[1] Liu, D et al. (2020). Connecting image denoising and high-level vision tasks via deep learning. IEEE Transactions on Image Processing, vol. 29, pp. 3695-3706.
[2] Xie, J., Xu, L. & Chen, E. (2012). Image denoising and inpainting with deep neural networks. Advances in neural information processing systems, pp. 341-349.
[3] Tian, Ch., Xu, Y. Zuo, W. (2020). Image denoising using deep CNN with batch renormalization. Neural Networks, vol. 121, pp.461-473.
[4] Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155.
[5] Cai, W. & Wei., Zh. (2020). PiiGAN: Generative adversarial networks for pluralistic image inpainting. IEEE Access, vol. 8, pp. 48451-48463.
[6] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. & Efros, A.A. (2016). Context encoders: Feature learning by inpainting. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 2536-2544, 2016.
[7] Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O. & Li, H. (2017). High-resolution image inpainting using multi-scale neural patch synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, pp. 6721-6729, 2017.
[8] Cai, N., Su, Z., Lin, Z., Hang, H., Yang, Z., & Ling, B.W.K. (2017). Blind inpainting using the fully convolutional neural network. The Visual Computer, vol. 33, no. 2, pp. 249-261.
[9] Wang, Zh., Chen, J. & Hoi. S. (2020). Deep learning for image super-resolution: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 99, pp. 1-22.
[10] Kim, J., Lee, K. & Lee, M. (2016). Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, pp. 1646-1654, 2016.
[11] Zeng, K., Yu, J., Wang, R., Li, C., & Tao, D. (2017). Coupled deep auto-encoder for single image super-resolution. IEEE transactions on cybernetics, vol. 47, no. 1, pp. 27-37.
[12] Wan, Sh., Xia, Y., Qi, L., Yang, Y.H. & Atiquzzaman., M. (2020). Automated colorization of a grayscale image with seed points propagation. IEEE Transactions on Multimedia, pp. 1-10.
[13] Zhang, R., Isola, P., & Efros, A.A. (2016). Colorful image colorization. European Conference on Computer Vision, UK, pp. 649-666, 2016.
[14] Isola, P. Zhu, J.-Y., Zhou, T., & Efros, A.A. (2017). Image-to-image translation with conditional adversarial networks. arXiv preprint.
[15] Adam, T. & Paramesran., R. (2020). Hybrid non-convex second-order total variation with applications to non-blind image deblurring. Signal, Image and Video Processing, vol. 14, no. 1, pp. 115-123.
[16] Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. European Conference on Computer Vision, UK, pp. 694-711, 2016.
[17] Gao, R. & Grauman, K. (2017). On-demand learning for deep image restoration. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, pp. 1086-1095.
[18] Burger, H.C., Schuler, C.J. & Harmeling, S. (2012). Image denoising: Can plain neural networks compete with bm3d? Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IR, USA, pp. 2392-2399, 2012.
[19] Yang, J., Wright, J., Huang, T.S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE transactions on image processing, vol. 19, no. 11, pp. 2861-2873.
[20] Dong, W., Zhang, L., Shi, G. & Wu, X. (2011). Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 1838-1857.
[21] Chang, Y., Yan, L., Zhao, X.L., Fang, H., Zhang, Zh., & Zhong, Sh. (2020). Weighted low-rank tensor recovery for hyperspectral image restoration. IEEE Transactions on Cybernetics, pp. 1-15.
[22] Elad, M. & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image processing, vol. 15, no. 12, pp. 3736-3745.
[23] Sivakumar, K. & Desai, U.B. (1993). Image restoration using a multilayer perceptron with a multilevel sigmoidal function. IEEE transactions on signal processing, vol. 41, no. 5, pp. 2018-2022.
[24] Mao, X.-J., Shen, C., & Yang, Y.-B. (2016). Image restoration using convolutional auto-encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921.
[25] Zhang, K., Zuo, W., Gu, S., & Zhang, L. (2017). Learning deep cnn denoiser prior for image restoration. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017.
[26] Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu., Y. (2020). Residual dense network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] Li, J., Skinner, K.A., Eustice, R.M., & Johnson-Roberson, M. (2018). Watergan: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 387-394.
[28] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, pp. 2672-2680.
[29] Rudin, L.I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259-268.
[30] Chan, T., Esedoglu, S., Park, F., & Yip, A. (2005). Recent developments in total variation image restoration. Mathematical Models of Computer Vision, vol. 17, no. 2.
[31] Oliveira, J.P., Bioucas-Dias, J.M., & Figueiredo, M.A. (2009). Adaptive total variation image deblurring: a majorization-minimization approach. Signal processing, vol. 89, no. 9, pp. 1683-1693.
[32] Sahragard, E., Farsi, H., & Mohammadzadeh, S. (2018). Image restoration by variable splitting based on total variant regularizer. Journal of AI and Data Mining, vol. 6, no .1, pp. 13-33.
[33] Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. (2007). Image denoising by sparse 3-d transform domain collaborative filtering. IEEE Transactions on image processing, vol. 16, no. 8, pp. 2080-2095.
[34] Charpiat, G., Bezrukov, I., Altun, Y., Hofmann, M. & SCH, B. (2009). Machine learning methods for automatic image colorization. Computational Photography: Methods and Applications, pp. 395-418.
[35] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research, vol. 11, pp. 3371-3408.
[36] Jain V. & Seung, S. (2009). Natural image denoising with convolutional networks. Advances in Neural Information Processing Systems, pp. 769-776.
[37] Dong, C., Deng, Y., Change Loy, C., & Tang, X. (2015). Compression artifacts reduction by a deep convolutional network. Proceedings of the IEEE International Conference on Computer Vision, Las Condes, Chile, pp. 576-584, 2015.
[38] Pires, R.G., Santos, D.F., Pereira, L.A., De Souza, G.B., Levada, L.A., & Papa, J.P. (2017).
A robust restricted boltzmann machine for binary image denoising. Graphics, Patterns and Images (SIBGRAPI), 2017 30th SIBGRAPI Conference on, pp. 390-396.
[39] Tang, Y., Salakhutdinov, R. & Hinton, G. (2012). Robust Boltzmann Machines for recognition and denoising. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, RI, 2012, pp. 2264-2271, 2012.
[40] Ulyanov, D., Vedaldi, A. & Lempitsky, V. (2017). Deep image prior. arXiv preprint arXiv:1711.10925.
[41] Basioti, K., & Moustakides, G. V. (2020). Image Restoration from Parametric Transformations using Generative Models. arXiv preprint arXiv:2005.14036.
[42] Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C. C., & Luo, P. (2020). Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation. arXiv preprint arXiv:2003.13659.
[43] Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., & Thrun., S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, vol. 542, no. 7639, p. 115.
[44] Nogueira, K., Penatti, O.A. & dos Santos, J.A. (2017). Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, vol. 61, pp. 539-556.
[45] Krizhevsky, A., Sutskever, I. & Hinton,G. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, pp. 1097-1105.
[46] Hinton, G. (2012). A practical guide to training restricted boltzmann machines. Neural networks: Tricks of the trade, pp. 599-619.
[47] Arjovsky M. & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862.
[48] Theis, L., Oord, A., & Bethge, M. (2015). A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844.
[49] Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. Image Processing, 2007. ICIP 2007. IEEE International Conference on, Texas, USA, pp. 313, 2007.
[50] Dong, W., Zhang, L., Shi, G., & Li, X. (2013). Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, vol. 22, no. 4, pp. 1620-1630.
[51] Dodge, S. & Karam, L. (2017). A study and comparison of human and deep learning recognition performance under visual distortions. Computer Communication and Networks (ICCCN), 2017 26th International Conference on, Canada, pp. 1-7, 2017.
[52] Levin, A., Weiss, Y., Durand, F., & Freeman, W.T. (2009). Understanding and evaluating blind deconvolution algorithms. 2009 IEEE Conference on Computer Vision and Pattern Recognition, FL, USA, pp. 1964-1971, 2009.