined
as the model input parameters (table 7). As shown
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in tables 6 and 7, this scenario had the best
performance compared to the others; Kriging and
ANNs performed better but the MARS
performance was exactly the same as in scenario
3.

Finally, the sensitivity analyses showed that
among the variables in (4), non-dimensional b/y
had the highest and F, and o had the least effect
on the estimated normalized local scour depth
(Dgly) for all models according to the definition of
database under live bed conditions with a uniform
sediment and a sub-critical flow regime.

6. Comparison with Related Works

Since each earlier similar work is based on some
data gathered from databases different in terms of
scales and water flow/sediment
statistical/hydraulic characteristics, a fair precise
comparison is almost impossible. However, the
results of the present work are presented in table 8
along with those of some other related works most
of which are mentioned in the “Introduction”.
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Table 8. Comparison of the results of this study with those of some previous works.

Comparison Most influential
Number - with Selected
Source Data type Reviewed models . parameter
of data empirical model t .
formula (sensitivity analysis)
ANNSs methods (MLP/BP &
Batenietal. Laboratory 263 RBF/OLS) & ANFIS Yes ANN ier diameter
[7] data (adaptive neuro-fuzzy (MLP/BP) P
inference system)
Generalized Regression
Firat and Neural Networks (GRNN) N .
Gungor Lab(;)ratory 165 and Feed Forward Neural Yes GRNN pier dlm_ens_lon and
ata grain size
[14] Networks
(FFNN)
. clay percentage
N;‘;fza‘é‘ih Lab(;’;f‘;"ry 95 GMDH Yes GMDH (cohesive bed
' material )
. Genetic expression
Baterl]Et al. Lab(;);gory 347 programming Yes MARS pile diameter
(GEP) and MARS
Azamathull - Genetic programming
actal. [19] Field data 398 (GP) and ANNS Yes GP _
. NF-
Najafzadeh  Laboratory NF-GMDH-PSO and NF- ) N
[43] data 321 GMDH-GSA Yes GII\D/IS%H pier diameter
. Laboratory ANN,GMDH, MARS and - -
This study data 246 Kriging Yes Kriging pier diameter

As mentioned earlier, the model inputs (table 8)
have been gathered from different references
under different water flow/sediment conditions,
and have different statistical characteristics and
distributions. However, the deduction from table 8
is that the alternative models in all the mentioned
references had performed better than the
experimental relationships, and the index related
to the bridge pier-section shape-dimension
parameter, in most references, had the greatest
impact on the outputs of different models.
However, this work that has compared the
Kriging model performance with those of the
GMDH, ANNs, MARS and some existing
traditional equations, shows the Kriging model’s
efficiency and reveals that it can have an
acceptable performance in estimating the bridge-
pier scour depth.

7. Summary and Conclusions

In this work, we investigated four surrogate
models, namely artificial neural networks
(ANNs), group method of data handling
(GMDH), multivariate adaptive regression splines
(MARS), and Gaussian process models (Kriging)
that use the non-dimensional decision variables in
order to estimate the local scour depth at circular
piers. The optimal structure of each model was
extracted with the training and validation datasets,
and comparison of their statistical indicators
showed that Kriging and MARS, respectively, had
the highest and lowest precision in the Ddy
estimation among the other surrogate models.;
according to this comparison, the statistical
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indicators in the training dataset showed that
Kriging and MARS had RMSE, MAPE, and
MPEs equal to 0.0070%, 0.002%, and 10.7%, and
0.122%, 0.144%, and 81.1%, respectively.

Then the testing dataset was used in order to
evaluate the performance of these methods
through a comparison with four empirical
equations, namely Laursen-Toch (1956), Johnson
(1992), CSU (1993), and modified HN/GC
(2016). The results obtained showed that all
methods were good enough to estimate Dy/y with
the dataset used in this work but the traditional
equations led to conservative and overestimated
results. Most of the values estimated by the
surrogate models were within the -20% to +20%
accuracy range, and most of those estimated by
the empirical formulas were beyond this range,
concluding that all the surrogate models estimated
the non-dimensional local scour depth (Dsly)
much more accurately than the empirical
equations. Among all the tested surrogate models,
Kriging and ANNs had the highest match to the
target values with the RMSE, MAPE, MPE, and
R? statistical indicators of 0.065, 0.067, 25.1%,
and 94.7%, and 0.078, 0.094, 22.9% and 91.9%,
respectively. Finally, the results obtained showed
that Kriging had the best estimations in all the
three parts (training, validation, and test datasets),
concluding that it was the most robust among all
models.

The sensitivity of the estimated local scour depth
(Ddly) to the approach flow Froude number (F,),
sediment gradation coefficient (o), pier width-to-
flow depth ratio (b/y), and ratio of average
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sediment size-to-flow depth ratio (Dsp/y) was
analyzed, and the results obtained showed that
(bly) was the most effective parameter in the
normalized scour depth (D4/y) for all the surrogate
models, and F, and o had the least effects on the
estimations.
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