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Abstract 

In this paper, we present a new method for the regression model prediction in an uncertain environment. In 

the practical engineering problems, to develop the regression or the artificial neural network model for 

making predictions, an average set of the repeated observed values is introduced to the model as an input 

variable. Therefore, the estimated response of the process is also the average of a set of output values, where 

the variation around the mean is not determinate. However, to provide the unbiased and precise estimations, 

the predictions are required to be correct, on average, and the spread of date should be specified. In order to 

address this issue, we propose a method based on the fuzzy inference system, and the genetic and linear 

programming algorithms. We consider the crisp inputs and the symmetrical triangular fuzzy output. The 

proposed algorithm is applied to fit the fuzzy regression model. In addition, we apply a simulation example 

and a practical example in the field of machining process in order to assess the performance of the proposed 

method in dealing with the practical problems in which the output variables have the natures of uncertainty 

and impression. Finally, we compare the performance of the proposed method with other available methods. 

Based on the provided examples, the proposed method is verified for prediction. The results obtained show 

that the proposed method reduces the error values to a minimum level, and it is more accurate than the linear 

programming method and the fuzzy weights with linear programming method. 

 

Keywords: Fuzzy Regression, Linear Programming, Machining Process, Adaptive Neuro-fuzzy Inference 

System, Genetic Algorithm. 

1. Introduction 

In many practical engineering problems, the 

measured output parameters are not unique. Thus 

in order to facilitate the modeling of data, it is 

common to use the average of the measured 

numbers. Therefore, the predicted outputs are 

calculated on the basis of the average values 

without considering the dispersion of the dataset. 

Furthermore, the average values are very sensitive 

to outliers.  

The fuzzy logic and fuzzy systems are one of the 

ways available to address uncertainty in 

engineering applications. The variations in the 

variable around the average values could be 

represented using fuzzy logic.There are many 

inexact optimization methods, the most important 

of which are stochastic mathematical 

programming (SMP), fuzzy mathematical 

programming (FMP), and interval linear 

programming (ILP). They have been developed to 

tackle the uncertainties. FMP has a lower data 

requirement but reflects a more flexible 

information in practical applications because the 

related membership functions are more easily 

defined [1]. 

The linear model of fuzzy regression analysis, 

established by Tanaka et al., has enabled the fuzzy 

system to give the fuzzy output [2]. In the 

Tanaka's research work, a fuzzy functional 

relationship has been given between the 

explanatory variables and response variables in 
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the fuzzy regression model. In the fuzzy linear 

programming problems, known as the FFLP 

problems, all the parameters as well as the 

variables are represented by fuzzy numbers 

[3]. 

Lotfi et al. have discussed an FFLP problem in 

which all parameters and variables are triangular 

fuzzy numbers. They used the concept of the 

symmetric triangular fuzzy number and 

introduced an approach to defuzzify a general 

fuzzy quantity [4]. Kumar et al. have pointed out 

the shortcomings of the existing methods [4], and 

to overcome these issues, they proposed a method 

with equality constraints to find the fuzzy optimal 

solution to the FFLP problems. Goudarzi et al. 

have discussed a fully fuzzy mixed integer linear 

programming problem and presented a solving 

method [5]. 

Several fuzzy regression techniques such as linear 

programming (LP) and quadratic programming 

(QP) have been proposed based on the fuzzy least 

squares (FLS) and mathematical programming 

methods that minimize the total spread of the 

output. The FLS and LP methods have been 

proposed by Diamond [6] and Tanaka et al. (see 

[6-8]), respectively. For the fuzzy linear 

regression problem, several variants of the FLS 

(see [9-11]) and LP methods (see [12, 13]) have 

been applied. In the fuzzy literature, several 

extensions of these methods have been proposed.   

In order to obtain the fuzzy output, Danesh et al. 

[5, 8] have used the LP and FLS methods to 

optimize the consequent parameters in the hybrid 

algorithm of the adaptive neuro-fuzzy inference 

system (ANFIS). A large number of research 

works have been carried out on the application of 

ANFIS modelling to uncertainty environments 

[14-16]. 

However, there have been few attempts on the 

application of ANFIS with the fuzzy output. In 

this work, we propose a new algorithm to reduce 

the error of the fuzzy regression model. In this 

algorithm, we use the fuzzy inference system and 

the genetic algorithm to optimize the premise 

parameters. Also in the proposed algorithm, LP is 

used for the consequence of parameter prediction. 

In the ANFIS method, the output is crisp. Hence 

using the proposed algorithm, we can employ the 

adaptive neuro-fuzzy inference system method for 

both the crisp inputs and the symmetrical 

triangular fuzzy output. This algorithm is 

compared with the method proposed by Danesh 

[9], which is based on the adaptive fuzzy 

inference system and the fuzzy weights with 

linear programming (FWLP). Based on the 

simulation and practical examples, we 

demonstrate that the proposed method has a lower 

error than the LP and FWLP methods, and it is 

further verified by the predictions. This paper 

includes five sections. After the “Introduction”, the 

concepts and formulations of different models are 

explained in Section 2. The methodology of the 

proposed method is presented in Section 3 to 

obtain the premise and the consequent parameters 

in the fuzzy regression. In Section 4, two examples 

are used to illustrate the proposed procedure and 

its ability in providing more accurate predictions 

of uncertain outputs by means of this method. Of 

these two examples, one is a simulated example 

and the other is a case study in the field of turning 

process. 

 

2. Basic Concepts and Methods 

In this section, we briefly review the basic 

concepts of fuzzy regression, adaptive neuro-fuzzy 

inference system and genetic algorithm, 

respectively. 

2.1 Fuzzy Regression 

The function   ( )f X  is a mapping from   to    

where 

0 1   ( , ,..., )( 1,2,..., ) j j j jpx x x x j n  is a  -

dimentional vector of the crisp-independent 

variable and the domain is assumed to be 

. pD R Consider the following fuzzy regression 

model: 

      ( ) ( ( ), ( ), ( )) .     LRY f X l x a x r x
  

(1) 

  represents the regression error with conditional 

mean zero and variance 2  ( ) x  given  . In this 

paper, the response variable   has a symmetric 

triangular fuzzy structure;    can be written as 

  ( , ) j j jY a where   ja  and   j  are the center and 

the spread of a symmetric triangular fuzzy 

number, respectively, and          - -  j j j j jr a a l .  

2.2. Linear Programming (LP) in Fuzzy 

Regression 

In this work, we consider the following fuzzy 

regression model: 

0 1 1 2 2   ...

, ( 1,2,..., )

     



j p jp

j

Y p p x p x p x

pX j n
 (2) 

 

where, n is the number of data points, 

1 21, , ,...,j j j jpx x x x is a p-dimensional input 

vector of the independent variables at the thj   
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observation, 0 1( , ,.., ) pP p p p is a vector of 

unknown fuzzy parameters, and jY  is the thj  

observed value of the dependent variables.   can 

be denoted in the vector form as   *   +  

where 0 1( , ,.., ) pb b b b  0 1( , ,.., )    p , 
ib  is 

the center value, and  i
 is the spread value of,. 

, 0,...,ip i p Also ( , )  j j jY is the symmetric 

triangular fuzzy number, where    and    are the 

center and the spread of this number, respectively. 

Also the fuzzy regression parameters can be 

obtained by solving the following LP model [8]: 

 

1 0 

 
pn

i ji

j i

Min L x  
(8) 

Thus the following two constraints must be 

established: 

0 0

(1 ) (1 )
 

        
p p

i ji i ji j j

i i

b x h x h

0 0

(1 ) (1 )
 

        
p p

i ji i ji j j

i i

b x h x h

 

(9) 

In this model, the constrains assure that the 

support of the estimated values from the 

regression model includes the support of the 

observed values  
 
2.3. Genetic Algorithm (GA) 

GA is a stochastic approach based on the principle 

of “survival of the fittest” and “natural selection”. 

GA belongs to the evolutionary algorithm family 

[17] applied to solve the optimization problems 

using the techniques based on natural evolution. 

In a complicated multi-dimensional search space, 

this algorithm is well-suited for finding the global 

optimal solution [18, 19]. The general GA 

procedure can be summarized as follows: 

Step 1. The initial population is randomly 

generated and codified by chromosomes. They are 

represented as a vector of real numbers, of which, 

every entry is one of the unknown parameters of 

the problem. 

Step 2. Each individual is evaluated in the 

population using a defined fitness function. 

Step 3. In each iteration, each chromosome 

undergoes off-spring, cross-over, and mutation to 

produce a new population. 

 

2.4. Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 

ANFIS is a famous hybrid technique that 

combines the adaptive learning capability of ANN 

along with the intuitive fuzzy logic of human 

reasoning. Thus the advantages of a fuzzy system 

can be combined with a learning algorithm [20, 

21]. It is one of the most popular fuzzy neural 

systems based on the concepts of fuzzy if-then 

rules [22].  

In order to present the ANFIS model architecture, 

we consider four fuzzy if-then rules with two 

input variables and one output variable.  

 

Rule 1: If 
1 x  is 

1 A  and 2 x   is 3 A , then 
1 1 1

1 0 1 1 2 2     f p p x p x     

 Rule 2: If  
1 x  is 

1 A  and 2 x   is 4 A then 
2 2 2

2 0 1 1 2 2     f p p x p x   

Rule 3: If  
1 x  is 2 A  and 2 x   is 3 A , then 

3 3 3

3 0 1 1 2 2     f p p x p x   

Rule 4: If  
1 x  is 2 A  and 2 x   is 4 A , then

4 4 4

4 0 1 1 2 2     f p p x p x  
 

where,       , and 1 2,x x and y R are the input 

and output variables, respectively,   's are the 

fuzzy sets, and    represents the system output 

due to rule ( 1,2,3,4)kR k . In what follows, the 

five layers of the system that have 2D inputs and 

one output are explained. In the first layer, all the 

nodes are adaptive nodes that generate 

membership grades of the inputs. The node 

functions are given by: 
2

,

1, ,   ( )exp ,
2

1,2,3,4, 1,2, 1,..,

   
    

   

  

j i k

k A k

k

x
o x

k i j n

 (6) 

 

,l ko is the output of the thk  node of layer l. In this 

work, the Gaussian membership function is 

considered. The k and k  parameters represent 

the center and the spread, respectively. 

In the second layer, the nodes are also fixed. In 

this layer, the outputs can be calculated as 

follows:  

2 1 2   ( ). ),

1,2,3,4, 1,..., .

   

 

k jk Ak j Ak jo w x x

k j n
 

 

 

In the third layer, the nodes are fixed nodes. The 

outputs of this layer can be calculated as: 

3 1 24

1

   ( ). ),

1,2,3,4 1,2,...,





   

 



jk

k jk Ak j Ak j

jk

k

w
o w x x

w

k j n

 
(7) 

 

 

This is called the normalized firing strength. 

In the fourth layer, the node is an adaptive 
one. The association node function in this layer is 
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a linear function and the outputs can be 

represented as follows: 

4   ,

1,2,3,4 1,2.

 

 

k

k jk k jk io w f w p

k i
 (10) 

                                                    

In this work, k

ip is assumed to be a symmetric 

triangular fuzzy number.  

In the fifth layer, the single node carries out the 

sum of the inputs of all the layers. The overall 

output of the structure can be expressed as: 
4

5

1

  


k jk k

k

o w f  (11) 

 

3. Methodology of Proposed Method  

In (11), assume that 1 21, , ,...,j j j jpx x x x  is a p-

dimensional input vector of the independent 

variables at the     observation. Also 

0 1( , ,..., ) pp p p p  a vector of unknown fuzzy 

parameters, and , ,( , )  i y i y iY  and 

µ µ $( , )  j yj yjY   are the thj  observed value and the 

estimated value of the dependent variables for 

1,2,...,j n  where n is the number of data 

points,  yj is the center value, yj is the spread 

value of  jY , µ yj  is the center value, and $yj  is 

the spread value of µjY .  

, 0,...,ip i p  can be denoted in the vector form as 

 , ip b  where 0 1( , ,..., ) k k k

pb b b b  and 

0 1( , ,.. ) 1, , ,.    k k k

p k m , where k

ib  is the 

center value and k

i
 is the spread value of 

0,, , ip i p  Thus from the above definitions, 

using the fuzzy arithmetic and substituting k

ip  

into Eq. (11), it can be expressed as:  

¶

1 0 1 0   

   
p pm m

k k

j i jk ji i jk ji

k i k i

Y b w x w x  (12) 

where, kw  is known.  

3.1 Premise and Consequence Parameters 

In the proposed methods, the linear programming 

method (forward pass) is used to optimize the 

consequent parameters. Once the optimal 

consequent parameters are found, the gradient 

descent (backward pass) is used to optimize the 

premise parameters. For more details, see [20, 

22].  

In the proposed methods, the premise parameters 

are obtained by the ANFIS method for only the 

first part of Eq. (12). In what follows, the 

parameters obtained are optimized by GA. Then 

the consequence parameters are obtained by 

solving the following LP model: 

1 1 0

min
  


pn m

k

i k ji

j k i

w x  

so that the following constraints must be 

established: 

 

 
1 0 1 0

1

1

   

  

   

 

j j

p pm m
k k

i k ji i k ji

k i k i

y y

b w x h w x

a h

 (13) 

 

 

 
1 0 1 0

1

1

   

  

   

 

j j

p pm m
k k

i k ji i k ji

k i k i

y y

b w x h w x

a h

 (14) 

and 

1 0

0,     0, , ,   

    1, , ,    1, ,

 

   

   


pm

k

i k

k i

w i p

k m j n

 

     

3.2. Proposed Methods for Performance 

Evaluation  

In order to evaluate the performance of the 

various methods, an error rate can be calculated as 

follows [5]: 

 
1

Ŷ
1



  
n

j j

j

E YRROR
n

 
(15) 

2

1 0

2
1

1 0

3
1

2

 



 

  
   
  
 

  
    
  






j

j

pm
k

y i jk ji
n

k i

pmj
k

y i jk ji

k i

a b w x

n
w x

 

 

Equation (15) is used as a quantity to measure 

bias between ( 1,2,.. )jx s j n  where 

$ $, , , , ,$
j jjj j jl a r l a r are the lower, center, and upper 

of the observed fuzzy outputs and lower, center, 

and upper of the estimated the observed values, 

( , , )j j j jY l a r , and the predicted values, 

µ $ $( , , ) $
j j jjY l a r  ,   for all fuzzy outputs.  

3.3. Learning Algorithm for Forecasting Model  

In order to forecast the model parameters, the 

steps taken can be summarized as follow: 

Step 1: Divide all data into the two subsets of train 

and test data. 

Step 2: Input value of  .  

Step 3: Obtain the premise parameters by the 

ANFIS method. 

Step 4: Put the premise and consequent 

parameters obtained in a matrix 0p xp , where 

7 710 ,10  x  
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Step 5: Optimize the premise parameters obtained 

by GA. 

Step 6: Identify the consequent parameters by 

Eqs. (12), (13), and (14). 

Step 7: Terminate the training of network when 

      in Eq. (14) is smaller than a pre-defined 

small number or reaches a pre-defined epoch 

number; otherwise, go to step 4 and update the 

premise parameters. 

Step 8: Evaluate the chosen net using the test data. 

In this work, we used the MATLAB software tool 

for codding. 

4. Numerical Examples 

In order to demonstrate the applicability of the 

proposed algorithm, consider the following 

simulation and practical examples, and compare 

the results obtained from the different methods.  

 

Example 1: Simulation Example 

Consider the following functions: 

   2 2

1 2, 24.23 0.75 5,  f x x r r  

   
2 22

1 2/10 0.5 /10 0.5 .   r x x  

Suppose that the domain of  1 2X , x x  is

 
2

0,10D . A set of data is generated in the 

following manner. 

The independent variables     and    are the crisp 

inputs. They are randomly taken from 0 to 10. Let 

the output    ,    j 1,2, ,   j j jY a n  be a 

symmetric fuzzy number; it is generated as 

follows: 

 

     

1 2, ,                           
  1, ,30,

1 / 4  0,1 ,

 
 

  

j j j

j j

a f x x
j

f x rand
 

 

where, rand ,   - denotes a random number 

between a and b for each j. We apply the different 

methods for fitting the regression model and use 

the error value ERROR numerically to evaluate 

the performance of the different methods. In what 

follows, the parameters obtained for using the 

FWLP method and the proposed method are, 

respectively, displayed in tables 1 and 2. Also the 

regression model obtained in the LP method is as 

follows: 

   

   1 2

,   0.0744,2.7036

1.4498,0.2699 0.400

ˆ

7,0.1 3

ˆ

17

ˆ   



j j j

j j

Y a

X X
 

 

In tables 3 and 4, the results obtained for the 

different methods are summarized. It can be 

observed that the error value of the proposed 

method is lower than the error values of the other 

ones.  

 

 

Table 1. Premise and consequence parameters obtained using FWLP method. 

Variable k   , k k
 

0 0( , )k kb  
1 1 )( ,k kb  

2 2( , )k kb  

1x  

1 
(4.5057,1.5576

) 
(5.3794,0.7065) (1.6089,0.4154) (-0.2687,0.2711) 

2 
(8.3810,2.3388

) 
(-1.5851,0.7099) (1.8465, 0.5218) (0.6591,0.0417) 

2x  

3 
(6.4446,2.8907

) 
(1.0780,0.5292) (1.6831,0.4525) (0.0664,0.0352) 

4 
(3.6626,1.9964

) 
(-24.3688,0.8157) (4.9530, 0.2096) (-0.819, 0.2715) 

 

Tables 2. Premise and consequence parameters obtained using FWGALP method. 

Variable k
 

 , k k
 

0 0( , )k kb  
1 1 )( ,k kb  

2 2( , )k kb  

1x  

1 (2.5012,0.5197) 
(6.5359, 

0.1967) 
(-3.5306, 0.1750) (2.2994, 0.6365) 

2 (0.0044,1.6937) 
(-4.9901, 

0.9352) 
(3.9159, 0.2645) (-0.0074, 0.0939) 

2x  

3 (5.4523,0.9135) 
(2.1379, 

0.1523) 
(1.3080, 0.5804) (0.0867, 0.0869) 

4 (0.5245,9.9232) 
(-0.7306, 

1.6641) 
(1.5325, 0.4262) (0.4663, 0.0020) 
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Table 3. Predicted fuzzy outputs using the different methods for Example 1. 

 

Tables 4. Error results obtained using the different methods for Example 1. 

Different methods Value ERROR of train Value ERROR of test 

LP 8.2812 8.8349 

FWLP 2.6819 4.2682 

FWGALP 1.9167 2.1179 

 

Example 2: Prediction of Diametral Error in 

Turning Process 

During turning the slender parts, the elastic 

deformation of the workpiece affects the 

dimensional accuracy of the workpiece [23-25]. A 

slender workpiece that clamped only in the chuck 

can be structurally regarded as a simple beam 

(Figure 1). As shown in this figure, the maximum 

deflection occurs at the free end of the workpiece, 

where the radial cutting force is acted. As a result 

of this deflection, the workpiece will have a non-

uniform diameter, and the maximum deflection 

error occurs at the unsupported end of the 

workpiece (Figure 2). 
 

 
Figure 1. Workpiece clamped by a chuck in turning [26]. 

 

Figure 3 illustrates the diameter measurement 

positions along the workpiece, conducted by 

Bendaros et al. [23] after the longitudinal turning 

of a cylindrical part. Four different measurement 

positions along the axis of the workpiece were 

chosen at distances of 20, 70, 100, and 150 mm 

from the free end of the workpiece. 

 

   ,ˆ ˆˆ j j jf x a  

FWGALP 

   ,ˆ ˆˆ j j jf x a

 

FWLP 

   ,ˆ ˆˆ j j jf x a  

LP 

 , j j jY a

 
2x  

1x  k
 

(12.1123,4.5273) (11.6917,4.2428) (12.3319,5.2680) (11.6800,3.6280) 6.6090 6.6280 1 

(16.5294,5.7326) (16.9672,4.9535) (16.4306,6.055`5) (16.9620,4.8400) 7.1810 9.2970 2 

(7.9595,2.9660) (8.0370,3.5867) (7.5450,4.3997) (7.7340,2.4680) 7.1450 3.1780 3 

(4.2726,1.8809) (4.5495,2.4290) (4.2940,3.7545) (3.9620,1.2360) 6.2100 1.1940 4 

(9.6829,3.2162) (9.0832,4.4044) (9.3606,4.8162) (9.7070,3.1400) 8.9840 3.9220 5 

(7.5075,3.0955) (6.7819,2.9067) (6.1953,4.0878) (7.2780,1.8480) 5.7270 2.6390 6 

(18.3095,5.8321) (17.9882,5.2545) (17.7331,6.3690) (17.8320,4.4820) 8.8430 9.7360 7 

(7.4215,2.8538) (7.2932,2.9339) (6.9897,4.1547) (6.9900,1.9900) 3.8310 3.7110 8 

(5.7987,2.2953) (5.8992,2.5099) (5.6323,3.8935) (5.8000,2.2370) 3.6310 2.8300 9 

(11.1235,4.7309) (11.4573,3.3884) (11.2159,4.8547) (11.4750,3.3530) 1.7980 7.1880 10 

(10.1175,4.3734) (9.5565,3.4622) (10.2383,4.6982) (9.5760,3.2770) 2.3940 6.3490 11 

(4.0663,1.8703) (4.0000,2.0636) (3.9034,3.6237) (4.1170,1.7250) 4.8520 1.3000 12 

(3.0905,1.4378) (3.1623,2.0436) (3.2172,3.5440) (3.2490,1.0740) 5.9760 0.5160 13 

(12.5236,4.8967) (12.1927,3.7952) (12.4884,5.1669) (12.3730,3.2320) 3.5590 7.5790 14 

(4.2931,2.0707) (4.6572,2.8348) (4.6254,3.8705) (4.4630,1.7000) 7.4820 1.0710 15 

(11.1315,4.6963) (11.1546,3.4413) (11.2116,4.8661) (11.2450,2.9840) 2.0840 7.1060 16 

(10.1407,3.8687) (10.4973,4.0892) (10.3545,4.9023) (10.1170,3.2140) 6.6670 5.2480 17 

(6.9088,2.6502) (7.6386,4.0518) (7.9135,4.5402) (6.7840,2.2730) 8.8280 2.9670 18 

(9.0138,2.9753) (8.6220,4.2868) (8.8703,4.7211) (8.9790,2.8670) 8.8930 3.6090 19 

(9.6804,3.2140) (9.0778,4.4053) (9.3586,4.8161) (9.3860,2.5520) 8.9900 3.9190 20 

(12.4900,4.1110) (11.6004,4.7585) (12.1921,5.3711) (12.0780,3.0950) 9.6320 5.6960 21 

(7.9339,2.9685) (8.0091,3.5741) (7.5131,4.3930) (8.0850,2.6180) 7.1270 3.1610 22 

(8.2620,4.1371) (8.8643,3.0698) (8.5729,4.2951) (8.9130,2.8190) 0.2170 5.8020 23 

(5.0551,2.0281) (3.9515,3.4784) (5.1863,4.0755) (4.8600,1.5760) 9.8370 0.8070 24 

Test data 

(10.2437,4.3725) (9.5709,3.5088) (10.3449,4.7294) (10.1150,2.8770) 2.6600 6.3490 1 

(10.1176,4.3736) (9.5565,3.4621) (10.2383,4.6982) (9.5760,3.2770) 2.3940 6.3490 2 

(10.1406,3.8686) (10.4972,4.0890) (10.3545,4.9023) (10.1170,3.2140) 6.6670 5.2480 3 

(6.9089,2.6504) (7.6383,4.0517) (7.9135,4.5402) (6.7840,2.2730) 8.8280 2.9670 4 

(9.6803,3.2140) (9.0775,4.4051) (9.3586,4.8161) (9.3860,2.5520) 8.9900 3.9190 5 

(12.4898,4.1110) (11.6002,4.7583) (12.1921,5.3711)) (12.0780,3.0950) 9.6320 5.6960 6 

Chuck 

Workpiece 

Cutting tool 

L 

f 
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Figure 2. Diametral error of aworkpiece clamped by a 

chuck in turning [27]. 

 

Figure 3. Diameter measurement positions after 

longitudinal turning of the workpiece [23]. 

Due to the uncertainty and non-uniformity 

associated with the diameter at each measurement 

position, three different diameter measurements 

were taken. Note that in table 6, the different 

observed measurements at each position are 

indicated as the fuzzy outputs. 

 

 

Table 5. Premise and consequence parameters obtained using FWLP method for Example 2. 

k   , k k
 

0 0( , )k kb  
1 1( , )k kb  

1 (42.7171, 58.0730) (51.1208, 0.0068) (0.1689,0.0001) 
2 (149.2036, 52.7325) (-0.8580, 0.0060) (0.3229, 0.0001) 

 

Table 6. Premise and consequence parameters obtained using FWGALP method for Example 2. 

k   , k k
 

0 0( , )k kb  
1 1( , )k kb  

1 
(149.0171,12.258

5) 
(0.3449 ,0.0171) (0.3445,0.0001) 

2 (29.1182,54.1466) (52.0146 ,0.0163) (-0.0003,0.0002) 

 

Table 7. Measured workpiece diameter and fuzzy outputs obtained using different methods for Example 2. 

 

Table 8. Error results obtained using different methods for Example 2. 

Different methods Value ERROR of train Value ERROR of test 

FWLP 2.2844e-04 22.8271 
FWGALP 0.0013 0.0086 

 

In order to fit the regression model for diameter 

measurements (Table 6), we apply the different 

methods. For the performance evaluation of the 

different methods, we use the ERROR value. The 

premise and the consequence parameters obtained 

are shown in tables 5 and 6. In what follows, we 

calculate the output  ˆˆ ,ˆ Y a   for x = 100 in the 

test dataset. For the FWGALP method, ˆY  can be 

calculated as follows:  

At first, kw is calculated for 1,2k . Using the 

premise parameters in table 6, and Eqs. (6) and 

(9), and      ,  kw is equivalent to: 

 
2

1

2 2

100 149.0171
exp 1 / 2

12.2585

3.3732 04, 0.4245, 0.4245

  
   

   

   

w

e w w

 

and: 
2

18,

1

3.3732 04 0.4245 0.4248


    k

k

w e  

Therefore,

1

2 2

3.3732 04
7.9399 04

0.4248

0.4245 0.4245
  0.9992,   0.9992

0.4248 0.4248


  

   

e
w e

w w

 

   ,ˆ ˆˆ j j jf x a  

FWGALP method 

   ,ˆ ˆˆ j j jf x a  

FWLP method 

Diameter 

 , j j jY a  2x  

k

K 

(52.0082,0.0209) (52.0087,0.0088) (52.0085,0.005) 20 1 

(51.9920,0.0324) (52.0059,0.0136) (52.0050,0.004) 70 2 

(52.0120,0.0326) (52.0141,0.0211) (52.0120,0.006) 150 3 

(51.9687,0.0393) (49.2536,0.0164) (52.0120,0.001) 100 1 

Predicted diameter error 

Mean experimental results 

Experimental data 

50 200 

150 
70 

20 
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Finally, by substituting 
kw  and the obtained 

consequence parameters ( ,  , 1,2,  0,1)  k k

i ib k i  

(Table 6) in Eq. (12), ˆY  is computed as follows: 

  

   

      

7

ˆ 7.9399 04 0.3449

7.9399 04 0.3445 100

0.9992 52.0146 0.9992 0.0003 100

51.868

  

 

 



a e

e
 

and: 

  

   

      

7.9399 04 0.0171

7.9399 04 0.0001 100

0.9992 0.0163 0.9992 0.0002 100

0.0393

̂   

 





e

e
 

Thereupon, 

   , 51.8687,0.0393ˆˆ ˆ  Y a  

Also in the FWLP method,  ̂ is calculated as the 

FWGALP method. 

The obtained results for the different methods are 

summarized in tables 7 and 8. Like the previous 

example, the proposed algorithm provides a better 

prediction than the FWLP method.  

 

5. Conclusion  

In this paper, we proposed an algorithm based 

on the neuro-fuzzy system, genetic algorithm, 

and linear programming (LP) in order to 

predict the fuzzy regression model. Also we 

used the simulation and case study examples 

to illustrate the applicability of the proposed 

algorithm in the case of crisp inputs and fuzzy 

output. We compared the results obtained for 

the different forecasting techniques. Using 

these results, a guideline could be proposed 

for selecting the appropriate regression 

method for predictive purposes. The main 

findings of this paper can be summarized as 

follow: 

(1) Using the tables and the results obtained, 

we can see that the proposed method is stable. 

Based on the examples, the proposed method 

decreases the error values to a minimum level 

and is more accurate than the linear 

programming (LP) and fuzzy weights with 

linear programming (FWLP) methods. 

(2) In the proposed method, the constrains 

used assure that the support of the estimated 

values from the regression model includes the 

support of the observed values in      -

level (     ). To sum up, in LP, the 

width of the estimated value depends on the 

number of observations. As the number of 

observations increases, the width of the 

estimated value decreases. 

(3) The proposed method is not more 

complicated than the FWLP method in 

computations but is more accurate. 

(4) The results obtained from the simulated 

example and the case study in the field of 

turning process show that the presented 

method is especially useful for practical 

problems, which involve some degree of 

uncertainty, inhomogeneity, randomness, and 

imprecision in the output data.  
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 قطعیَای غیرگیریکاربرد در اودازٌ باًریتمی ترکیبی جُت برآيرد پارامتر فازی گال

  

   2صدیقٍ داوش ي ،*1مُدی داوش

 .قسيیه، ایران، بًئیه زَرا، مرکس آمًزش عالی فىی ي مُىدسی بًئیه زَرا، صىایع، مکاویک ي ًَافضاگريٌ  1

 .ایران، تُران، داوشگاٌ آزاد اسلامی، باشگاٌ پژيَشگران جًان ياحد تُران شرق 2

 20/04/2020 پذیزش؛ 31/03/2020 باسوگزی؛ 00/00/2012 ارسال

 چکیدٌ:

در مساائ  مُىدسای رااربزدیه باٍ مىااًر ایدااد مادل        بیىی مدل رگزسیًن در محیط غیز قطعی ارائٍ ضدٌ است. در ایه مقالٍ ريضی خدید بزای پیص

 هایداد مدل پیص بیىی رىىادٌ  خُت ضدٌ تکزاری بٍ عىًان متغیز يريدیمقادیز مطاَدٌَای میاوگیهای اس ضبکٍ عصبی مصىًعیه مدمًعٍرگزسیًوی یا 

تغییازا  واًل میااوگیه مطا       در آن مقادیز خزيخی خًاَد بًد رٍ میاوگیه ای اس يرد ضدٌ ویش مدمًعٍآد. در وتیدٍه پاسخ بزوضًمعزفی میبٍ مدل 

وا   بٍ مىاًر مط   باضد. راملاً َا َا باید اس واز میاوگیه ي پزارىدگی دادٌپیص بیىی هيردَای دقیق ي غیز مىحزفآبز بدست آيردنویست. بٍ مىاًر 

ٍ  َای يريدی فاسی ي دادٌ. دادٌضدٌ استسیستم استىتاج فاسی ارائٍ ه ريضی مبتىی بز ایه مسالٍ وااز گزفتاٍ ي    ای متقاارن در َای خزيخی فااسی ويسوقا

خُت بزاسش مدل رگسیًن فاسی استفادٌ ضد. علايٌ بز ایه بٍ مىاًر ارسیابی عملکزد ريش پیطىُادی در مًاخٍُ با مسائ  رااربزدی  الگًریتم پیطىُادی 

یىد ماضیىکاری ماًرد  آساسی ي یک مثال راربزدی در سمیىٍ فزیق َستىد یک مثال ضبیٍی ي غیزدقعرٍ در آوُا متغیزَای خزيخی دارای طبیعت غیز قط

ٍ َاای  َای مًخًد مقایسٍ ضد. بز اساس مثالعملکزد ريش پیطىُادی با سایز ريش هاستفادٌ قزار گزفت. در پایان ٍ  با ه ريش پیطاىُادی خُات   راار رفتا

َاای فااسی   يسن بزواماٍ ریاشی خطای باا     وسبت بٍ ريش بزوامٍ ریشی خطای ي ريش بیىی تصدیق ضد. وتایح بدست آمدٌ وطان داد ريش پیطىُادی پیص

(FWLP)  .دقت بیطتزی دارد 
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