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Abstract

Among a variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO)
with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates
the experience of the whole swarm into the movement of particles. Although the exploitation ability of this
algorithm is great, it cannot comprehensively explore the search space and may be trapped in a local minimum
through a limited number of iterations. To increase its diversity as well as enhance its exploration ability, this
paper inserts a chaotic factor, generated by three chaotic systems, along with a perturbation stage into AIW-
PSO to avoid premature convergence, especially in complex non-linear problems. To assess the proposed
method, a known optimization benchmark containing non-linear complex functions is selected and its results
are compared with those of standard PSO, AIW-PSO, and genetic algorithm (GA). The empirical results
demonstrate the superiority of the proposed chaotic AIW-PSO to the counterparts over 21 functions, which
confirms the promising role of inserting the randomness into AIW-PSO. The behavior of error through the
epochs show that the proposed manner can smoothly find proper minima in a timely manner without

encountering a premature convergence.
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1. Introduction

In the last two decades, the rate of employing meta-
heuristic search schemes in the optimization-based
applications has drastically increased. Since most
optimization problems do not have an exact
analytical solution, the demand for employing
heuristic search methods for optimizing model
parameters has drastically grown. Moreover, these
searching methods can be executed in the case of
accessing just a limited number of samples, while
the theoretical estimation methods require plenty of
samples to support the validity of the achieved
results.

The primary heuristic methods like Tabu search [1]
and simulated annealing [2, 3] are the single agent
search methods, while the newer heuristic methods
termed as meta-heuristic methods try to find the
extremum points by emitting a population of agents
in order to augment the exploration property over
the search space. As the amount of randomness in
creating a new generation has increased (e.g.

genetic algorithm (GA) [4, 5], the exploration
ability of the algorithm has been improved, while
the convergence rate has been significantly
diminished. In order to compromise between the
convergence rate and the searching ability, particle
swarm optimization (PSO) [6-9] has been
developed to create a population of particles, which
are randomly allocated to the search space, and
move each particle toward the sample with the
highest fitness (gbest), while considering its best
experience (pbest) in each epoch, thanks to PSO for
its fast exploitation in the search space, compared
to the known meta-heuristic methods like ant
colony optimization (ACO) and GA. The fast
convergence of PSO is the result of Ilow
randomness in the displacement of particles with a
constant velocity and the acceleration parameters
[10, 11]. Nonetheless, PSO suffers from a low
diversity among the particles, leading to diminish
its exploration capability, and is mostly
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encountered premature convergence, especially in
high-dimensional spaces. To increase the
randomness of particles” movement, it is
repeatedly tried to insert a chaotic factor to avoid a
premature convergence [12, 13]. Chaotic systems
are rule-based systems and their input-output
mathematical relations are accessible. The output
of chaotic systems behaves randomly, though they
obey certain analytical-based relations. This is
because describing the relation of these systems is
extremely sensitive to their initial conditions, and
also their input-output formula are mostly either a
3 order (or higher than 3) non-linear differential
equation or even can be a low-order time-varying
differential equation. In general, rendering long-
term prediction is impossible for chaotic systems,
while their outputs are predictable within short
intervals of time. The output of these systems is
limited between two values (hence, they are
stable), which makes them suitable for use as a
random factor to deteriorate the movement path of
particles to enhance their exploration ability.

In this regard, Hosseinpourfard et al. [14] have
proposed a chaotic particle swarm optimization
(CPSO) that employs a Lorenz system, Tent map,
and Henon map to generate random numbers used
in the update position formula of PSO. Their
experimental results have shown an improvement
in the optimization ability compared to the standard
PSO at the cost of a bit lower convergence. In
addition, CPSO has outperformed both standard
GA and chaotic GA (CGA) [15]. Moreover, this
randomness property has been repeatedly used for
image encryption [16]. It is, therefore, these
seemingly random sequence of numbers that can be
exactly regenerated in the receiver station and the
original image can be finely decoded. The chaotic-
based encryption techniques have obtained a high
level of robustness against brute-force and
statistical invasions.

Wang et al. [17] have used GA and PSO in
conjunction with a chaotic function to overcome
the premature convergence of PSO as well as weak
exploitation of GA. Their experimental results over
five classic benchmark functions have shown that
their proposed hybrid method significantly
outperforms the standard GA and PSO in terms of
global precision and convergence rate. Yang et
al. [18] have considered an improved logistic map
(double-bottom map) for PSO, called DBM-PSO,
to compromise between the exploration and
exploitation properties. Their experimental results
over 22 benchmark functions indicate that the
performance of DBM-PSO is significantly better
than the performance of other PSOs. Li et al. [19]
have proposed an effective chaos-based
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optimization algorithm (COA), yielding a much
higher performance than that of the simulated
annealing algorithm and chemotaxis algorithm.
Yang et al. [20] have introduced a hybrid chaos
optimization algorithm with artificial emotion
(HCOAAE) to avoid a premature convergence and
increase its exploration in a high-dimension space.
The main purpose of HCOAAE is to mimic the
decision-making behavior process of humans in
choosing the parameters of HCOAAE and decide
whether to change the current search strategy or not
(in the next iteration). Their experimental results
over 13 benchmark functions show that HCOAAE
significantly outperforms the state-of-the-art
methods in terms of the smooth convergence
behavior, computational  complexity, and
numerical stability. Dong et al. [21] have propose
an evolutionary circle detection method based on a
novel chaotic hybrid algorithm (CHA). Their
method combines the strengths of PSO, GA, and
chaotic dynamics. CHA adopts the standard
velocity and position update rules of PSOs with the
ideas of selection, cross-over, and mutation from
GA with the opposition-based learning for
population initialization. They demonstrated the
effectiveness of CHA in the circle detection
problems.

Alatas et al. [22] have proposed an improved PSO
method equipped with chaotic maps for its
parameter adaptation. After a few iterations, a new
set of chaotic numbers are generated to update the
parameters of PSO. They implemented twelve
chaos-embedded PSO methods and used eight
different chaotic maps to generate random numbers
and applied them to a benchmark of complex
functions. Inserting a high degree of randomness
improved their exploration as well as avoiding the
premature convergence.

Gao et al. [23] have introduced a new hybrid PSO,
which incorporates the Henon map mutation
operation (HPSO) to enhance the exploration
ability of PSO. Their new mutation strategy divides
the mutation operator into the global and local
mutation operators, enabling particles to move in
the search space with different step sizes. Their
comparison results imply the superiority of HPSO
over other hybrid PSO algorithms over all the 16
complex functions. Jia et al. [24] have introduced
a new mimetic PSO (CGPSO) by equipping the
standard PSO with a chaotic function and Gaussian
local search procedure. Using a chaotic local search
enables it to widely explore as well as avoid the
premature convergence. In addition, the solutions
are refined through Gaussian optimization. Their
results over thirteen benchmark functions show
that CGPSO is more effective, faster to converge,
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and less sensitive to the dimensions of the search
space in comparison with the other chaotic PSO
variants.

The contribution of this paper is to insert a chaotic
term in the updating formulas of AIW-PSO as well
as initialization of the particles in order to increase
its exploration property. In the early iterations of
the proposed scheme, the perturbation rate is high,
and the particles are moved according to the quasi-
random values that the chaotic functions generate.
As the iteration number is increased, the threshold
(perturbation rate) is decreased, and the movement
of particles obeys the AIW-PSO algorithm more.
In other words, at first, the random movements lead
to explore and scatter the particles in the search
space, and little by little (by increasing the number
of iterations), the exploitation capability of the
algorithm is increased. Preserving both the
exploration and exploitation capabilities is
impossible but in this manner, we increased the
diversity (exploration) at the first iterations of the
algorithm and then the particles were exploited
around a suitable local optima, though in a few
iterations the particles might move randomly.

The rest of this paper is structured as what follows.
Section 2 proposes the chaotic-based PSO method.
Sections 3 expresses the experimental results over
the benchmark of complex functions, and their pros
and cons are discussed. Finally, the paper is
concluded in Section 4.

2. Materials and methods

In this section, the benchmark of complex
functions [25-27] is expressed to assess the
proposed methods in finding the minimum values
for each function. Next, the standard PSO and
chaotic-based PSO are explained in detail.

2.1. Benchmark functions

In order to assess the proposed methods, a known
benchmark of complex functions [25-27] was
employed, which are described in tables 1, 2, and
3. Each one of these functions has several local
minima. Moreover, the global minimum (grand
truth) as well as the search range for each function
is provided.

2.2. Chaos theory

Chaotic systems [28] are rule-based and
deterministic systems that are mainly characterized
by time-varying or non-linear differential
equations. The output of these systems is highly
sensitive to their initial conditions in a way that by
changing a very small change in their values, the
behavior of their output signal is significantly
changed. Their output signals are irregular and
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behave like noise, and therefore, these outputs are
mainly used as a random signal generator. This
randomness can be inserted in the movement of
particles in PSO for diversing the population and
avoiding the premature convergence. In addition,
these irregular signals are repeatedly used for the
initialization of a diverse population [22]. What
follows is the description of three known chaotic
systems that have been formerly used for
improving different evolutionary algorithms [29].

2.2.1. Lorenz system

The Lorenz system [30] is one of the well-known
chaotic systems that are originally derived from a
model of the earth’s atmospheric convection flows
of heating and cooling from below and above,
respectively. This system is described by three
coupling differential equations:

E:é(Y*X)

L xp-2-y (1)
dz

E:xy—ﬂz

where, X, y and z are the state variables of the
system, t is the time, and &, g, pare the system

parameters. For the values of __,, ﬂ:g and p=28

the Lorenz system exhibits a chaotic behavior, as
shown in figure 1.

Figure 1. Chaotic behavior of the state variables of the
Lorenz system.

2.2.2. Henon map
The Henon map [31] is a simplified version of the
Poincare map of the Lorenz system. The Henon
map equations are described below:

)

{xml =1+y, —ax’
yn+1 = bXn

where, x and y are the state variables of this
system, and the parameters a and b can control the

behavior of the system. For the values of a=1.4

andb=0.3, the Henon map shows a chaotic
behavior, as shown in figure 2.

Figure 2. Chaotic behavior of the Henon map.
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Table 1. Unimodal test functions (D = 30 in this work).

Functions Range
D
fL(x)=> % [-100,1001°
i=1
D
f,(0 =2 % [-10,1901°
|Sl 5
f,00 =D x|+ [Ix] [-10,10]°
i=1 i=1
f,00=>..C %) [~100,100]°
i=1
f.(x) = (Zn: ix*) +rand[0,1] [-1.28,1.28]°
i=1
n—1
fo (x) = D [100(X? — %;,1)* + (% —1)°] [-5,101°
i=1
f,(x) = Z(in +%J)2 [-10,10]°
Table 2. Multimodal test functions (D = 30 in this work).
Functions Range
fy(x) = 0.1sin*(37x,) +Zn:((xi —1)? +sin*(37x, +1)* +((X, —1)*(L+sin*(27x,))) +Zn:u(xi,5,100, 4) [_5(), 50]D
f00 = X —xsin(JIX D [-500,500]°
f0(x) = 37 (¢ ~10cos(27x,)) +10) [-512,512]°
i=1
n X; | X [<0.5
(X)) = Z y? —10cos(2xzy;)) +10, v, { round (2x;) |x |=0.5 [—512,512]D
i=1 f i 1= -
f, (X) = —20exp(—0.2 /3—10 > x?) —exp( |:l> icos(szi ) +20+e [-32, 32]D
_i 3 2 = X; D
fa(x) = 2000 ; X 1:1[005(\/;) +1 [-600,600]
600 =8I (2,) + 3204~ 41080 (ry, + )"+ (9 170+ s’ 2y, ), y =142 [F1010]°
D 5
fis(X) = (Zicos(i +1)x, + i))(Zicos(i +1)X, +1i)) [_10,]_0]D
Table 3. Multimodal test functions with fix dimension.
Functions Range
2 -5<x, <10
51% , 5 1
fe(X) =(x, — yp=: X; +;x1 6)° +10(1 8ﬂ)cos(xi) +10 0< X, <15
_3 [, kb)) | e ep
fu(x)—é[ai bi2+bix3+xj [-5,5]
fo(X)=4x" —2.1x' + % + X, X, —4XZ +4X; [-5,5]
flo(X) = [L1+ (X + X, +1)?(19—14x, +3%7 —14X, +6X,X, +3%x2)]*[30+ (2%, —3%,)* *
2
(18—32x, +12x +48x, —36x%,X, +27x2)] [-5,5]
4 3
fzo(x) = _Z Ciexp(_z aij (Xj - pij)z) [0,1]3
i=1 i=1
5
f(x) = _Z [(X —&a)(X — ai)T + Ci]71 [0,10]4
i=1
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2.2.3. Tent map
The Tent map [32] is the simplest kind of 1D
chaotic dynamic mapping, which is described in

Eqg. (3):

for x, <

£6(X)
Xn+l = f/fxn) =
(A — %) for x, =

where, X is the state variable of the system, and for
1< 1 <2 , the system is in a chaotic state. Figure

3 shows the behavior of the chaotic Tent map.

3)

M

Figure 3. Chaotic behavior of the Tent map.

2.3. Particle swarm optimization (PSO)

At the beginning, PSO creates a population of
candidate solutions, which are so-called particles.
They are randomly generated, and each particle of
this population has a potential for being a proper
solution after some epochs. At each iteration, the
particles are optimized under two different criteria;
gbest and pbest, which, respectively, assess the
global and local fitness of each particle. The it"
particle is denoted as x, = (x,,, x,,,..., X, ) » Where

s is the dimension on the particles. The velocity
and position of each particle are updated according
to the following relations:
Vig =WV, +c, *rand Q> (py — Xg) +
¢, *rand Q> (Pgy — Xia)

(4)
(%)

where, d =1,2,...,s and w is the inertia weight.

Xig = Xjg + Vig

The two acceleration parameters ¢, and ¢,

represent the weight of the stochastic acceleration
terms that pull each particle toward the Pbest(p,, )

and gbest(p,,) Positions. Rand()and rand()

are two random functions in the range of [0,1] . The

velocity of each particle (v) is limited between
w,,, and w,_  that are defined by the user as the

input parameters that determine the step size of
each particle through the solution space.

2.4. Chaotic-based adaptive inertia weight PSO
(AIW-PSO)

AIW-PSO [33] uses the success rate of the whole
particles as a feedback parameter to control the
particles’ movement in the search space. The
inertia weight (w) is one of the PSO parameters,
which makes a balance between the exploration
and exploitation of the particles. AIW-PSO is
required to determine the situation (success rate in
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percentage) of the swarm at each epoch. A high
success rate indicates that the particles have
converged to a point that is far from the optimum
point, and the entire swarm slowly move toward
the optimum. In contrast, a low success rate shows
that the particles are oscillating around the
optimum without a significant improvement. The
success rate of the swarm is calculated as follows:

(6)

> s(id, t)
P(t) ="4=——
n
where, n is the number of particles, s(id,t) is the
number of particles that have had an improvement
in their fitness in the last iteration. Finally, the
inertia weight is updated as follows:

W(t) = (Wmax - Wmin)Ps (t) + Whin (7)
where, the range of the inertia weight
(Iw,,.,» W, ) is randomly selected within the
range of [0,1] .

In order to find the extremum points of complex
non-linear problems, similar to PSO, AIW-PSO
may lead to premature convergence [34, 35]. In
order to overcome this drawback, the three
mentioned chaos systems are employed to increase
the diversity among the initial population.

In addition, the perturbation stage is added, which
permits more exploration, traverse the search space
sufficiently, and decrease the chance of premature
convergence. In this work, the velocity of particles

is perturbed as follows:
V,y =W*v, +c¢, *rand () * NewP +c, *rand () * NewG

(8

NewP = {( Pig — Xg) rand(Q = r, (g)
randQ  otherwise

NewG = (Pga —Xiq) randQ=r, o)

rand ()
where, the perturbation rate, r_ , is decreased

otherwise

during the iterations. Figure 4 describes the
pseudo-code of the chaotic-based AIW-PSO.

3. Experimental results and discussion

In this work, the proposed chaotic AIW-PSO along
with AIW-PSO, chaotic PSO, and GA are applied
to 21 complex functions [36] (described in tables 1,
2, and 3). The proper values of parameters are
selected through the cross-validation phase. Table
4 illustrates the selected values of the parameters
for the AIW-PSO and GA methods. The results of
applying the compared methods to the functions
are presented in table 5. In order to evaluate the
chaotic AIW-PSO, three chaotic systems are
executed to generate the random sequences for
initializing the population of the standard and the
chaotic-based AIW-PSO methods.



Boostani et al. / Journal of Al and Data Mining, Vol 8, No 3, 2020.

Table 4. Values of the parameters for the chaotic
AIW-PSO and GA.

AIW-PSO GA
Parameter Value Parameter Value
Particles 20 Population size 20
Maximum 55000 Maximum 20000
iterations iterations
Vinin -0.15 Crossover rate 0.9
Vinax 0.15 Mutation rate 0.1
c 2
[ 2

The results obtained show that the chaotic-based
AIW-PSO (with Lorenz system) obtains the best
results among the other selected optimization
algorithms. In the Lorenz chaotic system, the
perturbation rate is initially set to 0.8 but in the
Henon and Tent maps, this parameter is initially set
to 0.3. Nonetheless, in all cases, this rate is linearly
decreased through successive iterations. For some
functions such as f;5(x), we have increased the
perturbation rate for improving the accuracy of the
optimization work. Our finding shows that this
function requires more exploration in comparison
with the other functions.

Initialize Particle {xid ,V,q } based onchaostheory
while (Iter < MaxGen & &Gbest < M ax fit){
for(every particlei){
Fitness(i) = statistical _ Evaluation(i);
if (fitness(i) > pbest(i)){
pbest(i) = fitness(i);
Pia = Xiq
}
if (fitness(i)Gbest){
Gbest = fitness(i);
gbest =1i;
}
}

for(every particlei){
for(every particled){

g — X rand() >r

Newp _ ] (P —%a) 0=r,
rand () otherwise

NEWwG — (Pga —Xia) rand ()-2 r,
rand () otherwise

Viy =W*v, +¢, *rand () * NewP +
¢, *rand () * NewG
Xig = Xig +Vig
}
}

Iter =iter +1;

+
Figure 4. Pseudo-code of the chaotic-based PSO
algorithm.

Our statistical evaluation using the Students’ T-test
show that there is a significant difference between
the results of the chaotic-based AIW-PSO (with
Lorenz system) and the other optimization
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algorithms in some of the functions. Figures 5, 6,
and 7 show the convergence of chaotic-based
AIW-PSO for three sample functions.

%10% fitness in each iteration

12

min fit

mean fit

fitness

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
iteration «10%

@)

fitness in each iteration

min fit

mean fit | 7|

0 O.‘Z O.‘A 0.‘6 0.‘8 1‘ 1.‘2 1.‘4 1.‘6 1.‘8 2
iteration x10%
(b)
Figure 5. Convergence of the chaotic-based AIW-PSO
with Lorenz system for two sample functions (a) f2 (b) fu1.

s 10° fitness in each iteration

min fit

mean fit | 4

iteration x10*

(@)

fitness in each iteration

min fit

mean fit | 7|

80
2 75 T
2

o

&

65

60 -

55

0 O.‘2 O.‘A 0.‘6 0.‘8 1‘ 1.‘2 1.‘4 1.‘6 1.‘8 2
iteration x10%
(b)
Figure 6. Convergence of the chaotic-based AIW-PSO
with Henon map for two sample functions (a) f2 (b) f11.
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Table 5. The mean and Std of the best solution of the GA, AIW-PSO, chaotic-based PSO, and chaotic-based AIW-PSO

methods over the complex functions.

Fu

AlW-

Chaotic-based

Chaotic-based

i GA oot PSO AIW-PSO
nction Lorenz Henon Tent Lorenz Henon Tent
. 0.0+ 0.00 + 016 + 015+ 015+ 000+ 000+ 0.00 +
filx 0.04 0.00 0.01 0.03 0.03 0.00 0.00 0.00
) 0.0+ 1.29e3 017+ 1.01e3 + 760.10 + 000+ 000+ 270.00 +
2(x 0.0 +523.76 0.02 795.01 560.13 0.00 0.00 188.86
w0 343+ 0.00 + 173+ 169+ 178+ 000+ 000+ 0.00 +
f3(x 2.44 0.00 0.12 0.17 0.09 0.00 0.00 0.00
e -222.98+ 0.00 + 250+ 229+ 246 + 000+ 000+ 0.00 +
4 21.38 0.00 0.57 0.49 0.34 0.00 0.00 0.00
w0 3.04+ 0.05 + 0.15 + 011+ 0.15 + 0.05 + 003+ 0.05 +
f5(x 0.91 0.04 0.04 0.03 0.04 0.04 0.02 0.06
@ 28.88 + 083+ 4117+ 52,62+ 51.01+ 385+ 238+ 442+
6 3435 1.67 3.36 20.16 10.81 2.52 2.72 243
£ 23.00+ 18.90 + 0.00 + 3190+ 1520+ 0.00+ 36.90 + 2430+
7 5.81 6.57 0.00 9.7 8.23 0.00 13.92 13.77
) 0.00 + 30.40 + 0.03+ 26.99 + 50.00 + 001+ 3222+ 4731+
8 0.00 5.50 0.00 6.63 1051 0.01 2.80 6.32
) -483.68+ -377.10 41898 + -418.98 + -418.98 + -418.98 + -418.98 + -418.98 +
o(x 66.12 +56.34 0.00 0.00 0.00 0.00 0.00 0.00
-3.253+ 0.00 + 0.00 + 0.00 + 0.03+ 0.00+ 0.00+ 0.00 +
f1o(®) 17.64 0.00 0.01 0.01 0.04 0.00 0.00 0.00
4427+ 3920+ 45.85+ 7461+ 58.83 + 20.80 + 76.92+ 3070+
12 () 14.42 13.71 1259 22,91 11.48 0.42 19.81 9.18
) 281+ 9.08 + 276+ 1811+ 9.24 + 2,66+ 1265+ 8.70 +
fra(x 0.74 1.8 0.44 0.19 181 0.24 0.24 1.30
@ 242+ 0.00 + 0.00 + 0.00 + 0.00 + 000+ 000+ 0.00 +
fis(x 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
» 2733+ 0.00 + 0.00 + 0.00 + 0.00 + 000+ 000+ 0.00 +
fra(x 25.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-3.023+ -186.73 1118+ 5.32e15 + 5.32e15 + 1118+ 5.32e15 5.32e15
f1s() 1.47¢3 +0.00 0.00 0.00 0.00 0.00 +0.00 +0.00
w -0.66 + 039+ 0.85 + 0.59 + 0.75 + 0.40 + 0.40 + 0.40 +
fre(x 5.11 0.00 0.49 0.21 0.33 0.00 0.00 0.00
® 0.00 + 0.01 + 0.01+ 001+ 0.01+ 000+ 000+ 0.00 +
frr(x 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
w .03+ .03+ .03+ .03+ .02+ .03+ .03+ .03+
frg(x 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
300+ 3.00+ 22.05+ 85,57 + 327+ 30.00 + 84.00 + 1110+
f1a09 0.00 0.00 13.12 128 0.23 0.00 0.00 25,61
) 388+ 388+ 384+ -3.86+ 385+ 3.88+ 3.88+ 388+
20 0.00 0.00 0.04 0.02 0.02 0.00 0.00 0.00
- 9.41 + 6.38 + 922+ 501+ 414+ -10.15 + 510+ 494+
far(x 2.36 3.39 0.39 0.06 2.40 0.00 0.00 2.66
fitness in each iteration fitness in each iteration
3000 T T T T T T 75 T T T T T T
min fit min fit
2500 mean fit ] 70 mean fit | |
65
2000
® ® 60 [
2 1500 8
2 E gl
1000
50 -
500 45 -
0 L L L L L L L L L 40 —
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
iteration x10% iteration x10%
(@) (b)

Figure 7. Convergence of the chaotic-based AIW-PSO with Tent map for two sample functions (a) f2 (b) f11.
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With a hard look over figures 5-7, we can come into
this conclusion that the Lorenz system can generate
sequences with more randomness, which enables
the proposed chaotic-based AIW-PSO to fall less
into the local extremums (premature convergence)
because this randomness increases its exploration
and exploitation capabilities. In addition, AIW-
PSO encodes the experience of all particles into the
inertia weight in each pace such that each particle
is being awarded about the status of the whole
particles and then moves chaotically in each epoch
accordingly. Hence, the proposed manner benefits
from a high degree of randomness to avoid
premature convergence while the particles share
their status. This leads to a fast and stable
convergence, where the error is smoothly
decreased through successive iterations. A closer
look at the convergence curves of the compared
methods over the benchmark functions provides
more insight into the behavior of the algorithms. As
one can see in figures 5-7, the learning curves of
the proposed methods on the optimization
benchmark imply a fast and smooth convergence
behavior compared to the counterparts.

In this work, we adopted two measures [37] for
determining the population diversity of different
PSO algorithms: population fitness standard
deviation and population position standard
deviation.

Population fitness standard deviation: If the

particles of a population S = (X, ..., X,..., X, ) at
generation 't get their fitness  value
(f,(®,..., fi(t),..., fy(t)), the population fitness

standard deviation of different PSO algorithms is
defined as:

STD ey = | 7 2RO~ TO)F (1)

where, f(t)= ZN: f(t).

Population position standard deviation: If the
particles of a population S = (X,,..., X;,..., Xy ) at
generation t get their positions
X, (), ..., X, (t),..., X, (t) , the population position

standard deviation for generation t can be
computed as:

stdev!) (t) = \/Ni_li(xij O-X1©)° @

where, X (t) = X, (t), X, (1), Xo 1), (D)

can be expressed as X (t) X @ (t)...X ®(t) and
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N
Y‘”(t)z%Z(Xi,-(t)' figure 8 shows the
i=1

diversity of populations for a randomly selected
function. As shown in this figure, the chaotic-based
PSO with Lorenz system has a more diversity
(more exploration) in comparison with the other
algorithms.
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Figure 8. (a) Population fitness standard deviation (b)
Population position standard deviation
for different algorithms.

The chaotic operators have been applied in order to
improve the performance of GA, ACO, and also
other evolutionary algorithms. Nonetheless, GA
has highly effective operators (cross-over and
mutation) to improve its exploration capacity, and
adding the chaotic operator does not highly affect
its performance. GA suffers from the exploitation
ability that the chaotic operators cannot help GA in
this regard. Furthermore, ACO obeys a
probabilistic function when an ant wants to choose
a path. Similar to PSO, the chaotic operators can
help both GA and ACO to diversitize their initial
population but to increase the randomness of GA
and ACO operators, the chaotic functions cannot
help them that much.

The PSO algorithm is naturally a continuous
optimization  algorithm;  consequently, the
proposed methods provided a significantly superior
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result in terms of finding extremum points over the
continuous functions in comparison with the GA
and ant colony optimization (ACO) algorithms.
Therefore, GA and ACO are naturally designed for
discrete optimization problems. In the employed
benchmark, there are two discrete functions, and as
we have expected, the PSO versions cannot
outperform GA on these cases, though the
proposed chaotic AIW-PSO provides better results
than that the other implemented PSO versions (see
Table 5).

4.Conclusion

In this paper, some chaotic-based PSO versions
equipped with the inertia weight strategy are
suggested as strong optimizers for continuous
optimization problems. The inertia weight depends
on the size of the particles and integrate the
experience of all particles as an auxiliary clue to
better guide the particles toward the extremum
points. In this strategy, each particle is awarded the
state of the particles in the search space by this
inertia weight (as a feedback parameter). In order
to avoid the premature convergence, the three
known chaotic systems (Lorenz system, Tent map,
and Henon map) are implemented to generate
guasi-random sequences to be inserted into the
updating position of particles. Among the chaotic
systems employed, sequences that are generated by
the Lorenz system have led to a better optimization
performance as well as producing a smoother
convergence behavior through a lesser number of
epochs, compared with AIW-PSO. The suggested
chaotic AIW-PSO can be considered as an
alternative scheme to solve a wide range of multi-
dimensional complex optimization problems,
especially for continuous problems.
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