
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 1, 2021, 99-108.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

Probabilistic Reasoning and Markov Chains as Means to Improve

Performance of Tuning Decisions under Uncertainty

Allan Odhiambo Omondi*, Ismail Ateya Lukandu and Gregory Wanyembi

Department of Information Technology, Strathmore University, Nairobi, Kenya.

Article Info Abstract

Article History:
Received 17 September 2019

Revised 08 January 2020
Accepted 17 March 2020

DOI:10.22044/jadm.2020.8920.2027

 The variable environmental conditions and runtime phenomena require

the developers of complex business information systems to expose the

configuration parameters to the system administrators. This allows

them to intervene by tuning the bottleneck configuration parameters in

response to the current changes or in anticipation of the future changes

in order to maintain the system performance at an optimum level.

However, these manual performance tuning interventions are prone to

error and lack of standards due to fatigue, varying levels of expertise,

and over-reliance on inaccurate predictions of future states of a

business information system. The purpose of this research work is to

investigate that how the capacity of probabilistic reasoning to handle

uncertainty can be combined with the capacity of Markov chains to

map the stochastic environmental phenomena to ideal self-optimization

actions. This is done using a comparative experimental research design

that involves quantitative data collection through simulations of

different algorithm variants. This provided compelling results, which

indicate that applying the algorithm to a distributed database system

improves the performance of tuning decisions under uncertainty. The

improvement is measured quantitatively by a response-time latency

27% lower than the average and a transaction throughput 17% higher

than the average.

Keywords:
Database Theory, Auto-Tuning,

Decision Theory, Bayes’

Theorem, Reinforcement

Learning, Monte Carlo

Simulation, Autonomic

Computing.

*Corresponding author:
aomondi@strathmore.edu (A. O.

Omondi).

1. Introduction

The argument p → q is valid when it is impossible

for the premise, p, to be true, while the

conclusion, q, is false. The same argument is

considered to be sound when the premise, p, is

confirmed to be true. It is not always possible to

gain 100% confidence regarding the truthfulness

of a premise. The probabilistic reasoning is useful

when it represents an uncertain knowledge in a

case where we are not sure about the truthfulness

of the premises of an argument [1].

The Bayes‟ theorem enables us to determine the

probability of an event with an uncertain

knowledge. This is made possible by relating the

conditional probabilities to the marginal

probabilities of two random events [2]. Given that

(|)P A B represents “the probability of A under

the conditions of B”,  P B represents “the

marginal probability of B” and   P A B

represents the joint probability of both A and B; it

is well known, as shown in (1) that:

 

 

(|)

P A B
P A B

P B




(1)

The Bayes‟ theorem extends the lemma in (1)

further based on the product rule and the

conditional probability of event B with a known

event A, as shown in (2).

      | P A B P B A P A  (2)

This is then substituted in the original equation,

and it essentially enables us to calculate the value

of (|)P A B with the knowledge of (|),B A

 P A , and  P B as formally defined in the

Bayes‟ theorem shown in (3).

Omondi et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

100

   

 

 |
(|)

P B A P A
P A B

P B


(3)

This can also be stated as shown in (4).

   

 

(|)

 |

P cause effect

P effect cause P cause

P effect



(4)

or in the research terms, as shown in (5).

   

 

(|)

 |

P hypothesis evidence

P evidence hypothesis P hypothesis

P evidence



(5)

This forms a basic truism for most modern

Artificial Intelligence (AI) systems that involve a

probabilistic inference.

1.1. Bayes’ Theorem and Markov Reward

Process

Given that an observation, tO , can be made at

time t , an action performed based on the

observation made, and a reward received based on

the action performed, we can have a history tH

such that 1 1 1 , , , , , , t t t tH O A R O A R  . Figure 1

shows the relationship between the observation,

the action, and the reward as well as the managed

element and the autonomic manager.

Figure 1. Reinforcement learning concepts applied

in the autonomic manager.

In this case, the autonomic manager is the AI

agent, and it is tasked with making decisions of

which actions to perform under uncertainty. It is

essential to note that a dynamical system has a

direct relationship between the amount of

computation performed and the quality of the

output given. This is such that the more

computations that are performed, the fewer the

number of resources available to compute and

produce the output at the required pace [3]. As

demonstrated further in our previous work, it

would be contradictory to have an intelligent

agent that seeks to make decisions on how to

improve the performance of a system but it

simultaneously leads to a reduction in the system

performance [4]. With this in mind, the autonomic

manager was made distinct from the managed

element.

One of the ways a non-compute intensive

autonomic manager can be realized is by not

storing and processing the history since time 1t 
. Instead of this, a summary of the history can be

obtained in the form of  t tS f H such that tS

is the state at time t . This implies that all the

previous states can be discarded and only the

representation of the current state considered

when the agent is deciding what action to perform

next. We can, therefore, deduce that a Markov

state defines the future as independent from the

past given the present, as shown in (6).

1: 1:t t tH S H    (6)

An algorithm that promotes decision-making

under uncertainty should be able to estimate

future states. This is done in order to determine

the expected reward if a certain action or sequence

of actions are performed in the current state. This

can be modelled as a value function, as shown in

(7).

  2

1 2 3[|]t t t tv s R R R S s        E

 1 2 3 [|]t t t tR R R S s        E

 1 1[|]t t tR v S S s    E

(2)

This implies that the value of a state, s , is the

immediate reward that is received from being in

that state, 1tR  , plus the value of all the other

states in the future  1tv S  through recursion. 

is considered as the discount factor in order to

ensure that the reward at time t is much higher

than the reward at time 1t  , thus giving a higher

priority to immediate rewards than to future

rewards. One reason for giving a less priority to

future rewards is because there is uncertainty in

the future [5,6]. It also makes it mathematically

valid by avoiding a summation to infinity.

Given that at each state the autonomic manager

can have multiple options of subsequent states

that can traverse to, then we can assign

probabilities to each subsequent state in the form

Probabilistic Reasoning and Markov Chains as Means to Improve Performance of Tuning Decisions under Uncertainty

101

depicted in Figure 2. We can, therefore, adjust the

autonomic manager‟s value function to be the

immediate value derived from being in a state, say

s , plus the discounted value of the subsequent

state, say ``s , multiplied by the probability of

transitioning to that subsequent state under the

conditions of the current state that is ``ssP .

Figure 2. Probability distribution of transitioning

from state, s, to subsequent states.

The probability in this case can be obtained

through the Monte Carlo simulations. This gives

us the equation shown in (8), where R is the

immediate reward, v is the discounted future

reward, and P is the probability of the system

transitioning from the current state to the next

state.

v R Pv  (8)

Inductively applying this in a real context can be

done through the use of matrices. The real context

in this case would involve hundreds of possible

states that the system can be in. This gives us the

Markov reward process, as shown in (9).

 

 

 

 

 

 

11 1

1

1

1 1n

n nn

v

v n

R P P v

R n P P v n



 
 

 
 
 

    
    

    
        

M

L

M M O M M

L

(9)

1.2. Bayes’ Theorem and Markov Decision

Processes

The previous section defined the reward that the

autonomic manager derived from being in various

states as well as the probability of transitioning to

those states. At this juncture, we can develop this

foundation further by assigning agency to the

autonomic manager, as demonstrated by [7]. By

assigning agency, the Markov reward process

depicted in (9) becomes a Markov decision

process. It is this agency that allows the

autonomic manager to make decisions on which

actions to perform in order to move to a specific

state that has a desired value. The possible actions

that our autonomic manager can perform involve

deciding which parameter settings should be tuned

and how to tune them. Once it performs this

action, it observes the environment, and

subsequently, receives the reward of performing

the specific action. If the reward is adequate, then

it can conclude that it is on the right track based

on the reinforcement learning principles. The

reward in the case of this study was quantitatively

measured as the transaction throughput and the

response-time latency in a distributed database.

The aim is, therefore, to find the action that has a

high probability of enabling the autonomic

manager to get the highest reward. It can be

modelled as shown in (10)

    1 1, [| ,]t t t tq s a R v S S s A a      E (3)

such that  ,q s a is the action-value function

that defines the value that the agent will get if it

performs action a (defined by a policy ) given

that it is in state s while performing the action.

Herein lies an opportunity to employ the Bayes‟

theorem and Monte Carlo simulations to estimate

(|)P s a .

The final solution is, therefore, to find the policy

that has a sequence or set of actions, which if

performed in specific states, is likely to yield the

maximum benefit possible. This is the solution to

the Markov decision process and is subsequently

modelled as shown in (11).

    * , max , ,q s a q s a



(11)

where,  * ,q s a is the most optimum action-value

pair, which is a solution to an optimization

problem.

This leads to the research question that formed the

starting point of this inquiry: “How can the

capacity of probabilistic reasoning to handle

uncertainty be combined with the capacity of

Markov chains to map the stochastic

environmental phenomena to ideal self-

optimization actions?” Subsequently, the research

hypotheses are as what follow.

Null hypothesis (H0): Distributed database

systems that apply to the designed algorithm, on

average, have the same transaction throughput and

response time latency.

Alternative hypothesis (H1): Distributed

database systems that apply to the designed

algorithm, on average, have a faster transaction

throughput.

Alternative hypothesis (H2): Distributed

database systems that apply to the designed

Omondi et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

102

algorithm, on average, have a slower response

time latency.

H0: μ = μ
H0

H1: μ > μ
H0

H2: μ < μ
H0

Section 2 in this paper presents the details with

the methodology applied to conduct the research

work. It specifies the philosophical assumptions

made, experiment procedure, test-data, and test

bed as well as the data analysis methods used.

Section 3 then presents the results of the research

work highlighting the designed algorithm and

empirical results of applying the algorithm in the

context of a distributed database system. This is

followed by Section 4 that provides an objective

explanation of the facts that are supported by the

discovered results. Section 5 then concludes the

paper and provides recommendations for further

research works.

2. Methodology

2.1. Philosophical Assumptions

The philosophical assumptions made in this work

predicate all the choices made concerning the

research methodology. The research question does

not seek to understand the dynamic and subjective

reality of the social actors (system administrators)

in order to make sense of their motives and

actions. Based on this premise, the study applied

an ontological materialism, which was objective

in nature. This objectivity matches with

positivism as the epistemological approach

because positivism emphasizes on the use of

observations in order to justify the claims [8].

Given a cross-sectional time horizon, deductive

reasoning moves from the existing theoretical

knowledge to formation of a testable proposition

(a hypothesis), to acceptance/rejection of the

proposition by confronting it with the factual data

[9]. This leads to a positivism that uses a mono-

method quantitative choice that can be applied in

the form of an experimental research design.

2.2. Experimental Procedure

5 steps outline the experimental procedure that

was followed.

Step I: Define a realistic and reliable model of

the underlying database system. This model

should consist of work metrics to measure the

amount of work the system is performing per unit

time, a measure of the number of active

concurrent users, and the quantitative effect that a

series of configurations has on the transaction

throughput and response time latency.

Step II: Design an algorithm that effectively

achieves the pre-defined objective. This was done

through the reflexive production of a code. It

involves the analysis of the algorithm‟s objective,

followed by an identification of the required tasks

required to achieve the objective, and the

conversion of the results of the analysis into a

pseudo-code. The pseudo-code is then converted

into an actual code depending on the

programming language. The Perl high-level,

interpreted programming language, in conjunction

with bash, a Unix shell and command language,

were used during the implementation due to their

ability to manipulate the textual configuration

files in servers.

Step III: Theoretically analyze the asymptotic

behavior of the designed algorithm. This is done

in order to measure the level of algorithm

correctness, time complexity, and space

complexity. The algorithm should have a running

time proportional to either a linear function or an

n-log-n function because these are considered to

be efficient.

Step IV: Complement the theoretical analysis by

conducting controlled experiments in the form of

empirical algorithmics. This is done using the

treatments that manipulate the algorithm and

measurements that identify the effect of the

manipulation. Each experiment was repeated 30

times based on a manipulated form of the

algorithm. Repetitions above 30 did not provide

any significant change in the average value of the

results. The decision rule should then be applied

at this point to determine whether to reject or fail

to reject the null hypothesis. Go back to Step II if

there is no reason to reject the null hypothesis;

otherwise, proceed to Step V if the null hypothesis

is rejected in favor of an alternative hypothesis.

Step V: Assemble the best-performing

algorithm variations into an algorithm library. The

result, as supported by [10] and [11], should be an

efficient, generalizable, easy to use, well-

documented, and portable implementation of a

behavior that has a well-defined interface by

which the behavior is invoked. This is done with

the aim of reducing the gap between theory and

practice that is sometimes caused by the

complexity involved in the theoretical research of

algorithms [11].

2.3. Experiment Test-Data

The American National Standards Institute

(ANSI) Structured Query Language (SQL)

Standard Scalable and Portable (AS
3
AP)

benchmark was designed to compare the

performance of relational database systems with

Probabilistic Reasoning and Markov Chains as Means to Improve Performance of Tuning Decisions under Uncertainty

103

vastly different architectures and capabilities over

a variety of workloads. One of the key advantages

of AS
3
AP is its ability to define a runtime

ordering of the queries in the workload in order to

prevent the data of one query from being memory

resident as a consequence of the previous query.

This avoids lengthy operations that would

otherwise be required to flush the buffers. It

consists of the single-user tests and the multi-user

tests. The single-user AS
3
AP workloads focus on

the basic functions that a relational Database

Management System (DBMS) must support.

These include:

(i) Utilities for loading and structuring the

database, building clustered and

secondary indices, checking for referential

integrity, and performing backups.

(ii) User queries that include selections,

projections and sorting, joins (theta joins,

natural joins, outer joins, and semi-joins),

aggregation and grouping operations,

complex relational divisions, join-

aggregates, recursive queries, single-tuple

updates, and bulk updates.

On the other hand, the multi-user AS
3
AP

workloads focus on establishing the maximum

throughput for the Online Transaction Processing

(OLTP) system transactions and measuring

degradation in response time latency for the

Online Analytical Processing (OLAP) system

queries. Both of these measurements are taken as

a function of the workload profile (response time

latency for read-intensive workloads or

transaction throughput for write-intensive

workloads), the quantity of data accessed, the

system‟s compute-overhead caused by the

algorithm and background programs, and the

number of concurrent users. Consequently, multi-

user AS
3
AP workloads include mixed OLTP and

OLAP workloads that include a balance of write-

intensive transactions (oltp_update with Level 3

isolation) as well as read-intensive analytical

queries (ir_select with Level 0 isolation).

Another justification for applying the AS
3
AP

benchmark is its combination of OLTP and OLAP

workloads in a single experiment. This is unlike

Transaction Processing Performance Council‟s

(TPC‟s) „E‟ and „H‟ Benchmarks, which are also

the testing tools used to compare the performance

of relational database systems that have different

architectures. TPC-E and TPC-H separate the

OLTP and OLAP workloads, respectively. This

separation is not always ideal given the presence

of business applications that process a hybrid of

OLTP and OLAP workloads.

In order to simulate the real-world user

interactions, a latency of 1 s of “think-time” was

added. Think-time was used to simulate the

amount of time required “to think” about the

results of a previous transaction. In addition to

this, the time phase was divided into the pre-

sampling time and the sampling time. The pre-

sampling time is the length of time the virtual

users continuously send workloads to the database

system in order to reach a steady state before

statistics are collected, while the sampling time

refers to the length of time to collect statistics

during the continuous sending of workloads to the

database system. The research used 1/3 of the

total experimentation time as the pre-sampling

time and the remaining 2/3 for the sampling time.

Lastly, the virtual users were added continuously

at a rate of 1 virtual user every 2 s. The tool used

to orchestrate the experiment was the Benchmark

Factory (version 8.1), which together with the test

bed‟s hardware capabilities, limited the maximum

number of concurrent virtual users to 20.

However, this limitation did not reduce the

ecological validity of the test bed to model a small

to medium size enterprise because of the tool‟s

ability to orchestrate an intensive workload

submitted simultaneously by each one of the 20

virtual users.

2.4. Experiment Test Bed

There are many pre-defined environments

dedicated for testing, for example, Grid‟5000,

Open Cirrus, Planet Lab, Future Grid, Distem,

ModelNet, and Linpack. However, these publicly

available test beds face significant challenges.

One such challenge is an ineffective planning for

resource usage amongst testing teams. This leads

to unstable results because running a test case in

the same test scenario may produce different

results if the shared resources have not been

properly sandboxed [12]. Another significant

challenge is working with remote environments.

This leads to a heavy reliance on the test bed‟s

support team in the cases where the remote node

requires a firmware upgrade or a build upgrade or

any other physical support. This causes

considerable delays in the testing schedule.

For these reasons, this research created its own

test bed such that the researcher maintained an

absolute authority over the experiments and their

environment. The experiment test bed was made

up of a distributed database with Maria DB Galera

synchronous multi-master cluster (version

10.2.14) installed as the Distributed Database

Management System (DDBMS). MariaDB

provides a full support for concurrent access,

Omondi et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

104

transaction processing, and analytical processing.

There were three nodes in the cluster, each

configured as a master with no slaves, and there

was a synchronous replication between all the

three nodes. The synchronous replication was

made possible through the use of the Write-Set

REPlication (WSREP) Application Programming

Interface (API). WSREP API implements an

eager replication, whereby the nodes in the cluster

synchronize their states (database content) with all

the other nodes by updating the replicas through a

single transaction. A load balancer based on a

least connections balancing solution was also

configured. The least connections balancing

solution worked by forwarding connections to the

server with the least number of connections. The

distributed system was based on a shared-nothing

architecture such that each one of the three nodes

had its own CPU and storage as Virtual Machines

(VMs). All the three nodes plus the load balancer

were running a 64-bit Ubuntu Server 16.04 LTS

as the Operating System. Figure 3 shows the

architecture of the test bed.

Figure 3. Architecture of the test bed.

The test bed aimed to model a real-world

environment, whereby the normal architecture

was that of a distributed database for the sake of

High Availability/Disaster Recovery (HA/DR)

features. This was done in order guarantee the

ecological validity of the research. Ecological

validity subsequently contributes towards the

generalizability of the results of the study to a

population as part of external validity.

2.5. Data Analysis Methods

The study was willing to take a maximum risk of

5% for rejecting the null hypothesis when it was

true (Type I error). The value of 5% was arrived

at with the aim of striking an adequate balance

between Type I and Type II errors, both of which

were negative. Consequently, a p-value of 0.05 or

less was desired when measuring how often an

outcome happened over a repeated execution of

experiments.

As indicated in the experimental procedure

outlined in Section 2.2, the decision rule

determined whether to reject or fail to reject the

null hypothesis. The decision rule applied in the

study states that the null hypothesis should be

rejected if at least 95% of all the experiments

executed for a specific treatment or variation of

the algorithm result in a faster transaction

throughput and a slower query response time. The

transaction throughput (measured in Transactions

Per Second (TPSs)) and the response time latency

(measured in microseconds) were used to

quantitatively define the level of optimization

achieved.

A one-tailed test (right-tail for testing the 1
st

alternative hypothesis and left-tail for testing the

2
nd

 alternative hypothesis) involving a T-score

was used to measure the level of difference

between the results and what was expected. A T-

score supported the transformation of an

individual score into a standardized form for an

easier comparison. The greater the difference from

the expected T-score, the more evidence there is

that the results of an experiment are significantly

different from the average expected results. Given

that the null hypothesis represents the expected

results, then the null hypothesis cannot be true

when the actual results are different from the

expected results. The decision rule can therefore

be extended to state:

Reject 0 calculated tabularH if T score T score

in the case of the 1
st
 alternative hypothesis (H1),

and

Reject 0 calculated tabularH if T score T score in

the case of the 2
nd

 alternative hypothesis (H2).

Figure 4 shows the graphical model in the form of

a generic influence diagram.

3. Results

3.1. Probabilistic Graphical Model

A probabilistic graphical model based on a

Directed Acyclic Graph (DAG) was used to

represent the set of decision variables and their

conditional dependencies. The uncertainties in the

characteristic of the workload and the DDBMS

parameter settings (input values) were represented

as the probability distributions. This was in the

form of a probability density function (pdf) for

continuous probability distributions and a

probability mass function (pmf) for discrete

probability distributions. The probability

distributions were obtained through the Monte

Probabilistic Reasoning and Markov Chains as Means to Improve Performance of Tuning Decisions under Uncertainty

105

Carlo simulations and opinions from domain experts in the literature review.

Figure 4. Graphical model representing the decision variables.

A random value from the probability distribution

of each input was then sampled and the Monte

Carlo simulation was applied to estimate the

probability distributions of the outputs (desired

levels of transaction throughput and response time

latency). Using the random value from the

probability distribution of each input, the

simulation was repeated for 10,000 times in each

experiment to obtain a precise estimation of the

output distributions. A sample size of 10,000 was

considered to be adequate, given the inherent

uncertainty in the inputs. In other words, a higher

precision in this case would be an aesthetic

preference rather than a functional need.

3.2. Algorithm Design

The following is the pseudo-code of the designed

algorithm with the order of O(n):

Algorithm 1: Performance tuning algorithm

Input Current state of DDBMS, 0s

Output

The action, a , that leads to the most

desirable state

1. function perfTuner ()

2.

Identify the most probable next state of the workload

from its probability distribution: 1s

/*The chance nodes*/

3. n = 1

4. while n <= 3 do

5.

Select the nth next combination of server

configurations that can be performed under the

conditions of the identified next state

/*The decision nodes*/

6. while within computational budget do

7.

Simulate the behaviour of the workload

/*The chance nodes*/

8.

Update the probability of transitioning to

the next state based on the Bayes‟ theorem

(i.e. on the condition that the selected next

actions have been performed)

9.

Update the discounted reward value of the

next states in a Markov reward process

/*The value nodes*/

10. n = n + 1

11.

Select the action, a , that has the highest probability

of receiving the highest discounted value.

/*The final decision node*/

12. return a

3.3. Empirical Algorithmics

The philosophical assumptions made in this work

promote the revelation of truth through objective

observations. It was through experiments based on

the empirical algorithmics that the required

objective observations were made.

Omondi et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

106

A chronological job scheduler was used to

schedule the periodic execution of the bash shell

script based on time. The shell script was then

used to call a Perl script from an online server.

This enabled the Perl script to be updated from a

central location instead of copying it to every

node/member of the distributed database system

cluster upon each update. The central location of

the Perl script also promoted easier orchestration

of the test bed during the manipulation of the

algorithm. This benefit could also be translated to

a live environment. The Perl script then

implemented the algorithm that recommended the

most appropriate configuration or sequence of

configurations to implement. This was then

implemented by editing the text-based

configuration file on each node/member of the

distributed database system cluster, as shown in

Figure 5.

Figure 5. Implementation architecture of the

algorithm.

Each conducted experiment involved

identification of the bottleneck parameters that

had a significant impact on the system

performance, and proactively reconfiguring them

using the designed algorithm so that they could

adapt to the current workload. The results

presented in this work indicated that all the

experiments conducted with the algorithm running

resulted in a transaction throughput that was

higher than the average transaction throughput in

an environment running using default

configurations, as proposed in the first alternative

hypothesis. In addition to this, the response time

latency was lower when the algorithm was

running. Table 1 and table 2 present the results

obtained from conducting the experiments.

4. Discussion

This work confirms that the capacity of

probabilistic reasoning to handle uncertainty can

be combined with the capacity of Markov chains

to map the stochastic environmental phenomena

to ideal self-optimization actions. This temporal

precedence finding is consistent with that of [13],

who reported that an automated approach that

leverages past experience and simultaneously

learns new information can be used to conduct

performance tuning of database systems. The

study highlighted performance tuning as an

essential aspect of any database-intensive

application.

Table 1. Empirical algorithmics results for

transaction throughput.

Average transaction

throughput

(transactions per s)

Maximum & minimum

transaction throughput

(transactions per s)

Default
4,958.46
(σ = 350.74)

5,298.36 and 2,935.70

Low
5,272.92

(σ = 210.94)

5,648.19 and 4,809.30

Medium
5,413.56
(σ = 303.06)

5,912.09 and 4,721.93

High
5,784.91

(σ = 435.78)

6,074.99 and 3,665.23

Adaptive
5,812.75
(σ = 249.11)

6,454.89 and 5,379.13

Table 2. Empirical algorithmic results for response

time latency.

Average response time

latency

(microseconds)

Maximum & minimum

response time latency

(microseconds)

Default
3.50

(σ = 0.61)

6.00 and

3.00

Low
3.04

(σ = 0.19)

4.00 and

3.00

Medium
3.02

(σ = 0.14)

4.00 and

3.00

High
3.07

(σ = 0.38)

5.00 and

3.00

Adaptive
2.56

(σ = 0.50)

3.00 and

2.00

A comparison of the study by [13] with a previous

study by [14] accords with our initial observation

that although humans are better at understanding

an overall problem context than computers, they

are prone to long reaction times, fatigue, errors,

and varying and potentially inconsistent expertise.

This is in line with an even earlier seminal study

by [15], which championed the concept of self-

management in computing in order to automate

the previously unachievable tasks or tasks that

were performed in a sub-standard manner. The

research is, however, keen to caution that this

does not imply automation in order to replace the

database administrators. To the contrary, the

findings in this work propose the use of

automation to enable human beings to free their

minds from mundane tasks in order to concentrate

on the previously unachievable tasks. This

corroborates the findings from a study by the

authors in [16], who investigated the history and

future of workplace automation.

The findings of the current work seem to

contradict the findings by [17], which applies

Probabilistic Reasoning and Markov Chains as Means to Improve Performance of Tuning Decisions under Uncertainty

107

vertical and horizontal partitioning of data to

promote scalability. The results of the current

study also seem to contradict the findings by [18],

which applied the creation of cost-driven indices

to promote scalability. Although indices and

partitioning are beneficial at the software level,

they fail to provide an in-depth lasting solution to

the underlying scalability challenge, which should

be focused on how the software makes use of the

underlying hardware resources, for example,

memory and storage.

Businesses rely on the computer-based

information systems that act as enablers of

business processes. Unlike computer science,

which is primarily concerned with the engineering

of technologies that make up computer-based

information systems, Information Technology

(IT) is concerned with the practical application of

computer-based information systems. This

application can be in the context of a business or

enterprise to support the storage and manipulation

of business-related data as well as the processing

and analysis of information to generate

knowledge. The knowledge is then used by the

decision-makers in the business to inform the

creation of policies for business processes that are,

in turn, used to implement appropriate actions.

The role of IT, therefore, goes beyond the

engineering technologies, and focuses on the

actual useful implementation of these

technologies often in the context of a business. As

the data from the current study shows, the variable

environmental phenomena and runtime conditions

imply that these systems periodically either

breakdown or require maintenance.

Implementation and maintenance of systems,

therefore, forms a key role of IT departments in a

business. Once a database system has been

implemented, its performance is required to be

maintained at an acceptable level, hence, the

importance of automated performance tuning in

database systems.

Unplanned downtime remains a constant threat to

businesses. An antidote to minimize unplanned

downtime and maximize the time when the

database system performance is at an optimum

level is to conduct preventive maintenance, as

shown in figure 6.

Figure 6. Preventive maintenance over time.

However, one of the biggest challenges with

preventive maintenance is to determine when to

do the maintenance. The current work implies that

performing multiple Monte Carlo simulations can

take advantage of probabilistic reasoning to

estimate the Mean-Time-To-Failure (MTTF). As

shown in figure 7, there are multiple possible

estimates of the duration of time when the

database system performance will be at an

unacceptable level. The higher the number of

Monte Carlo simulations using a mathematical

model based on the Bayes‟ theory (essentially a

digital twin) of the database system, the more

confident one can be of when and how to tune the

database system. This results in picking one of the

three possible trajectories shown in figure 7.

Figure 7. Trajectories of remaining useful life over

time.

5. Conclusions and Recommendations

Numerous opportunities exist to extend this work

further in multi-disciplinary research works.

Further research works could analyze the

possibility of applying the theoretical concepts in

non-linear adaptive control in the aerospace

industry, non-linear adaptive control of

communication systems in the

telecommunications industry, and exploration of

the potential benefits of adaptive control in

Software Defined Everything (SDx). The work,

therefore, recommends the scholars to apply a

multi-disciplinary approach because it combines

expertise from various fields. This can lead to

creative high-impact research works. However, a

multi-disciplinary perspective should be

approached with caution because of the lack of the

potential meaningful evaluation from the team.

The domain-specific concepts tend to be accepted

without question or rejected without constructive

criticism in multi-disciplinary research works.

One of the surprising results obtained in this work

was the fact that the “tmp_table_size”

configuration parameter affected OLTP workloads

instead of OLAP workloads. It is interesting to

Omondi et al./ Journal of AI and Data Mining, Vol. 9, No. 1, 2021.

108

conduct further research works to obtain an

explanation for this odd phenomenon. In addition,

future research works can also focus on

identifying additional metrics that can be used to

define the state of a database system. This can go

beyond software-related database system work

metrics to focus on the mechanical, electrical, and

other physical engineering states of the server‟s

hardware when modelling and defining the system

profile. The use of Kalman filters to perform this

modelling, as opposed to the Bayes‟ theory-based

models, should also be explored further.

6. References
[1] D. G. Sullivan, “Using probabilistic reasoning to

University, automate software tuning (Doctoral

Dissertation) ”, Harvard Cambridge, Massachusetts,

2003.

[2] T. Vodopive, S. Samothrakis and B. Šter, “On

Monte Carlo Tree Search and Reinforcement Learning,

Journal of Artificial Intelligence Research”, vol. 60,

pp. 881–936, 2017, doi: 10.1613/jair.5507, 2007.

[3] T. Li, Z. Chunqiu, Y. Jiang, W. Zhou, L. Tang, Z.

Liu, & Y. Huang. , “Data-Driven Techniques in

Computing System Management”, ACM Computing

Surveys, vol. 50, no. 3, pp. 45–88, 2017.

[4] A. O. Omondi, I. A. Lukandu and G. W. Wanyembi

, “A Selection Variation for Improved Throughput and

Accuracy of Monte Carlo Tree Search Algorithms”,

IJCIT, vol. 7, no. 6, pp. 286–294, Jul. 2018.

[5] A. Bousdekis, B. Magoutas, D. Apostolou and G. ,

“Mentzas A proactive decision making framework for

condition-based maintenance”, Industrial Management

& Data Systems, vol. 115, no. 7, pp. 1225–1250, 2015,

doi: 10.1108/imds-03-2015-0071, 2015.

[6] U. K. Chajewska, D. Koller and R. Parr, R,

“Making rational decisions using adaptive utility

elicitation”, in American Association for Artificial

Intelligence, 2000, pp. 363–369, 2000.

[7] G. Su, T. Chen, Y. Feng, D. S. Rosenblum and P. S.

Thiagaranj, “An iterative decision-making scheme for

Markov decision processes and its application to self-

adaptive systems”, presented at the 19th International

Conference Fundamental Approaches to Software

Engineering (FASE 2016), Eindhoven, Netherlands,

2016.

[8] B. Hjørland, “Empiricism, rationalism and

positivism in library and information science”, Journal

of documentation, vol. 61, no. 1, pp. 130–155, 2005,

doi: 10.1108/00220410510578050.

[9] T. Lemke, “Varieties of materialism, ”BioSocieties,

vol. 10, no. 4, pp. 490–495, 2015, doi:

10.1057/biosoc.2015.41.

[10] P. Sanders, “Algorithm engineering: An attempt at

a definition, in Efficient Algorithms: Lecture Notes in

Computer Science”, S. Albers, H. Alt, and S. Naher,

Eds. Heidelberg, Berlin: Springer-Verlag, 2009, pp.

321–340.

[11] R. Kitchin, “Thinking critically about and

researching algorithms”, Information, Communication

& Society, vol. 20, no. 1, pp. 14–29, 2017, doi:

10.1080/1369118X.2016.1154087.

[12] F. Desprez, G. Fox, E. Jeannot, K. Keahey, M.

Kozuch, D. Margery, et al. , “ Supporting experimental

computer science”, Argonne National Laboratory,

Rocquencourt, France, Technical Memo 362, 2012.

[13] D. Van Aken, A. Pavlo, G. J. Gordon and B.

Zhang, “Automatic Database Management System

Tuning through Large-Scale Machine Learning”,

presented at the ACM International Conference on

Management of Data, Chicago, IL, USA, 2017, pp.

1009–1024, doi: 10.1145/3035918.3064029.

[14] S. W. Cheng and D. Garlan, “Stitch: A language

for architecture-based self-adaptation”, Journal of

Systems and Software, vol. 85, no. 12, pp. 2860–2875,

2012.

[15] J. O. Kephart and D. M. Chess, “The vision of

autonomic computing”, Computer, vol. 36, no. 1, pp.

41–50, 2003.

[16] H. D. Autor, “Why are there still so many jobs?

The history and future of workplace automation”, The

Journal of Economic Perspectives, vol. 29, no. 3, pp.

3–30, 2015, doi: 10.1257/jep.29.3.3.

[17] J. W. Kim, S. H. Cho and I. M. Kim, “Workload-

Based column partitioning to efficiently process data

warehouse query”, International Journal of Applied

Engineering Research, vol. 11, no. 2, pp. 917–921,

2016.

[18] S. Chaudhuri and V. Narasayya, “Self-Tuning

Database Systems: A Decade of Progress”, in

Proceedings of the 33rd international conference on

Very Large Databases, 2007, pp. 3–14.

Omondi 0011سال ،اولشماره ،دوره نهم ،کاویمصنوعی و دادهمجله هوش و همکاران.

 تیتحت عدم قطع میتنظ ماتیبهبود عملکرد تصم یمارکوف به معنا رهیو زنج یاستدلال احتمالالگوی

*OmondiOdhiambo Allan ،Ismail Ateya Lukandu و Gregory Wanyembi

 .ای، کنیروبی، نااطلاعات، دانشگاه استراتور یگروه فناور

 01/10/9191 پذیرش؛ 10/10/9191 بازنگری؛ 01/10/9100 ارسال

 چکیده:

را در یکربندیپ یدارد تا پارامترها ازیکسب و کار ن دهیچیپ یاطلاعات یهاستمیزمان اجرا به توسعه دهندگان س یهادهیو پد یطیمح ریمتغ طیشرا

 ینیب شیپ ای یفعل راتییگلوگاه در پاسخ به تغ یکربندیپ یپارامترها میدهد تا با تنظیامر به آنها امکان م نیا .قرار دهند ستمیس رانیمد دیمعرض د

، سطح یخستگ لیبه دل یعملکرد دست میمداخلات تنظ نیحال، ا نیا با .، مداخله کننددر سطح مطلوب ستمیحفظ عملکرد س یبرا ندهیآ راتییتغ

اطلاعات کسب و کار مستعد خطا و فقدان استاندارد ستمیس ندهیآ یهاتینادرست از وضع یهاینیب شیاز حد به پ شیاعتماد ب مختلف تخصص و

مارکوف یهارهیزنج تیتوان با ظرفیرا م نانیکنترل عدم اطم یبرا یاستدلال احتمال تیاست که چگونه ظرف نیا یقاتیکار تحق نیاز ا هدف .هستند

-یانجام م یاسهیمقا یتجرب قیطرح تحق کیکار با استفاده از نیا .کرد بیترک یسازنهیآل به دهیبه اقدامات ا یطیمح یتصادف یهادهیپد میترس یبرا

دهد ی، که نشان مکندیرا فراهم م کار نتایجی نیا .مختلف است یهاتمیانواع الگور یسازهیشب قیاز طر یاطلاعات کم یشود که شامل جمع آور

 به صورت شرفتیپ نیا .بخشدیبهبود م نانیرا تحت عدم اطم میتنظ ماتیشده عملکرد تصم عیداده توز گاهیپا ستمیس کیدر تمیاستفاده از الگور

 .شودیم یریگاندازهاز متوسط شتریب ٪01و عملکرد معامله کمتر از متوسط ٪91زمان پاسخ ریبا تأخ یکم

 ، محاسبات خودمختار.مونت کارلو یساز هی، شبتیتقو یریادگی، زیب هی، قضیریگ میتصم هی، نظرخودکار می، تنظبانک اطلاعات هینظر :کلمات کلیدی

