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Abstract

In this work, we show that an image reconstruction from a burst of individually demosaicked RAW captures propagates demosaicking
artifacts throughout the image processing pipeline. Hence, we propose a joint regularization scheme for burst denoising and demosaick-
ing. We model the burst alignment functions and the color filter array sampling functions into one linear operator. Then, we formulate
the individual burst reconstruction and the demosaicking problems into a three-color-channel optimization problem. We introduce a
cross-channel prior to the solution of this optimization problem and develop a numerical solver via the alternating direction method of
multipliers. Moreover, our proposed method avoids the complexity of alignment estimation as a pre-processing step for burst reconstruc-
tion. It relies on a phase correlation approach in the Fourier’s domain to efficiently find the relative translation, rotation, and scale among
the burst captures and to perform warping accordingly. As a result of these steps, the proposed joint burst denoising and demosaick-
ing solution improves the quality of the reconstructed images by a considerable margin compared to the existing image model-based
methods.

Keywords: Burst Imaging, Image Demosaicking, Alternating Direction Method of Multipliers, Efficient Alignment.

1. Introduction

One of the most challenging problems in manufacturing
an imaging pipeline is noise reduction. The most intuitive
solution is, of course, to collect as much light as possible
when taking a photograph. This can be partially addressed
in larger standalone cameras, e.g. digital single-lens re-
flex (DSLR) cameras through the use of a large aperture
lens, sensors with large photosites, and high-quality ana-
log to the digital (A/D) conversion. However, modern mo-
bile cameras are very limited with regards to such hard-
ware elements. Collecting more light is also possible with
the use of a longer exposure so that each photosite inte-
grates light over a longer period of time. This technique is
also limited since it requires placing the camera on a tri-
pod or taking advantage of advanced hardware stabilizers
to avoid motion and consequently motion blur in the final
image.
An efficient yet effective computational approach towards
solving the issues above is burst photography that allows
collecting light over a longer period of time by capturing
a sequence of photos. The process is performed assuming
that a more accurate estimate of the true underlying sig-
nal is obtained by averaging independent noisy samples of
the signal. However, due to the inevitable camera and/or
scene motion in burst captures taken with hand-held cam-
eras, simple temporal averaging yields poor results. Many
techniques attempt to align the burst images before av-
eraging or include some notion of translation-invariance

within the denoising operator itself [1]. Many of the most
successful single image denoising techniques [2, 3] rely
on combining multiple aligned image patches via taking
into account the self-similarity of a single image rather
than using just a few neighbouring pixels via filtering ap-
proaches [4]. They group similar patches within the image
and jointly filter them under the assumption that multiple
noisy observations can be averaged to better estimate the
true underlying signal. Such ideas have been retargeted to-
wards the task of burst denoising of images captured using
mobile phones [1, 5]. These methods align similar image
patches within a few pixels across the burst set and then
perform a robust averaging.
Achieving a high-quality image by combining multiple
image formation steps with a single linear operator can be
generalized to burst image denoising [6, 7]. Such meth-
ods use modern optimization techniques to solve the as-
sociated inverse problem. However, they require a costly
alignment as part of the forward model. The proposed
technique in this paper lies on the line of such work that
combines burst image reconstruction and the transforma-
tion of RAW captures into high-resolution color images,
i.e. demosaicking, into a single linear operation. Burst re-
construction and demosaicking as individual stages are
mathematically ill-posed and rely heavily on heuristics
and prior information to produce good results. Performing
one after the other requires the latter to treat the results of
these heuristics as a ground truth input. This will cause ag-
gregating the mistakes through the pipeline. We propose to
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perform burst reconstruction jointly with the demosaick-
ing in a single process as an attempt to avoid propagating
the demosaicking artifacts throughout the burst denoising
process. Fig. 1 highlights the issue with performing demo-
saicking followed by burst reconstruction as two individ-
ual steps.
Many single image demosaicking approaches assume
noise-free color filter array (CFA) images [8, 9, 10, 11,
12]. Such sophisticated non-linear methods generally fail
due to the inevitable presence of noise in real captures.
Hence, denoising is required to be incorporated in the pro-
cess of demosaicking as carried out in the methods pro-
posed in [13, 14, 15, 16, 17, 18], for instance. A com-
prehensive review of the classic demosaicking approaches
is presented in [19] and [20]. Employing regularization
to address the ill-posed problem of image reconstruc-
tion has become an effective solution. Exploiting some
prior knowledge about the image often derived from some
statistics about natural images is quite fulfilling in pro-
ducing high-quality images. Employing the total-variation
(TV) regularization scheme for each color channel [21], or
using the TV term for color differences [22] rather than
inter-channel data in order to better fix the demosaick-
ing color artifacts are examples of such regularization-
based techniques. Menon et al. [23] have proposed to
perform regularization via a quadratic penalty term over
the difference of gradients of color channels to account
for cross-channel dependencies. Tan et al. [24] have pro-
posed a combination of TV, a cross-channel prior, and
the block-matching and 3D filtering (BM3D) denoiser,
to perform the reconstruction. Although this method out-
performs single-image demosaicking methods, the use of
BM3D as the prior along with the iterative solver make
it computationally expensive. A regularization-based ap-
proach to solve a joint demosaicking and super-resolution
problem has been proposed by Farsiu et al. [25]. The pro-
posed method first generates a high-resolution luminance
component via an edge preserving bilateral regularization
strategy. Then the Tikhonov regularizer is employed to re-
construct the chrominance components of the image.
The recent data-driven approaches have significantly out-
performed the traditional model-based methods [18, 26,
27, 28]. However, their results have been reported with
neural networks (NNs) trained on special datasets tai-
lored to perform demosaicking and burst imaging. Such
NNs are not lightweight and required a lot of training
data. Moreover, they are not yet deployable to the current
mobile hardware systems. Hence, we deviate from such
methods in this work and aim at an efficient approach to-
wards this imaging problem.
In this paper, we propose a regularization scheme for a
burst denoising that incorporates demosaicking in the pro-
cess. We first, carefully combine the burst alignment func-
tions and the CFA sampling functions into a single linear
operator. Then, we model the individual burst reconstruc-
tion and the demosaicking problems into a single imaging
inverse problem. This is modeled as a 3-channel (RGB)
optimization problem that we approach via least-squares
regularization. We extend our recently proposed cross-
channel prior [29] as a regularizer to this least-squares op-
timization problem and develop a numerical solution via
Alternating Direction Method of Multipliers (ADMM).

(a) (a)
(a)

(b) (b)
(b)

(c) (c)
(c)

(d) (d)
(d)

(e) (e)
(e)

(f) (f)
(f)

1
Figure 1 . Two simulated RAW images of a synthetic burst

set (a) and (b) were demosaicked independently, (c) and (d),
then aligned and averaged (e). The demosaicking zippering

artifacts that appear in the individually demosaicked
images (c) and (d) still exist in the aligned and averaged

result (e). Demosaicking artifacts do not happen randomly
and are, in fact, visible around the same edge in different

captures of a same scenes. Therefore, they are not cancelled
out through averaging. The ground truth high-resolution

image is shown in (f).

In this work, we also revisit the classic Fourier-based
phase correlation approaches in order to efficiently find
the translation between burst images. We extend phase
correlation to the cases where the 2D rotation and scaling
occur. This results in an accurate yet efficient alignment
method. We propose to employ this alignment method on
the sub-sampled mosaicked images rather than utilizing
the complicated over-kill alignment methods used in the
state-of-the-art burst reconstruction methods. As a result
of these contributions, the proposed method outperforms
the existing model-based burst image reconstruction tech-
niques.
The rest of this paper is organized as what follows. Sec-
tion 2 presents the problem statement and the proposed so-
lution to the burst reconstruction problem using ADMM.
The image alignment technique is also discussed in this
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section. The experimental results are reported in Section
3. Finally, the paper is concluded in Section 4.

2. Problem Formulation of Burst Demosaicking
Given a camera sensor whose resolution is N × M, and
denoting Bayer’s sampling by sr(.), sg(.), and sb(.), the
color image acquisition through a CFA can be modeled as

Ic f a = sr(R)+ sg(G)+ sb(B)+η , (1)

where Ic f a denotes a Bayers’ mosaicked image sampled
from the discretized N ×M color components R, G, B. In
(1), zero-mean Gaussian additive noise is denoted by η .
For each color channel, the corresponding sampling op-
erator acts as a mask on the pixel coordinates that corre-
spond to the other two channels taking into account the
CFA’s pattern. The color sampling functions for a GRBG
patterned CFA can be defined as:

sr(I) =
I(x,y)

4
(1+(−1)x)(1− (−1)y), (2)

sg(I) =
I(x,y)

2
(1+(−1)x+y), (3)

sb(I) =
I(x,y)

4
(1− (−1)x)(1+(−1)y). (4)

where (x,y) denote the pixel coordinates of an N×M im-
age I, ∀x = 1...M,y = 1...N.
In the process of burst imaging, a set of L captures of the
scene is acquired. This set includes L number of CFA im-
ages as {Ic f a1 , ..., Ic f aL}. Due to the inevitable hand-shake,
these captures are not geometrically aligned. Therefore, in
order to relate all these captures with regards to a single
scene, i.e., a single high-resolution R, G, B capture, we
need to account for the geometry mapping of the captures
as:

Ic f al =sr (al(R))+ sg (al(G))+ sb (al(B))+ηl (5)

where al(.) denotes the warping function that maps the
single high-resolution RGB capture to the CFA image
Ic f al . Reconstructing a high-resolution RGB image from
the observations Ic f al given the linear operations al , sr, sg,
and sb is an ill-posed problem due to the presence of the
unknown noise ηl . This problem can be formulated as a
least-squares regression problem [30], in a same way done
for other inverse imaging problems [31, 32, 33].
In practice, one of the CFA images is typically consid-
ered as the reference image and the warping functions are
estimated based on that image through homography es-
timation. It should be noted that each burst capture has
a unique alignment with respect to the reference capture
that is required to be estimated independently from the
other captures. For example, if the first capture of the set
is taken as the reference, by applying the warping func-
tions on the red component of other images in the set,
red components of the entire burst set relate to the refer-
ence as R2 = a2(R1), R3 = a3(R1), ..., RL = aL(R1). High-
resolution color channels, R, G, and B, can be denoted
in vector form by c1, c2, and c3 ∈ RNM×1, respectively.
For more clarity, the sampling functions are modified so
that they down-sample the corresponding color channels

into the low-resolution space. They are also required to
separate color channels from the underlying CFA pattern.
Therefore, the sampling operators in matrix form are de-
fined as S1, S3 ∈ RNM

4 ×NM , S2 ∈ RNM
2 ×NM , correspond-

ing to sr, sb, sg, respectively. The human visual system
(HSV) is more responsive to the green spectrum. There-
fore, the amount of green light passed through the CFA is
twice more than that of the other two color components.
Denoting the warping functions al(.) as Al ∈ RNM

4 ×
NM

4

(l = 1...L) in the matrix form, we propose to minimize
the following convex cost function in order to reconstruct
high-resolution color channels:

minimize
c1,c2,c3

1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



ć1
1

ć1
2

ć1
3
...

ćL
1

ćL
2

ćL
3


−



A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A1

...
...

...
...

AL 0 0 0
0 AL 0 0
0 0 AL 0
0 0 0 AL



[S1 0 0
0 S2 0
0 0 S3

][c1
c2
c3

]
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2︸ ︷︷ ︸
data-fidelity

+λ1

2

∑
j=1

∥∥∥∥∥
[

∂ jc1
∂ jc2
∂ jc3

]∥∥∥∥∥
1︸ ︷︷ ︸

TV

(6)

+λ2

2

∑
j=1

(∥∥∂ jc1−∂ jc2
∥∥

1+
∥∥∂ jc1−∂ jc3

∥∥
1+
∥∥∂ jc2−∂ jc3

∥∥
1

)
︸ ︷︷ ︸

cross-channel prior

,

where ∂1 and ∂2 ∈ RNM×NM denote the horizontal
[−1 1] and vertical [−1 1]T derivative operators in ma-
trix form, respectively. The `p norm function is repre-
sented by ||.||p and the matrix transpose operation is de-
noted by T . Moreover, ćl

n corresponds to the n-th color
channel (n = 1,2,3) of the l-th CFA image, i.e. SnIc f al de-
noted in vector form ćl

1, ćl
3 ∈ RNM

4 ×1, ćl
2 ∈ RNM

2 ×1. In the
block-matrices in (6), 0 at every row denotes a null matrix
whose size is equivalent to that of the non-zero sub-block
on the same row of the matrix. For example, 0 on the rows
that include A1 is an NM

4 ×
NM

4 null matrix. Similarly, 0 on
the row that includes S1 is an NM

4 ×NM null matrix.
Image reconstruction is, in fact, modeled as an optimiza-
tion problem in (6). The objective function is regularized
by the traditional TV and a cross-channel prior. Sparsity
per reconstructed channel is enforced by the first regular-
ization term, while the second term signifies frequency
components shared between color channels. In fact, in
camera systems, due to the unavoidable lens dispersion,
known as chromatic aberration, and/or due to the structure
of the color filter arrays, there is some amount of apparent
color fringe in the images that is more visible near edges,
as shown in Fig. 2. Hence, the preserved details in one
channel are utilized in the reconstruction of another chan-
nel in order to correct for the spatial displacements in the
color channels.
We propose to solve this problem by alternating among
color channels iteratively. Thus, at every iteration i+ 1,
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we find c(i+1)
n via solving the following problem:

c(i+1)
n =argmin

cn

1
2

∥∥∥∥∥∥∥
ć1

n
...

ćL
n

−
A1

...
AL

Sncn

∥∥∥∥∥∥∥
2

2

+ (7)

λ1

2

∑
j=1

∥∥∂ jcn
∥∥

1 +λ2

3

∑
m=1
m 6=n

2

∑
j=1

∥∥∥∂ jcn−∂ jc
(i)
m

∥∥∥
1
.

It has to be noted that the warping operator matrix Al in
(7) is, in fact,

[Al 0
0 Al

]
for the green channel problem c(i+1)

2 .
For brevity, we use the Al notation in all the channel opti-
mization problems.
It is more efficient to estimate the warping functions from
the sub-sampled channels of the mosaicked data than es-
timating them in the super-resolved space. Therefore, the
warping operator Al is estimated from the sub-sampled
channels of the mosaicked CFA images and performed on
the sub-sampled color channels in (6). The process to es-
timate the warping operators is detailed in Sec. 2.2.

2.1. Burst Demosaicking Solution

The warping operators can be calculated from the mo-
saicked data before the reconstruction process. However,
they are required to be applied in the reconstruction pro-
cess at every iteration of the optimization solution of (7),
which is quite costly. One can take the advantage of the
fact that warping is invertible, i.e. Alx = y, (Al)−1y = x
and reformulate (7) as follows:

c(i+1)
n =argmin

cn

1
2

∥∥∥∥∥∥∥
H1ć1

n
...

HLćL
n

−
 Sn

...
×L

cn

∥∥∥∥∥∥∥
2

2

+ (8)

λ1

2

∑
j=1

∥∥∂ jcn
∥∥

1 +λ2

3

∑
m=1
m 6=n

2

∑
j=1

∥∥∥∂ jcn−∂ jc
(i)
m

∥∥∥
1
,

where (Al)−1 is denoted by Hl , and

[
a...×L

]
denotes L

copies of a matrix a stacked vertically. Thus Hl ćl
n can be

treated as a constant through the entire process.
A variable splitting scheme, particularly an approach
based on the ADMM [34, 35] can lead to a suitable so-
lution to the multi-functional convex problems like (8).
Accordingly, for each sub-problem cn, we introduce auxil-
iary variables and corresponding update variables zn, wn, j,
yn, j,m, zn, wn, j, yn, j,m, n = 1,2,3, j = 1,2, m = 1...3,m 6=
n. We then propose an ADMM numerical solver to fur-
ther split the sub-problems and solve smaller convex sub-
problems. Thus, considering every cn, we can define:

c(i+1)
n =

(
LST

n Sn+3
2

∑
j
(∂ T

j ∂ j)
)−1(

[ST
n
×L···](z(i)n +z

(i)
n )+

2

∑
j

∂
T
j (w

(i)
n, j+w

(i)
n, j)+

3

∑
m=1,m 6=n

∂
T
j (y

(i)
n, j,m+y

(i)
n, j,m)

)
. (9)
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Figure 2 . Color fringing due to chromatic aberration. (a)
An RGB image and a scan-line on the image. The insets

show close-up displays of color artifacts that appear near
edges. (b) RGB intensity profiles of the blue scan-line

marked in (a). (c) RGB horizontal gradients of the scan-line
showing that the pixel locations (peaks of the gradients) of

the edges do not match from one channel to another.

Eq. (9) can be considered as a large linear system, i.e.
b = Kx, where x = c(i+1)

n , K = LST
n Sn +3∑

2
j(∂

T
j ∂ j), and

b is the rest of the equation. Needless to say, K is an ex-
tremely large matrix, and its implementation is not feasi-
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ble in practice. The fact that K is composed of multipli-
cation of matrices with their own transposes makes it a
symmetric positive-semidefinite matrix. Thus (9) can be
addressed by the standard linear solvers such as the con-
jugate gradient (CG) one, quite efficiently.
Let the constant ul

n denote Hl ćl
n for each zn. We can define

the following normal equation:

z(i+1)
n =argmin

zn

1
2

∥∥∥∥∥∥∥
u1

n
...

uL
n

−zn

∥∥∥∥∥∥∥
2

2

+
ρ

2

∥∥∥∥∥∥∥zn−

 Sn
...
×L

c(i+1)
n +z

(i)
n

∥∥∥∥∥∥∥
2

2

,

(10)

and solve it as

z(i+1)
n =


u1

n
...

uL
n

+ρ(

 Sn
...
×L

c(i+1)
n −z(i)n )

/(ρ+1). (11)

In a similar fashion, we define:

w(i+1)
n, j =argmin

wn, j
λ1||wn, j||1+

ρ

2
||wn, j−∂ jc

(i+1)
n +w

(i)
n, j||

2
2, (12)

y(i+1)
n, j,m =arg min

yn, j,m
λ2||yn, j,m−∂ jc

(i)
m ||1+

ρ

2
||yn, j,m−∂ jc

(i+1)
n +y

(i)
n, j,m||

2
2, m 6= n (13)

for wn, j, yn, j,m. The problems defined in (12) and (13) can
be seen as the classic shrinkage regression problem. Their
objectives allow a fast solution via soft-thresholding.
Given the arbitrary vectors x and b, and γ as a positive
scalar, the shrinkage problem with respect to x and its so-
lution are defined as:

x̂ =argmin
x

γ‖x‖1 +
1
2
‖x−b‖2

2

= Sγ(b) =


b− γ, if b > γ

b+ γ, if b <−γ

0, otherwise
(14)

where soft-thresholding is denoted by Sγ(.), and the
threshold value is denoted by γ . The two objective func-
tions defined in (12) and (13) share similar characteristics
with (14). Thus, we adopt the soft-thresholding (14) ap-
proach [36] to find their optimal solutions. In case of using
isotropic TV in (6), wn, j turns into a 2D vector. Therefore,
a 2D soft-thresholding is required, as in [35, 36].
A solution to every sub-problem is now developed. Thus
we can solve the main problem by alternating among the
sub-problems, iteratively. The steps of the proposed burst
demosaicking method are outlined in Algorithm 1. It is
worth mentioning that implementation of the matrix form
operators is not feasible since they are extremely large
and memory inefficient. However, the corresponding lin-
ear operators, i.e. sampling, convolution can be used more
efficiently. Also it should be noted that in the ADMM al-
gorithm, ρ is slightly increased per iteration to guaranty a
convergence [37].

Algorithm 1 Proposed demosaicking.

Require: Ic f a1 . . . Ic f aL, H1 . . . HL, λ1, λ2, ρ

1: ćl
1 = S1Ic f al , ćl

2 = S2Ic f al , ćl
3 = S3Ic f al , for l = 1...L

2: i = 1, initiate elements of c(0)1 ,c(0)2 ,c(0)3 with 1, and
other auxiliary and update variables with 0

3: while stop criterion is not satisfied do
4: for n = 1 to 3 do
5: find c(i+1)

n using CG applied on (9)
6: find z(i+1)

n using (11)

7: z
(i+1)
n = z

(i)
n − (

[ Sn...×L

]
c(i+1)

n − z(i+1)
n )

8: for j = 1 to 2 do
9: w(i+1)

n, j = Sλ1/ρ

(
∂ jc

(i+1)
n −w

(i)
n, j

)
10: w

(i+1)
n, j =w

(i)
n, j− (∂ jc

(i+1)
n −w(i+1)

n, j )
11: for m = 1 to 3, m 6= n do
12: y(i+1)

n, j,m=Sλ2/ρ

(
∂ jc

(i+1)
n −y(i)n, j,m−∂ jc

(i)
m
)
+∂ jc

(i)
m

13: y
(i+1)
n, j,m = y

(i)
n, j,m− (∂ jc

(i+1)
n −y(i+1)

n, j,m )
14: end for
15: end for
16: end for
17: ρ = ρ×1.1, i = i+1
18: end while
19: return r = c(i)1 , g = c(i)2 , b = c(i)3

The proposed solution is so scalable that one can add
other priors such as ringing suppressors, non-local-means
denoiser, etc. to the problem (8) and add their solu-
tions [6, 38, 39] to Algorithm 1 straightforwardly. More-
over, the proposed method can take other linear imaging
pipeline operations such as a correction of the sensor’s
dead pixels or saturated pixels, lens distortion warping,
color correction [6], and even calibrated lens blur func-
tions [40] into account as in [29].

2.2. Efficient Alignment

The stack of burst images is very likely misaligned due to
a small camera motion. We handle this by aligning all L
observations Ic f al to a reference (e.g. the first one). This is
performed by computing a sub-pixel-accurate registration
on the sub-sampled color channels.
Considering just a translation between two images f (x,y)
and g(x− x0,y− y0) whose pixel coordinates are denoted
by (x,y) and the amount of translate is denoted by (x0,y0),
the usual technique to address this problem is to com-
pute an up-sampled cross-correlation between the image
to register and a reference image by means of a fast
Fourier transform (FFT) and locating its peak. More for-
mally, we minimize the normalized root-mean-square er-
ror (NRMSE) between f (x,y) and g(x,y), defined in [41]

min
x0,y0,α

∑x,y |αg(x− x0,y− y0)− f (x,y)|2

∑x,y | f (x,y)|2
(15)

whose minimizer is equivalent to the maximizer of the
cross-correlation of f (x,y) and g(x,y) as:

∑
x,y

f (x,y)g∗(x− x0,y− y0) (16)
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Reference Frame

(a)

simulated miss-aligned
frame

aligned and
averaged

(b)

(c)

1

Figure 3 . (a), (b) Efficient alignment under different noise
levels. (a) Noise σ = 0.1. (b) Noise σ = 0.25. (c) FFT-based

alignment using log-scaled values with noise σ = 0.25.

which can be found efficiently using its Fourier counter-
parts as:

∑
u,v

F(u,v)G∗(u,v)exp(i2π(ux0/M+ vy0/N)) (17)

where i denotes the imaginary number and ∗ denotes
complex-conjugate. In (17), F(u,v) and G(u,v) denote
f (x,y) and g(x,y) in the Fourier domain, respectively.
Hence, finding x0 and y0 within a fraction, 1/τ , of a pixel
is [42] (i) compute F(u,v) and G(u,v), (ii) embed the
product F(u,v)G∗(u,v) in a larger array of zeros of dimen-
sions τM×τN, (iii) compute an inverse Fourier transform
to obtain an up-sampled cross-correlation, and (iv) locate
its peak. Hereafter, we refer to this process as Fourier-
based translation registration.
Consider the polar coordinate system (r,θ), where r de-
notes radial distance from the center (xc,yc) and θ denotes
angle:

r =
√
(x− xc)2 +(y− yc)2, θ = tan−1 (y− yc)

(x− xc)
. (18)

The benefit of the polar coordinate transformation of
f (x,y) and g(x,y) denoted by fp(r,θ) and gp(r,θ) is that
the scale and rotation changes in the images can be in-
duced by modifying (r,θ). Hence, in order to find the
amount of rotation and scale between the two images,
one can consider the notation fp(r,θ) and gp(r− r0,θ −
θ0) and use the Fourier-based translation registration dis-
cussed before. The estimated r0 and θ0 correspond the
amount of scale and rotation, respectively, in the original
Cartesian space f (x,y) and g(x,y).
We assume a 2-D affine transform between the burst of
images, i.e. the transform consists of translation and scal-
ing along the horizontal and vertical axes and a planar ro-
tation. This is a reasonable assumption since the burst im-
ages are typically captured in a short period of time with

minimal handshake. Let ć1
re f and ć1

l denote the 2-D sub-
sampled red channel of the reference CFA image and the
l-th one. The 2-D transform is obtained as:

hl =

[ r0 cos(θ0) r0 sin(θ0) x0
−r0 sin(θ0) r0 cos(θ0) y0

0 0 1

]
(19)

where r0 and θ0 are obtained using the Fourier-based
translation registration of the polar coordinate transforma-
tion of ć1

re f and ć1
l . Then the warped ć1

l with regards to
r0 and θ0 in the Cartesian space and ć1

re f are again gone
through the translation registration, this time in the Carte-
sian coordinate system, in order to find x0 and y0. The
obtained transform matrix hl can be used for other color
channels of the CFA images. We denote the process of
alignment, i.e. warping using the transform hl , as a linear
operator Hl in (9).
Fig. 3 shows the alignment results using the proposed
method given two sets of simulated miss-aligned frames.
The right column in each row shows the alignment re-
sult averaged with the reference frame. In an experiment,
the additive noise follows a Gaussian distribution with
standard-deviation 0.1, and in the other, the standard-
deviation of the noise is 0.25. For both cases, we used one
randomly generated 2D affine homography with θ0 = 4.4,
r0 = 1.02, x0 = 5.6, y0 = 2.3. The classic methods such
as [43] apply such phase correlation techniques on the
log-scaled Fourier transformed images. This helps in lo-
cating the peak in the Fourier’s domain in case of noise-
free images. However, in case of images contaminated
with a large amount of noise, the accuracy degrades as
the random noise affects the peak in the frequency do-
main. Fig. 3(c) shows an example of such a poor align-
ment, compared to using FFT directly in Fig. 3(b), in the
presence of random noise with standard deviation of 0.25
where blur artifacts appear near edges in the averaging re-
sult.

simulate 

noisy and 

miss-aligned 

burst frames 

simulate 

burst CFAs

find 

then apply 

Algorithm 1

Figure 4 . Simulation of burst reconstruction.
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Reference Frame demosaick [8],
align and average [44]

demosaick [24],
align and average [44] Heide et al .’s [6] Hasinoff et al .’s [1] Ours

1
Figure 5 . Burst reconstruction of simulated RAW Kodak dataset by means of individually demosaicking using [8] and [24]
followed by the method in [44], methods introduced in [6] and [1], and the proposed method. Noise level is set to σ = 0.25 in

RAW images with pixel values normalized to [0,1].

Table 1 . Image quality measured on the Kodak data-set after reconstruction using different methods. Zero-mean Gaussian
noise σ = 0.25 was added to each mosaicked image (for normalized pixel values in [0, 1] ⊂ R). M1 and M2 S-CIELAB ∆E∗ and

CPSNR, respectively.

Demosaick [8] and [44] Demosaick [24] and [44] [6] [1] Ours
Image M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

1 12.28 28.15 12.12 29.60 11.89 29.27 12.28 28.13 11.10 28.20
2 12.65 28.84 11.52 29.93 12.73 29.03 12.10 29.05 12.10 30.23
3 12.96 28.90 11.72 30.88 12.85 28.97 11.91 30.97 10.95 29.29
4 12.09 28.00 11.46 29.76 11.98 29.13 12.11 28.77 11.75 31.15
5 12.05 28.42 12.25 29.57 12.44 29.19 12.25 29.11 11.92 29.59
6 11.91 27.82 12.25 28.86 11.56 29.06 11.50 29.14 10.66 30.33
7 12.57 27.91 11.42 28.51 12.05 28.99 11.68 28.54 12.45 30.12
8 12.85 28.76 11.25 28.62 11.77 29.33 12.46 30.79 11.11 28.09
9 11.69 28.51 11.68 30.49 11.28 29.38 11.01 30.88 10.96 30.43

10 12.51 28.64 12.56 29.01 10.90 28.12 11.42 29.98 10.97 28.16
11 12.96 28.65 11.91 28.95 12.68 29.04 11.59 29.14 11.80 30.65
12 11.53 27.98 11.92 28.45 12.76 29.15 11.07 29.85 12.31 28.26
13 12.28 28.14 12.36 29.20 12.05 28.96 11.93 30.26 11.09 30.56
14 11.67 29.01 12.27 29.83 12.73 29.20 11.86 30.88 11.26 30.90
15 12.79 27.87 11.78 30.54 11.36 29.28 12.47 30.82 11.10 31.48
16 12.75 28.23 12.42 29.45 12.55 29.32 12.78 29.09 10.93 28.61
17 11.92 28.03 11.05 28.68 11.60 28.86 11.94 30.12 10.85 29.67
18 12.88 28.45 11.52 29.75 11.57 29.13 12.53 29.29 12.07 29.05
19 11.97 28.71 11.97 30.54 12.53 29.17 12.47 28.06 12.32 28.96
20 12.52 27.96 12.58 29.07 11.47 29.09 12.36 29.90 10.57 29.31
21 11.81 28.02 11.70 30.94 11.40 29.08 12.61 28.34 10.35 30.91
22 12.43 28.01 12.77 28.04 12.05 29.06 12.34 29.71 11.50 29.12
23 12.36 27.92 12.41 29.94 12.80 28.91 11.18 28.64 11.09 28.93
24 12.53 28.02 11.20 29.15 12.83 28.97 12.71 30.60 11.38 31.23

Mean 12.33 28.28 11.92 29.48 12.07 29.07 12.02 29.58 11.35 29.71

3. Experimental Results

We first quantitatively assess our method on a synthetic
test set. We then qualitatively evaluate our method and
demonstrate its ability to generalize on real bursts cap-
tured by a mobile phone and compare against several re-
cent techniques. The convergence profile for Algorithm 1
was analyzed empirically and ρ = 0.001 was found as an
appropriate initiation for a fast convergence. This value
leads to 10 to 12 iterations. Also 0.001≤ λ1 ≤ 0.007 was
used to avoid over-smoothing or amplifying noise and ar-

tifacts in the reconstructed images from the test dataset.
Finally, 0.001 ≤ λ2 ≤ 0.01 was used as a good choice to
prevent color fringing from appearing in the results.

3.1. Results on synthetic test set

We tested the proposed method on the Kodak image
dataset. This dataset contains 24 digitized film-captured
images often used as test images for evaluating demo-
saicking methods and similar image construction meth-
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ods. For each image in the dataset, we first generated 10
(L = 10) random 2D affine homographies (rotation, scal-
ing, and translation) and generated 10 different warped
versions of the original image. Each image was then con-
taminated with additive zero-mean Gaussian noise with
a reasonable standard deviation σ . Finally, Bayer’s sam-
pling was applied on each image to simulate a burst of
Ic f a. Fig. 4 depicts the process of synthesizing a burst set
for each image. Each burst set was then processed using
the proposed method. It has to be noted that since the pur-
pose of burst reconstruction is generally to remove strong
noise induced in low light conditions, we selected a high
value for the standard deviation of the noise i.e. σ = 0.25
in our simulations.

The typical burst reconstruction techniques [5, 44, 45] in-
clude an alignment of already demosaicked images and
fusing the resulting images through averaging. We also
applied the alignment and averaging technique of Adams
et al. [44] on the dataset to provide a comparison with the
proposed joint demosaicking and burst denoising. To this
end, we used the methods in [8] and also in [24] in or-
der to demosaick the images before applying the burst re-
construction of Adams et al. [44]. Besides, we processed
the synthetic bursts with other techniques [1, 6] that took
demosaicking into account during the burst reconstruc-
tion. Fig. 5 shows the sample images reconstructed using
the proposed method, averaging aligned demosaicked set
[44], and the reconstruction methods proposed in [6] and
[1]. Inaccurate alignment and consequently burst recon-
struction lead to blurred edges in the image. Also since the
methods are also meant to carry-out demosaicking, one
should expect color artifacts in the final result, in case a
method does not perform well.

The availability of the original (ground-truth) versions of
the burst images made, it possible to evaluate the perfor-
mance of different methods using reference metrics. The
color peak signal-to-noise ratio (CPSNR) and ∆E∗ in the
S-CIELAB colour space are the commonly used metrics
to evaluate demosaicking techniques [23, 46]. We mea-
sured CPSNR and S-CIELAB ∆E∗ on the reconstructed

images to evaluate the methods quantitatively. Table 1
lists the quality measurements for the best results obtained
using the demosaicking methods [8] and [24], followed
by averaging [44], the reconstruction methods of [6] and
[1], and the proposed method. This table indicates that
the proposed burst demosaicking method results in a bet-
ter average CPSNR and S-CIELAB ∆E∗ compared to the
other methods. It should be noted that in the reconstruc-
tion method introduced in [6] employs non-local means
(NLM) denoising at every iteration, which is very costly
and not practical. Therefore, we replaced it by the stan-
dard TV prior.

3.2. Generalizing to real data

The proposed burst reconstruction method was also tested
on the real raw images captured by mobile phones. We
conducted our tests on a sub-set of the raw burst dataset
provided by the authors of [1]. The dataset consists of
3640 bursts of full resolution raw images captured using
a variety of Android mobile cameras. Examples of such
images and their reconstruction results using 4 different
methods are shown in Fig. 6. As this figure suggests, the
proposed method results in high-quality images compared
to the other techniques in terms of a low amount of noise
and reduced false color.

In these experiments, we treated the camera’s image signal
processor (ISP) as a black box where we did not have any
control on its processing blocks. Therefore, we by-passed
it and only performed a static white-balancing on the final
burst-demosaicked results shown in Fig. 6.

A non-optimized Matlab implementation of the proposed
method considering 8 captures using a 4 Mega-pixel sen-
sor takes around 4 minutes to run. On a same platform,
the methods proposed in [1] and in [6] take 3 minutes
and 8 minutes, respectively. Hence, while the proposed
method results in a better quality, specially in terms of re-
duced color artifacts, it performs efficiently compared to
the other two methods.

Reference Frame demosaick [8],
align and average [44]

demosaick [24],
align and average [44] Heide et al .’s [6] Hasinoff et al .’s [1] Ours

1
Figure 6 . Burst reconstruction of real RAW data by means of individually demosaicking using [8] and [24] followed by the

method in [44], methods introduced in [6] and [1], and the proposed method.
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4. Conclusion and Discussion
We formulated the burst denoising and demosaicking into
a single problem and proposed an effective approach to
this joint problem. The method takes advantage of the
facts that a more accurate estimate of the underlying im-
age is obtained by minimizing a least-squares regular-
ization problem given a burst of RAW captures and that
the color channels in the ground-truth image share high-
frequency details, spatially. We also showed that the cum-
bersome process of burst alignment can be performed
quite efficiently in the Fourier’s domain by measuring the
amount of phase difference in the Cartesian and polar co-
ordinate systems to account for the amount of pixel trans-
lation, rotation, and also scaling. Our experiments per-
formed on synthetic data as well as real RAW captures in-
dicate a considerable performance for the proposed joint
burst denoising and demosaicking approach in terms of
reduced noise, color fringing, and demosaicking artifacts
compared to similar approaches.
Burst photography is a common feature in today’s cam-
eras not only for the purpose of denoising, but also gen-
erating high-dynamic range (HDR) photographs. Hence,
the ultimate goal of burst denoising is not only replacing
the classic single-image denoising techniques. Instead, it
can be considered as a complimentary enhancement in the
commonly used HDR photography.
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زدایی و حذف نویز با استفاده از رشته تصاویر از طریق رگولاریزاسیون و یک فرآیند تراز تلفیق موزاییک

 بهینه

 

  ،*2محمد لطیفعلیو  1رضا عزیزی

 .ایران، تهراندانشگاه آزاد اسلامی، ، واحد علوم و تحقیقات ،مهندسی کامپیوترگروه  1

  .ایران، یزد، دانشگاه یزد، مهندسی کامپیوترگروه  2

 19/10/1111 پذیرش؛ 12/10/1111 بازنگری ؛91/91/1191 ارسال

 چکیده:

 ن بدست آمدهتوسط یک دوربیکه با فاصله زمانی بسیار کمی  )burst( تصاویر رشته یک از استفاده با تصویر بازسازی که دهیمدر این مقاله نشان می

شود. برای می تصویر پردازش فرایند یلوله خط سرتاسر در زداییاند باعث انتشار خطای موزاییکزدایی شدهموزاییک از دیگری اند و هر کدام مستقل

کنیم. سپس فرایند در یک اپراتور خطی مدل میی فیلترهای رنگ سنسور را گیری آرایهتصاویر و نمونه )alignment( رفع این نقص ما ابتدا فرایند تراز

 توزیع یم. برای این منظور یککنمی مطرح واحد سازیبهینه مسئله یک صورت به را خام تصویر زداییموزاییک فرایند  و رشته تصاویر بازسازی تصویر از

روش جهت متناوب  یک راه حل عددی بر اساسو از آن در  کنیمان تقاطع کانالهای رنگی معرفی میتحت عنو )prior(  پیشین احتمال

پیش پردازش  در که تراز تخمین هایپیچیدگی از مقاله این در شده ارائه روش نهمچنی. کنیممی استفاده جهت بازسازی تصویر )ADMM( مضارب

همبستگی فازی در حوزه فوریه تصاویر جهت  روش یک از آن بجای و کندمی اجتناب دارد وجود تصاویر رشته از استفاده با معمول بازسازی روشهای

گیرد. نتیجه حاصل از این مراحل این تخمین میزان تغییر جابجایی حول محور افقی و عمودی، میزان چرخش نسبی و میزان بزرگنمایی نسبی بهره می

زدایی از تصاویر خام به صورت تصاویر و موزاییک ستفاده از رشتهزدایی با اموجود، روش ارائه شده برای نویز است که در مقایسه با روشهای مشابه

 .دهدهمزمان کیفیت تصاویر بازسازی شده را به طور قابل توجهی افزایش می
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