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Abstract

This paper presents a method to reconstruct a high-resolution image using a deep convolution neural
network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output
features of a deep convolutional network and a shallow convolutional network. In this way, our model
benefits from the high frequency and low frequency features extracted from deep and shallow networks
simultaneously. We use the residual layers in our model to make repetitive layers, increase the depth of the
model, and make an end-to-end model. Furthermore, we employ a deep network in the up-sampling step
instead of the bicubic interpolation method used in most of the previous works. Since the image resolution
plays an important role to obtain rich information from the medical images and helps for an accurate and a
faster diagnosis of the ailment, we use the medical images for resolution enhancement. Our model is capable
of reconstructing a high-resolution image from a low-resolution one in both the medical and general images.
The evaluation results on the TSA and TZDE datasets including MRI images, and Set5, Set14, B100, and
Urbanl00 datasets including general images demonstrate that our model outperforms the state-of-the-art
alternatives in both areas of medical and general super-resolution enhancement from a single input image.
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1. Introduction

Image Super-Resolution (SR), the process of
recovering high-resolution (HR) images from low
resolution (LR) images, is an interesting area
applicable to a wide range of real-world
applications such as medical imaging [1-3], face
recognition [4, 5], surveillance, and security [6].
This area is challenging because there are multiple
HR images corresponding to a single LR input
image. Generally, the SR methods can be
classified into three categories: interpolation
methods [4, 5], reconstruction-based methods [6-
8], and learning-based methods [9-11]. The
learning-based methods can be categorized into
four groups: prediction-based methods, edge-
based methods, statistical-based methods, and
example-based methods [12]. Among these
categories, the learning-based methods have
attracted high research interests in the recent years

with the advent of deep learning techniques. Deep
learning has shown a prominent superiority over
other machine learning algorithms in many
artificial intelligence domains such as Computer
Vision [13-15], Speech Recognition [16], and
Natural Language Processing [17]. The models
that use deep learning techniques cover the
example-based group. In this paper, we propose a
model using the deep convolutional neural
network for the super-resolution enhancement
from a single image.

The deep-based SR models have achieved the
state-of-the-art ~ performance  on  various
benchmarks of SR [12]. Different deep learning
methods, Convolutional Neural Network (CNN),
and Generative Adversarial Net (GAN) have been
applied to the SR area [SRCNN [18], SRGAN
[19]]. In this way, we focus on a two-Stream
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model including a deep convolutional network for
high frequency features parallel with a shallow
network for low-frequency feature covering.

While CNN-based models for SR have achieved
an outstanding performance [20], the existing
models still have some shortcomings. First of all,
most of them use fully convolutional neural
networks that lead to failure to perceive the
available information inside the image. Secondly,
using a fixed interpolation kernel such as bicubic
interpolation kernel function, only in post-
processing stage is led to not adopting well during
the image processing. Thus it can decrease the
quality of the reconstructed image [21]. In order
to address these problems, in this work, we used a
CNN-based model including a deep network
parallel with a shallow network to obtain both the
low- and high-frequency information from the
input image. Furthermore, we use a deep model to
adopt the interpolation kernel instead of using a
fixed interpolation kernel function. Our
contributions are listed as follows:

e We employed a deep network in the up-
sampling step instead of the bicubic
interpolation method used in most of the
previous works.

e A two-stream network including a deep
network and a shallow network is proposed to
push both the low- and high-frequency
information simultaneously from an input
image.

e We used the residual layers to make a
repetitive layer, increase the depth of the
model, and make an end-to-end model.

e Our model outperforms the state-of-the-art
alternatives in super-resolution enhancement
from both the medical and general images.

The rest of this paper is organized as what
follows. The related works are introduced in
Section 2. The proposed model is described in
detail in Section 3. The experimental results are
provided in Section 4. Finally, we conclude the
paper in Section 5.

2. Related Works

Here, we present a brief review of the recent
works in SR enhancement from a single image
input in the example-based category, in which
deep learning has an effective role. Dong et al.
have proposed a Super-Resolution Convolutional
Neural Network (SRCNN) including four layers.
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They proved that using a larger CNN filter size
was better than using deeper CNN layers in the
Single Image Super Resolution (SISR) tasks [3].
Kim et al. have designed a Deeply-Recursive
Convolutional Network for Image Super
Resolution (DRCN) using 20 CNN layers and
huge numbers of parameters. They used a sharing
mechanism in order to decrease the training
parameters and enhance the model performance.
The evaluation results of the model showed that
the model achieved significant performances on
the Setb, Setl4, B100, and Urban100 datasets [4].
Using Deep Residual Learning [6] and gradient
clipping, Very Deep Super Resolution (VDSR)
developed a way to make a training step with a
significantly fast capability [5]. Mao et al. have
also used residual learning to propose a very deep
Residual Encoder-Decoder Networks (RED)
including the symmetric convolutional (encoder)
and de-convolutional (decoder) layers to improve
the SR accuracy. Benefiting from the symmetric
structure and skip connections, RED could train a
very deep network including large numbers of
convolutional layers. The evaluation results on the
BSD200 and Setl4 datasets showed a better
performance than the previously reported state-of-
the-art methods [7]. Romano et al. have
developed a Rapid and Accurate Image Super
Resolution (RAISR) model including a shallow
and faster learning-based method. They used the
patch angle, strength, and coherence to classify
the input image patches and make a learning
process to map from LR image to HR image
among the clustered patches. The experimental
results on the Sets and Setl4 datasets
demonstrated that the model had a higher
performance in comparison with the state-of-the-
art models [8]. Dong et al. have designed a faster
version of SRCNN, namely Faster-SRCNN, using
the transposed CNN to directly process the input
image [9]. While the processing speed of the
RAISR and FRSCNN models is 10 to 100 times
faster than the other state-of-the-art Deep
Learning based methods, they are not as accurate
as the other deeply convolutional methods like
DRCN, VDSR or RED. In order to make an
enhancement in this area, in this work, we applied
a deep convolutional model for SR enhancement
from an input image considering the following
issues:

* Previous works used a deep or a shallow model
to feature extraction. In this work, we used both
the deep and shallow networks simultaneously to
obtain the high- and low-frequency features of a
low-resolution image.

* We employed the residual layers to make a
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repetitive layer and increase the depth of the
model to have more strong features.

» The previous works used a fixed interpolation
kernel such as bicubic interpolation kernel
function only in the post-processing stage that can
lead to not adopting well during the processing.
Thus it could decrease the quality of the
reconstructed image.

In this way, we used the residual layers in the up-
sampling process instead of using the previous
methods (for example bicubic) and made an end-
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to-end model.

3. Model
In this section, we present the details of our model
according to the steps shown in Figure 1.
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>> RGB to YCbCr > Create patch > Low Resolution image >> Propose Model >> High Resolution image >

Figure 1. Proposed model for a super-resolution enhancement of an input image.

3.1. Augmentation

In order to extend the dataset samples, provide a
large dataset applicable in the deep learning area,
and prevent overfitting, we applied some
augmentation techniques to the input data; they
were scaling up/down using different scale factors
and rotating using different rotation angles.

3.2. RGB to YCbCr

While the RGB space includes three color
channels, Red, Green, and Blue, the YCbCr space
contains Gray, Blue, and Green. We transferred
the input RGB image to the YCDbCr space to
process it. In this way, we did the training process
on the Gray channel and added the other channels
to the image in the last step. This helped us to
work with only one channel in the training phase
instead of all channels in the RGB space.

3.3. Patching

Due to using an example-based model, we are
required to have some patches from an input
image. In order to provide these patches with the
48x48 dimension, we used the low-resolution
input patches with 12x12, 16x16, and 24x24
shapes. After that, we applied a bicubic
interpolation method with three scale factors (4, 3,
2) to these patches. In this way, we had some
patches with the 48x48 dimension that would be
sent to a deep and a shallow model to enhance the
resolution. The labels according to the original
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low-resolution image would be assigned to these
patches.

3.4. Deep Model

We proposed a deep model, DBSR, shown in the
third row of figure 2 including a combination of
the deep and shallow networks to benefit from this
combination in order to obtain both the high- and
low-frequency features. Our model includes three
parts as follows, as shown in figure2:

Shallow network: This network contains two
convolutional layers; the first convolutional
layer is similar to the one used in deep
network. The input shape of this layer is
48x48 with a filter size of 3x3. The second
layer with an input shape of 48x48 and the
filter size of 3x3 is used to reconstruct the
high-resolution image from the input low-
resolution patches.

Deep network: This network includes two
parts. The first part, the feature extraction
block, contains six residual blocks. Each
block contains three layers: Convolutional,
ReLU, and Dropout layers, with an input
shape of 48x48, a filter size of 3x3, and a
depth of 64. The outputs of the residual blocks
are sent to the construction layer to process
and obtain a high resolution image. The
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second part is a reconstruction block
including two parallel convolutional layers
with a depth of 64 and one convolutional
layer with a depth of 1. The input shape and
filter size of these layers are similar to the
other layers.

e Reconstruction block: We fuse the outputs
of the deep and shallow networks to
reconstruct a high resolution image. Different
fusion types such as Max, Conv., and Sum are
tested to select the best one. Since the Sum
fusion gets the better results in the proposed
model, we use it in the proposed model.

oo | |

Up-Sampling

Feature extraction

Image reconstruction

Figure 2. Architecture of the proposed model. First row: SCRSR, Second row: RBSR, Third row: DBSR.

4. Results
In this section, we report the experimental results
of our model on the public datasets.

4.1. Implementation Details

Our evaluations were done on Intel(R) Xeon(R)
CPU E5-2699 (2 processors) with 60GB RAM on
Microsoft Windows 10 operating system on
NVIDIA GPU, Tesla K80. We used Stochastic
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Gradient Descent (SGD) with a mini-batch size of
64. The learning rate starts with 0.00001. The
proposed model is trained for a total 200 epochs.
For fair comparisons with existing models, we
used the same training and testing sets employed
in the datasets used for evaluation. We used three
scaling factors (2, 3, 4) for the performance
evaluation of the proposed model.
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4.2. Datasets

We used eight datasets in two categories for our

model evaluation, as follow:

e Medical datasets: In this category, we used
three datasets: T2, TSA, TZTD. The T2
dataset including the 732 MRI samples is used
for model training. Our model was evaluated
on the TSA and TZTD datasets with 27 and
28 MRI images.

o General datasets: In this category, we used
291 datasets including 291 samples of
different images from different categories for
model training. Evaluation was done on the
Set5, Setl4, B100, and Urban100 datasets
with 5, 14, 100, and 100 image samples.
Figure 3 demonstrates some samples of these
datasets. To sum up, we trained our model on
the T2 and 291 datasets for the medical and
general input images. Using the augmentation
methods, we extended these datasets to
include 6221 and 5372 samples. After
patching phase, we had 513462 and 632206
patches in two datasets. The proposed model
was separately trained with each of the three
scaling factors used in our evaluation.
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Figure 3. Some samples of the datasets used in our model:
(a): dataset 291, (b): dataset SET5, (c): dataset SET14,
(d): dataset B100, (e): dataset Urban 100.

4.3. Evaluation Metrics

In order to have a fair comparison with the other
models, we used two metrics to report the results,
as follow:

e PSNR: In the image super-resolution, Peak
Signal-to-Noise Ratio (PSNR) [22] is defined
via the maximum possible pixel value and the
Mean Squared Error (MSE) [22] between
images.

e SSIM: The Structural Similarity (SSIM) [18]
metric is used to measure the structural
similarity between images using three
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parameters, namely luminance, contrast, and
structure.

4.4. Comparison Results
We performed an analysis on our model in five

datasets used in the test phase. As one can see in
tables 1-4, we have the highest performance on
the Set 5 [23], Set 14 [24], Urban 100 [25],
BSD100 [26], and T2 [27] datasets using the
PSNR and SSIM metrics with three scale factors.
Furthermore, we visualized some samples to
compare with the other models.

Based on the evaluation results, we achieved a
higher performance by increasing the depth of the
model using the residual blocks. Furthermore, the
fusion type and location of deep and shallow
networks are so important and effective. In this
way, we proposed three models, shown in figure
2, and compared them to select a more accurate
one. Using the deep residual network instead of
using some residual blocks is led to a higher
performance. We performed a detailed analysis on
the three proposed models, namely Skip
Connection Resnet Super Resolution (SCRSR),
Resnet Block Super Resolution (RBSR), and
DBSR in order to select a more accurate model.
The evaluation results of these models are
reported in table 1-4.

In order to evaluate and verify the efficiency and
reliability of the proposed model in terms of
providing sufficiently illustrative information
from low resolution images, we compared our
model with the state-of-the-art models on the five
datasets used for evaluation, shown in table 1-4.
As these tables confirm, our model outperforms
the state-of-the-art alternatives in the field.

Benefiting from the extracted low- and high-
frequency information simultaneously using a
two-stream network, our model obtains a higher
performance using different evaluation metrics
and input image categories on five public datasets.
Furthermore, we employed a deep network in the
up-sampling step instead of the bicubic
interpolation method used in most of the previous
works. In this way, our model can learn the up-
sampling phase instead of only using a fixed and
pre-defined interpolation kernel. In addition,
while we are training the model, we either train
the layers in the residual blocks or skip the
training for those layers using skip connections. In
this way, we have a faster training step for our
model. For all of these reasons, our model obtains
a higher performance on five datasets.
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Table 1. Evaluation results on the T2 dataset using PSNR metric and scale factor 2.

Model TZDE TSA T2
Bicubic 32.19 32.35 30.49
SRCNN [18] 35.65 36.11 33.86
EEDS [34] 35.76 36.58 34.28
SCRSR (ours) 36.48 3751 35.29
RBSR (ours) 36.58 37.68 35.40
DBSR (ours) 36.68 37.92 35.72

Table 2. Evaluation results on the T2 dataset using SSIM metric and scale factor 2.

Model TZDE TSA T2
Bicubic 0.963 0.9445 0.9433
SRCNN [18] 0.9088 0.9488 0.9316
EEDS [34] 0.9791 0.9536 0.956
SCRSR (ours) 0.988 0.9694 0.9727
RBSR (ours) 0.9872 09719 0.9745
DBSR (ours) 0.9876 0.9703 09731

Table 3. Evaluation results on four datasets using PSNR metric and three scale factors 2, 3, and 4.

Dataset Set5 Set 14 BSD 100 Urban100
Scale X2 X3 X4 X2 X3 X4 X2 X3 X4 X2 X3 X4
Bicubic 33.66 30.39 28.42 30.24 27.55 26.00 29.56 27.21 25.96 2495 2356 22.98
SUSR [24] 35.78 31.90 29.69 31.81 28.67 26.88 30.40 27.15 25.92 - - -
A+ [28] 36.55 32.59 30.29 32.28 29.13 27.32 30.78 28.18 26.77 - - -
ARFL [29] 36.71 32.57 30.21 32.36 29.12 27.31 31.26 28.28 26.79 - - -
NBSRF [30] 36.76 32.75 30.44 32.45 29.25 27.41 31.30 28.36 26.88 - - -
SRCNN [18] 36.34 32.39 30.09 32.18 29.00 27.20 3111 28.20 26.70  28.23 27.76  26.98
SRCNN-L 36.66 32.75 30.49 32.45 29.30 27.50 31.36 28.41 26.90 - - -
[31]

CSC [32] 36.62 32.66 30.36 3231 29.16 27.30 31.27 28.31 26.83 - - -
CSCN [33] 36.93 33.10 30.86 32.56 29.41 27.64 31.40 28.50 27.03 - - -
EEDS [34] 37.29 33.47 31.14 32.81 29.60 27.82 31.64 28.64 27.11 28.05 27.12 26.26

SCRSR (ours)  37.98 33.89 31.76  33.24 30.22 28.46 32.05 28.98 27.88 28.86 27.86 27.04
RBSR (ours) 38.70 34.24 3212 33.98 30.82 28.98 3248 29.24 28.14 28,90 27.98 27.22
DBSR (ours) 39.38 34.86 32.92 34.64 31.34 29.24 32.88 29.98 28.78 29.46 28.32 27.86
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Table 4. Evaluation results on four datasets using SSIM metric and three scale factors 2, 3, and 4.

Dataset Set5 Set 14 BSD 100 Urban 100

Scale X2 X3 X4 X2 X3 X4 X2 X3 X4 X2 X3 X4

Bicubic 0.9299 0.8682 0.8104 0.8687 0.7736 0.7019 0.8431 0.7385 0.6675 0.8268  0.8124 0.8012
SUSR [24] 0.9493 0.8968 0.8428 0.8988 0.8075 0.7342 0.8682 0.7695 0.6968 - - -

A+ [28] 0.9544 09088 0.8603 0.9056 0.8188 0.7491 0.8773 0.7808 0.7085 - - -
ARFL [29] 0.9548 0.9077 0.8565 0.9059 0.8181 0.7465 0.8864 0.7825 0.7066 - - -
NBSRF [30] 0.9552 0.9104 0.8632 09071 0.8212 0.7511 0.8876 0.785% 0.7110 - - -
SRCNN [18] 0.9521 0.9033 0.8530 0.9039 0.8145 0.7413 0.8835 0.7794 0.7018 0.9034 0.8922 0.8898

SRCNN-L [31] 09542 09090 0.8628 0.9067 0.8215 0.7513 0.8879 0.7863 0.7103 - - -

CSC [32] 0.9548 0.9098 0.8607 0.9070 0.8209 0.7499 0.8876 0.7853 0.7101 - - -
CSCN [33] 0.9552 0.9144 08732 09074 0.8238 0.7578 0.8884 0.7885 0.7161 - - -
EEDS [34] 0.9579 09191 0.8783 09105 0.8284 0.7626 0.8928 0.7925 0.7200 0.8993  0.8902 0.8824

SCRSR (ours) 0.9588 0.9197 0.8798 0.8971 0.8292 0.7634 0.8934 0.7936 0.7212 0.9110 0.9056 0.9044
RBSR (ours) 0.9592  0.9202 0.8804 0.8965 0.8298 0.7640 0.8950 0.7944 0.7226  0,9140 0.9089 0.9054
DBSR (ours) 0.9612 0.9234 0.8836 0.8964 0.8330 0.7692 0.8998 0.7992 0.7288 0.9156 0.9092 0.9062
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Figure 4. The “barbara” image from Set 14 with an upscaling factor of 3.
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Figure 6. The “butterfly” image from Set 5 with an upscaling factor.
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5. Conclusions and Discussion

In this work, we proposed a model to enhance the
performance of the super-resolution form a single
input image. We fused two networks, a shallow
and a deep one, to simultaneously benefit from the
capability of a shallow network in low-frequency
feature extraction and high-frequency feature
extraction of deep network. Despite the previous
works, we used a deep network including residual
blocks to do the up-sampling phase of our model.
While the evaluation results of our model on five
datasets in the medical and general areas
demonstrated that this model outperformed the
state-of-the-art models in both areas, much more
endeavours are necessary to obtain the outputs
with a higher resolution quality. Since the image
resolution plays an important role to obtain the
important information from the medical images
and helps for an accurate and a faster diagnosis of
the ailment, we are required to enhance the image
resolution much more. We need other deep
models such as GAN in our model to obtain a
higher model performance.
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