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Abstract

In this paper, we present a new method for the regression model prediction in an uncertain environment. In
the practical engineering problems, to develop the regression or the artificial neural network model for
making predictions, an average set of the repeated observed values is introduced to the model as an input
variable. Therefore, the estimated response of the process is also the average of a set of output values, where
the variation around the mean is not determinate. However, to provide the unbiased and precise estimations,
the predictions are required to be correct, on average, and the spread of date should be specified. In order to
address this issue, we propose a method based on the fuzzy inference system, and the genetic and linear
programming algorithms. We consider the crisp inputs and the symmetrical triangular fuzzy output. The
proposed algorithm is applied to fit the fuzzy regression model. In addition, we apply a simulation example
and a practical example in the field of machining process in order to assess the performance of the proposed
method in dealing with the practical problems in which the output variables have the natures of uncertainty
and impression. Finally, we compare the performance of the proposed method with other available methods.
Based on the provided examples, the proposed method is verified for prediction. The results obtained show
that the proposed method reduces the error values to a minimum level, and it is more accurate than the linear
programming method and the fuzzy weights with linear programming method.

Keywords: Fuzzy Regression, Linear Programming, Machining Process, Adaptive Neuro-fuzzy Inference
System, Genetic Algorithm.

1. Introduction
In many practical engineering problems, the of which are
measured output parameters are not unique. Thus
in order to facilitate the modeling of data, it is

stochastic ~ mathematical
programming (SMP), fuzzy  mathematical
programming (FMP), and interval linear

common to use the average of the measured
numbers. Therefore, the predicted outputs are
calculated on the basis of the average values
without considering the dispersion of the dataset.
Furthermore, the average values are very sensitive
to outliers.

The fuzzy logic and fuzzy systems are one of the
ways available to address uncertainty in
engineering applications. The variations in the
variable around the average values could be
represented using fuzzy logic.There are many
inexact optimization methods, the most important

programming (ILP). They have been developed to
tackle the uncertainties. FMP has a lower data
requirement but reflects a more flexible
information in practical applications because the
related membership functions are more easily
defined [1].

The linear model of fuzzy regression analysis,
established by Tanaka et al., has enabled the fuzzy
system to give the fuzzy output [2]. In the
Tanaka's research work, a fuzzy functional
relationship has been given between the
explanatory variables and response variables in
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the fuzzy regression model. In the fuzzy linear
programming problems, known as the FFLP
problems, all the parameters as well as the
variables are represented by fuzzy numbers
[3].

Lotfi et al. have discussed an FFLP problem in
which all parameters and variables are triangular
fuzzy numbers. They used the concept of the
symmetric  triangular  fuzzy number and
introduced an approach to defuzzify a general
fuzzy quantity [4]. Kumar et al. have pointed out
the shortcomings of the existing methods [4], and
to overcome these issues, they proposed a method
with equality constraints to find the fuzzy optimal
solution to the FFLP problems. Goudarzi et al.
have discussed a fully fuzzy mixed integer linear
programming problem and presented a solving
method [5].

Several fuzzy regression techniques such as linear
programming (LP) and quadratic programming
(QP) have been proposed based on the fuzzy least
squares (FLS) and mathematical programming
methods that minimize the total spread of the
output. The FLS and LP methods have been
proposed by Diamond [6] and Tanaka et al. (see
[6-8]), respectively. For the fuzzy linear
regression problem, several variants of the FLS
(see [9-11]) and LP methods (see [12, 13]) have
been applied. In the fuzzy literature, several
extensions of these methods have been proposed.
In order to obtain the fuzzy output, Danesh et al.
[5, 8] have used the LP and FLS methods to
optimize the consequent parameters in the hybrid
algorithm of the adaptive neuro-fuzzy inference
system (ANFIS). A large number of research
works have been carried out on the application of
ANFIS modelling to uncertainty environments
[14-16].

However, there have been few attempts on the
application of ANFIS with the fuzzy output. In
this work, we propose a new algorithm to reduce
the error of the fuzzy regression model. In this
algorithm, we use the fuzzy inference system and
the genetic algorithm to optimize the premise
parameters. Also in the proposed algorithm, LP is
used for the consequence of parameter prediction.
In the ANFIS method, the output is crisp. Hence
using the proposed algorithm, we can employ the
adaptive neuro-fuzzy inference system method for
both the crisp inputs and the symmetrical
triangular fuzzy output. This algorithm is
compared with the method proposed by Danesh
[9], which is based on the adaptive fuzzy
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inference system and the fuzzy weights with
linear programming (FWLP). Based on the
simulation and practical examples, we
demonstrate that the proposed method has a lower
error than the LP and FWLP methods, and it is
further verified by the predictions. This paper
includes five sections. After the “Introduction”, the
concepts and formulations of different models are
explained in Section 2. The methodology of the
proposed method is presented in Section 3 to
obtain the premise and the consequent parameters
in the fuzzy regression. In Section 4, two examples
are used to illustrate the proposed procedure and
its ability in providing more accurate predictions
of uncertain outputs by means of this method. Of
these two examples, one is a simulated example
and the other is a case study in the field of turning
process.

2. Basic Concepts and Methods

In this section, we briefly review the basic
concepts of fuzzy regression, adaptive neuro-fuzzy
inference  system and genetic algorithm,
respectively.

2.1 Fuzzy Regression

The function f (X ) is a mapping from x to Y,
where

X, =(X0:X 00X ) =12,.,n)  is a  p-
dimentional wvector of the crisp-independent
variable and the domain is assumed to be
D < RP".Consider the following fuzzy regression
model:

Y =f (X){+}e=(1(x),a(x),r(x)), {+}e. (1)

¢ represents the regression error with conditional
mean zero and variance ¢°(x) given x. In this
paper, the response variable Y has a symmetric
triangular fuzzy structure; Y; can be written as
Y, =(a;,B;)wherea; and B, are the center and

the spread of a symmetric triangular fuzzy
number, respectively, and B; =r; -a; =a, -I;.

2.2. Linear Programming (LP)
Regression

In this work, we consider the following fuzzy
regression model:

Y| =P+ PXy+PX, ot PX, =

in  Fuzzy

. 2
pX;,(j =12,...,n) 2)
where, n is the number of data points,

X; =1X;3,X;,...X,is a p-dimensional input

vector of the independent variables at the j"
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observation, P =(p,,p;,-,P,)is a vector of

unknown fuzzy parameters, and Y is the j"

observed value of the dependent variables. P can
be denoted in the vector form as P = {b, a},
where b =(b,,b,,..b,) a=(a,0.,0a,), b is

the center value, and o, is the spread value of,.
p,,i =0,...,p Also Y, =(a,,B;)is the symmetric

triangular fuzzy number, where a; and g; are the
center and the spread of this number, respectively.
Also the fuzzy regression parameters can be
obtained by solving the following LP model [8]:

n p 8
MinL =>">"o, |in| ®)
j=1i=0
Thus the following two constraints must be
established:

ibi |in|—(1—h)ioci X |<a; —(@-h)B,

Zp:bi g |- @- h)Zp:oci X |2 o) +@=h)B, ®)

In this model, the constrains assure that the
support of the estimated values from the
regression model includes the support of the
observed values.

2.3. Genetic Algorithm (GA)

GA is a stochastic approach based on the principle
of “survival of the fittest” and “natural selection”.
GA belongs to the evolutionary algorithm family
[17] applied to solve the optimization problems
using the techniques based on natural evolution.
In a complicated multi-dimensional search space,
this algorithm is well-suited for finding the global

optimal solution [18, 19]. The general GA
procedure can be summarized as follows:
Step 1. The initial population is randomly

generated and codified by chromosomes. They are
represented as a vector of real numbers, of which,
every entry is one of the unknown parameters of
the problem.

Step 2. Each individual is evaluated in the
population using a defined fitness function.

Step 3. In each iteration, each chromosome
undergoes off-spring, cross-over, and mutation to
produce a new population.

2.4. Adaptive Neuro-Fuzzy Inference System
(ANFIS)

ANFIS is a famous hybrid technique that
combines the adaptive learning capability of ANN
along with the intuitive fuzzy logic of human
reasoning. Thus the advantages of a fuzzy system
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can be combined with a learning algorithm [20,
21]. It is one of the most popular fuzzy neural
systems based on the concepts of fuzzy if-then
rules [22].

In order to present the ANFIS model architecture,
we consider four fuzzy if-then rules with two
input variables and one output variable.

Rule 1: If x, is A, and x, isA,, then
fy = Po + PrX, + X,
Rule 2: If x, is A, and x, isA,then
f,=pg +Prx, +P;X,
Rule 3: If x, is A, and x, IisA,, then
f3:p03+pl3xl+pgx2
Rule 4: If x, is A, and x, isA,, then

4 4 4
f4 =Po TP X+ PX,

where, x4, x5, and x,,x,and y eR are the input
and output variables, respectively, Ag's are the
fuzzy sets, and f;, represents the system output
due to rule R, (k =1,2,3,4). In what follows, the
five layers of the system that have 2D inputs and
one output are explained. In the first layer, all the
nodes are adaptive nodes that generate
membership grades of the inputs. The node

functions are given by:
0,, =M, (X)ex X )
1k = Hak p 2, ' (6)

k=1234,i=12j=1.,n

0, . is the output of the k™ node of layer I. In this
work, the Gaussian membership function is
considered. The t, and o, parameters represent
the center and the spread, respectively.

In the second layer, the nodes are also fixed. In
this layer, the outputs can be calculated as
follows:

0y =W j = Hai (x jl)'uAkaZ)'

k =1,234j=1..,n.

In the third layer, the nodes are fixed nodes. The
outputs of this layer can be calculated as:

i = Vi
05 =W =7 Ha (le)'l"lAkaZ)'

DWWy

k=1

j=12,..,n

()

k =1234

This is called the normalized firing strength.
In the fourth layer, the node is an adaptive
one. The association node function in this layer is
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a linear function and the outputs can be

represented as follows:
0, =W f, =W pFr,
4k jk "k . jk pl (10)

k=1234 i=12.

In this work, p/is assumed to be a symmetric

triangular fuzzy number.

In the fifth layer, the single node carries out the

sum of the inputs of all the layers. The overall
output of the structure can be expressed as:

4
sk Zvvjkfk (11)
k=1
3. Methodology of Proposed Method
In (11), assume that X; =1X;,X ,,....X;, is a p-

dimensional input vector of the independent
variables at the j™™ observation. Also
p=(Py. Py P,) a vector of unknown fuzzy
parameters, and Yi=(a,,;:B,;) and

Y = (&, &j) are the j™ observed value and the

estimated value of the dependent variables for
j=12,..,n where n is the number of data

points, o, is the center value, B is the spread

value of Y, &, is the center value, and ﬁ- is

the spread value of W .
p,,i =0,...,p can be denoted in the vector form as

p, ={b,a} b=, .b...b})
o= (0,0 ,..0y) K =1,...,m, where b
center value and o is the spread value of
p;, i =0,...,p Thus from the above definitions,

using the fuzzy arithmetic and substituting p;
into Eq (11) it can be expressed as:

where and

is the

w ZZ})WJkXJI+ZZaWJkXJI (12)
k=1i=0 k=1i=0
where, w, is known.

3.1 Premise and Consequence Parameters

In the proposed methods, the linear programming
method (forward pass) is used to optimize the
consequent parameters. Once the optimal
consequent parameters are found, the gradient
descent (backward pass) is used to optimize the
premise parameters. For more details, see [20,
22].

In the proposed methods, the premise parameters
are obtained by the ANFIS method for only the
first part of Eg. (12). In what follows, the
parameters obtained are optimized by GA. Then
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the consequence parameters are obtained by
solving the following LP model:

n m p
min > "> oW, x

j=1k=1i=0
so that the following constraints must be
established:

m p

SIS x, —(1-h) 3 Yol x,
k=1i=0 k=1i=0 (13)
<a, (1-h)B

m p m p
DDA X +(1-h) D > W, x
k=1i=0 k=1i=0 (14)
>a, +(1-h)B,
and

m P

> oW, 20, i=0,..,p,
k=1i=0

k=1...m, j=1...,n
3.2. Proposed Methods for Performance

Evaluation
In order to evaluate the performance of the
various methods, an error rate can be calculated as

follows [5]:
19 8
ERROR ==>'(Y. =Y, )=
n,-Zl( ) (15)

[
ALC

Equation (15) is used as a quantity to measure
bias between x;s(j =12,.n) where

a. T F’,§,$are the

e lower, center, and upper

of the observed fuzzy outputs and lower, center,
and upper of the estimated the observed values,

Y;=(;,a;,r;), and the predicted values,

w=h, &%,

22bwmm]+

k=1i

ZZﬁWmmj

k=1i=0

:S|H

for all fuzzy outputs.

3.3. Learning Algorithm for Forecasting Model
In order to forecast the model parameters, the
steps taken can be summarized as follow:

Step 1: Divide all data into the two subsets of train
and test data.

Step 2: Input value of o .

Step 3: Obtain the premise parameters by the
ANFIS method.

Step 4: Put the premise and consequent
parameters obtained in a matrix p =xp,, where

X 6[10*7,107]
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Step 5: Optimize the premise parameters obtained
by GA.

Step 6: Identify the consequent parameters by
Egs. (12), (13), and (14).

Step 7: Terminate the training of network when
ERROR in Eqg. (14) is smaller than a pre-defined
small number or reaches a pre-defined epoch
number; otherwise, go to step 4 and update the
premise parameters.

Step 8: Evaluate the chosen net using the test data.
In this work, we used the MATLAB software tool
for codding.

4. Numerical Examples

In order to demonstrate the applicability of the
proposed algorithm, consider the following
simulation and practical examples, and compare
the results obtained from the different methods.

Example 1: Simulation Example
Consider the following functions:

f (x,,x,)=24.23r*(0.75-r%)+5,
r?=(x,/10-05)" +(x, /10-0.5)".
Suppose that the domain of X=(x,x,) Iis

D =[0,10]. A set of data is generated in the
following manner.

The independent variables x; and x, are the crisp
inputs. They are randomly taken from 0O to 10. Let

the output Y;=(a.B;)(j=12...,n) be a

symmetric fuzzy number; it is generated as
follows:

a =f (x;.x,), ,
j=1...,30,
B, =(1/4)f (x;)+rand [0,1],

where, rand [a,b] denotes a random number
between a and b for each j. We apply the different
methods for fitting the regression model and use
the error value ERROR numerically to evaluate
the performance of the different methods. In what
follows, the parameters obtained for using the
FWLP method and the proposed method are,
respectively, displayed in tables 1 and 2. Also the
regression model obtained in the LP method is as
follows:

Y, =(4.B; ) =(0.0744,2.7036) +

J

(1.4498,0.2699)X , +(0.4007,0.1173)X |,

In tables 3 and 4, the results obtained for the
different methods are summarized. It can be
observed that the error value of the proposed
method is lower than the error values of the other
ones.

Table 1. Premise and consequence parameters obtained using FWLP method.

- k k k k k k
Variable k (t¢.04) by ,0q) (b o) by, o)
1 (4'5(;57*1'5576 (5.3794,0.7065) (1.6089,0.4154) (-0.2687,0.2711)
X 1
2 (8'3§10*2'3388 (-1.5851,0.7099) (1.8465, 0.5218) (0.6591,0.0417)
3 (6'4‘)‘46*2'8907 (1.0780,0.5292) (1.6831,0.4525) (0.0664,0.0352)
X 2
4 (3'6?26*1'9964 (-24.3688,0.8157) (4.9530, 0.2096) (-0.819, 0.2715)
Tables 2. Premise and consequence parameters obtained using FWGALP method.
; k Kok Kk Kk
Variable (Tk 1Oy ) (bo ,(lo) (bl , Oy ) (bz ’az)
1 (2.5012,0.5197) . 1(8657?)’59’ (-3.5306, 0.1750) (2.2994, 0.6365)
Xy (-4.9901
2 (0.0044,1.6937) o5ty (3.9159, 0.2645) (-0.0074, 0.0939)
3 (5.4523,0.9135) . 1%'2133)79’ (1.3080, 0.5804) (0.0867, 0.0869)
X2 (-0.7306
4 (0.5245,9.9232) Lesin (15325, 0.4262) (0.4663, 0.0020)
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Table 3. Predicted fuzzy outputs using the different methods for Example 1.

F)=Eh) (x)-(a))

ko x, X, Y =(a.B;) f(xj)_(aj,[}j)
LP FWLP FWGALP
1 6.6280 6.6090 (11.6800,3.6280) (12.3319,5.2680) (11.6917,4.2428) (12.1123,4.5273)
2 9.2970 7.1810 (16.9620,4.8400) (16.4306,6.055 5) (16.9672,4.9535) (16.5294,5.7326)
3 3.1780 7.1450 (7.7340,2.4680) (7.5450,4.3997) (8.0370,3.5867) (7.9595,2.9660)
4 1.1940 6.2100 (3.9620,1.2360) (4.2940,3.7545) (4.5495,2.4290) (4.2726,1.8809)
5 3.9220 8.9840 (9.7070,3.1400) (9.3606,4.8162) (9.0832,4.4044) (9.6829,3.2162)
6 2.6390 5.7270 (7.2780,1.8480) (6.1953,4.0878) (6.7819,2.9067) (7.5075,3.0955)
7 9.7360 8.8430 (17.8320,4.4820) (17.7331,6.3690) (17.9882,5.2545) (18.3095,5.8321)
8 3.7110 3.8310 (6.9900,1.9900) (6.9897,4.1547) (7.2932,2.9339) (7.4215,2.8538)
9 2.8300 3.6310 (5.8000,2.2370) (5.6323,3.8935) (5.8992,2.5099) (5.7987,2.2953)
10 7.1880 1.7980 (11.4750,3.3530) (11.2159,4.8547) (11.4573,3.3884) (11.1235,4.7309)
11 6.3490 2.3940 (9.5760,3.2770) (10.2383,4.6982) (9.5565,3.4622) (10.1175,4.3734)
12 1.3000 4.8520 (4.1170,1.7250) (3.9034,3.6237) (4.0000,2.0636) (4.0663,1.8703)
13 0.5160 5.9760 (3.2490,1.0740) (3.2172,3.5440) (3.1623,2.0436) (3.0905,1.4378)
14 75790 3.5590 (12.3730,3.2320) (12.4884,5.1669) (12.1927,3.7952) (12.5236,4.8967)
15 1.0710 7.4820 (4.4630,1.7000) (4.6254,3.8705) (4.6572,2.8348) (4.2931,2.0707)
16 7.1060 2.0840 (11.2450,2.9840) (11.2116,4.8661) (11.1546,3.4413) (11.1315,4.6963)
17 5.2480 6.6670 (10.1170,3.2140) (10.3545,4.9023) (10.4973,4.0892) (10.1407,3.8687)
18 2.9670 8.8280 (6.7840,2.2730) (7.9135,4.5402) (7.6386,4.0518) (6.9088,2.6502)
19 3.6090 8.8930 (8.9790,2.8670) (8.8703,4.7211) (8.6220,4.2868) (9.0138,2.9753)
20 39190 8.9900 (9.3860,2.5520) (9.3586,4.8161) (9.0778,4.4053) (9.6804,3.2140)
21 5.6960 9.6320 (12.0780,3.0950) (12.1921,5.3711) (11.6004,4.7585) (12.4900,4.1110)
22 31610 7.1270 (8.0850,2.6180) (7.5131,4.3930) (8.0091,3.5741) (7.9339,2.9685)
23 5.8020 0.2170 (8.9130,2.8190) (8.5729,4.2951) (8.8643,3.0698) (8.2620,4.1371)
24 0.8070 9.8370 (4.8600,1.5760) (5.1863,4.0755) (3.9515,3.4784) (5.0551,2.0281)
Test data
1 6.3490 2.6600 (10.1150,2.8770) (10.3449,4.7294) (9.5709,3.5088) (10.2437,4.3725)
2 6.3490 2.3940 (9.5760,3.2770) (10.2383,4.6982) (9.5565,3.4621) (10.1176,4.3736)
3 52480 6.6670 (10.1170,3.2140) (10.3545,4.9023) (10.4972,4.0890) (10.1406,3.8686)
4 2.9670 8.8280 (6.7840,2.2730) (7.9135,4.5402) (7.6383,4.0517) (6.9089,2.6504)
5 3.9190 8.9900 (9.3860,2.5520) (9.3586,4.8161) (9.0775,4.4051) (9.6803,3.2140)
6 5.6960 9.6320 (12.0780,3.0950) (12.1921,5.3711)) (11.6002,4.7583) (12.4898,4.1110)

Tables 4. Error results obtained using the different methods for Example 1.

Different methods

Value ERROR of train

Value ERROR of test

LP 8.2812
FWLP 2.6819
FWGALP 1.9167

8.8349
4.2682
2.1179

Example 2: Prediction of Diametral Error in
Turning Process

During turning the slender parts, the elastic
deformation of the workpiece affects the
dimensional accuracy of the workpiece [23-25]. A
slender workpiece that clamped only in the chuck
can be structurally regarded as a simple beam
(Figure 1). As shown in this figure, the maximum
deflection occurs at the free end of the workpiece,
where the radial cutting force is acted. As a result
of this deflection, the workpiece will have a non-
uniform diameter, and the maximum deflection
error occurs at the unsupported end of the
workpiece (Figure 2).
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f] Cutting tool
- — - - >
Figure 1. Workpiece clamped by a chuck in turning [26].

Figure 3 illustrates the diameter measurement
positions along the workpiece, conducted by
Bendaros et al. [23] after the longitudinal turning
of a cylindrical part. Four different measurement
positions along the axis of the workpiece were
chosen at distances of 20, 70, 100, and 150 mm
from the free end of the workpiece.
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013

[.RF43 °

Predicted diameter error
€ Mean experimental results
Experimental data

W 20 20 W..%0 ® o 0 « ®
Z mm

Figure 2. Diametral error of aworkpiece clamped by a
chuck in turning [27].

— » e— .
| M A%
10U
L 206,
A% ZUT

Figure 3. Diameter measurement positions after
longitudinal turning of the workpiece [23].

Due to the wuncertainty and non-uniformity
associated with the diameter at each measurement
position, three different diameter measurements
were taken. Note that in table 6, the different
observed measurements at each position are
indicated as the fuzzy outputs.

Table 5. Premise and consequence parameters obtained using FWLP method for Example 2.

k (t.04) (bg . 0t9) (b, o)
1 (42.7171, 58.0730) (51.1208, 0.0068) (0.1689,0.0001)
2 (149.2036, 52.7325) (-0.8580, 0.0060) (0.3229, 0.0001)

Table 6. Premise and consequence parameters obtained using FWGALP method for Example 2.

k k k k
k (Tk’ck) (bo’ao) (bl ’al)
1 (149?)171'12'258 (0.3449 ,0.0171) (0.3445,0.0001)
2 (29.1182,54.1466) (52.0146 ,0.0163) (-0.0003,0.0002)

Table 7. Measured workpiece diameter and fuzzy outputs obtained using different methods for Example 2.

Diameter ~ A A ~ A A
K X f(xi)_<aJ’Bi) f(xj)—(aj,ﬁj)
J 17 FWLP method FWGALP method
1 20 (52.0085,0.005) (52.0087,0.0088) (52.0082,0.0209)
2 70 (52.0050,0.004) (52.0059,0.0136) (51.9920,0.0324)
3 150 (52.0120,0.006) (52.0141,0.0211) (52.0120,0.0326)
1 100 (52.0120,0.001) (49.2536,0.0164) (51.9687,0.0393)

Table 8. Error results obtained using different methods for Example 2.

Different methods

Value ERROR of train

Value ERROR of test

FWLP
FWGALP

2.2844e-04
0.0013

22.8271
0.0086

In order to fit the regression model for diameter
measurements (Table 6), we apply the different
methods. For the performance evaluation of the
different methods, we use the ERROR value. The
premise and the consequence parameters obtained
are shown in tables 5 and 6. In what follows, we

calculate the output Y* =(é,[3) for x = 100 in the

test dataset. For the FWGALP method, Y~ can be
calculated as follows:

At first, w, is calculated for k =1,2. Using the
premise parameters in table 6, and Egs. (6) and
(9), and x = 100, w is equivalent to:
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2
v, =onf (1122400

=3.3732e —04,w, =0.4245,w, =0.4245
and:

2
ZW sk =3.3732e — 04 +0.4245=0.4248
k=1

Therefore,
w, = 33782 —04_ 93900 — 04
0.4248
W, = 0.4245 =0.9992, W, = 0.4245 =0.9992
0.4248 48
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Finally, by substituting w, and the obtained
consequence parameters (b/,o .k =1,2,i =0,1)

(Table 6) in Eq. (12), Y is computed as follows:
4 =(7.9399% — 04)(0.3449) +

(7.9399% —04)(0.3445)(100) +
(0.9992)(52.0146) + (0.9992)(~0.0003)(100)
=51.8687

and:

B =(7.939% —04)(0.0171) +

(7.9399% —04)(0.0001)(100) +
(0.9992)(0.0163) + (0.9992)(0.0002)(100)

=0.0393
Thereupon,

Y =(4,B)=(51.8687,0.0393)

Also in the FWLP method, Y is calculated as the
FWGALP method.

The obtained results for the different methods are
summarized in tables 7 and 8. Like the previous
example, the proposed algorithm provides a better
prediction than the FWLP method.

5. Conclusion

In this paper, we proposed an algorithm based
on the neuro-fuzzy system, genetic algorithm,
and linear programming (LP) in order to
predict the fuzzy regression model. Also we
used the simulation and case study examples
to illustrate the applicability of the proposed
algorithm in the case of crisp inputs and fuzzy
output. We compared the results obtained for
the different forecasting techniques. Using
these results, a guideline could be proposed
for selecting the appropriate regression
method for predictive purposes. The main
findings of this paper can be summarized as
follow:

(1) Using the tables and the results obtained,
we can see that the proposed method is stable.
Based on the examples, the proposed method
decreases the error values to a minimum level
and is more accurate than the linear
programming (LP) and fuzzy weights with
linear programming (FWLP) methods.

(2) In the proposed method, the constrains
used assure that the support of the estimated
values from the regression model includes the
support of the observed values in the h-
level (0 <h<1). To sum up, in LP, the
width of the estimated value depends on the
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number of observations. As the number of
observations increases, the width of the
estimated value decreases.

(3) The proposed method is not more
complicated than the FWLP method in
computations but is more accurate.

(4) The results obtained from the simulated
example and the case study in the field of
turning process show that the presented
method is especially useful for practical
problems, which involve some degree of
uncertainty, inhomogeneity, randomness, and
imprecision in the output data.
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