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Abstract 

Among a variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) 

with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates 

the experience of the whole swarm into the movement of particles. Although the exploitation ability of this 

algorithm is great, it cannot comprehensively explore the search space and may be trapped in a local minimum 

through a limited number of iterations. To increase its diversity as well as enhance its exploration ability, this 

paper inserts a chaotic factor, generated by three chaotic systems, along with a perturbation stage into AIW-

PSO to avoid premature convergence, especially in complex non-linear problems. To assess the proposed 

method, a known optimization benchmark containing non-linear complex functions is selected and its results 

are compared with those of standard PSO, AIW-PSO, and genetic algorithm (GA). The empirical results 

demonstrate the superiority of the proposed chaotic AIW-PSO to the counterparts over 21 functions, which 

confirms the promising role of inserting the randomness into AIW-PSO. The behavior of error through the 

epochs show that the proposed manner can smoothly find proper minima in a timely manner without 

encountering a premature convergence.  
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1. Introduction 

In the last two decades, the rate of employing meta-

heuristic search schemes in the optimization-based 

applications has drastically increased. Since most 

optimization problems do not have an exact 

analytical solution, the demand for employing 

heuristic search methods for optimizing model 

parameters has drastically grown. Moreover, these 

searching methods can be executed in the case of 

accessing just a limited number of samples, while 

the theoretical estimation methods require plenty of 

samples to support the validity of the achieved 

results.  

The primary heuristic methods like Tabu search [1] 

and simulated annealing [2, 3] are the single agent 

search methods, while the newer heuristic methods 

termed as meta-heuristic methods try to find the 

extremum points by emitting a population of agents 

in order to augment the exploration property over 

the search space. As the amount of randomness in 

creating a new generation has increased (e.g. 

genetic algorithm (GA) [4, 5], the exploration 

ability of the algorithm has been improved, while 

the convergence rate has been significantly 

diminished. In order to compromise between the 

convergence rate and the searching ability, particle 

swarm optimization (PSO) [6-9] has been 

developed to create a population of particles, which 

are randomly allocated to the search space, and 

move each particle toward the sample with the 

highest fitness (gbest), while considering its best 

experience (pbest) in each epoch, thanks to PSO for 

its fast exploitation in the search space, compared 

to the known meta-heuristic methods like ant 

colony optimization (ACO) and GA. The fast 

convergence of PSO is the result of low 

randomness in the displacement of particles with a 

constant velocity and the acceleration parameters 

[10, 11]. Nonetheless, PSO suffers from a low 

diversity among the particles, leading to diminish 

its exploration capability, and is mostly 

http://dx.doi.org/10.22044/jadm.2018.6311.1746


Boostani et al. / Journal of AI and Data Mining, Vol 8, No 3, 2020. 
 

304 

 

encountered premature convergence, especially in 

high-dimensional spaces. To increase the 

randomness of particles’ movement, it is 

repeatedly tried to insert a chaotic factor to avoid a 

premature convergence [12, 13]. Chaotic systems 

are rule-based systems and their input-output 

mathematical relations are accessible. The output 

of chaotic systems behaves randomly, though they 

obey certain analytical-based relations. This is 

because describing the relation of these systems is 

extremely sensitive to their initial conditions, and 

also their input-output formula are mostly either a 

3rd order (or higher than 3) non-linear differential 

equation or even can be a low-order time-varying 

differential equation. In general, rendering long-

term prediction is impossible for chaotic systems, 

while their outputs are predictable within short 

intervals of time. The output of these systems is 

limited between two values (hence, they are 

stable), which makes them suitable for use as a 

random factor to deteriorate the movement path of 

particles to enhance their exploration ability.  

In this regard, Hosseinpourfard et al. [14] have 

proposed a chaotic particle swarm optimization 

(CPSO) that employs a Lorenz system, Tent map, 

and Henon map to generate random numbers used 

in the update position formula of PSO. Their 

experimental results have shown an improvement 

in the optimization ability compared to the standard 

PSO at the cost of a bit lower convergence. In 

addition, CPSO has outperformed both standard 

GA and chaotic GA (CGA) [15]. Moreover, this 

randomness property has been repeatedly used for 

image encryption [16]. It is, therefore, these 

seemingly random sequence of numbers that can be 

exactly regenerated in the receiver station and the 

original image can be finely decoded. The chaotic-

based encryption techniques have obtained a high 

level of robustness against brute-force and 

statistical invasions.   

Wang et al. [17] have used GA and PSO in 

conjunction with a chaotic function to overcome 

the premature convergence of PSO as well as weak 

exploitation of GA. Their experimental results over 

five classic benchmark functions have shown that 

their proposed hybrid method significantly 

outperforms the standard GA and PSO in terms of 

global precision and convergence rate. Yang et 

al. [18] have considered an improved logistic map 

(double-bottom map) for PSO, called DBM-PSO, 

to compromise between the exploration and 

exploitation properties. Their experimental results 

over 22 benchmark functions indicate that the 

performance of DBM-PSO is significantly better 

than the performance of other PSOs. Li et al. [19] 

have proposed an effective chaos-based 

optimization algorithm (COA), yielding a much 

higher performance than that of the simulated 

annealing algorithm and chemotaxis algorithm.  

Yang et al. [20] have introduced a hybrid chaos 

optimization algorithm with artificial emotion 

(HCOAAE) to avoid a premature convergence and 

increase its exploration in a high-dimension space. 

The main purpose of HCOAAE is to mimic the 

decision-making behavior process of humans in 

choosing the parameters of HCOAAE and decide 

whether to change the current search strategy or not 

(in the next iteration). Their experimental results 

over 13 benchmark functions show that HCOAAE 

significantly outperforms the state-of-the-art 

methods in terms of the smooth convergence 

behavior, computational complexity, and 

numerical stability. Dong et al. [21] have propose 

an evolutionary circle detection method based on a 

novel chaotic hybrid algorithm (CHA). Their 

method combines the strengths of PSO, GA, and 

chaotic dynamics. CHA adopts the standard 

velocity and position update rules of PSOs with the 

ideas of selection, cross-over, and mutation from 

GA with the opposition-based learning for 

population initialization. They demonstrated the 

effectiveness of CHA in the circle detection 

problems.  

Alatas et al. [22] have proposed an improved PSO 

method equipped with chaotic maps for its 

parameter adaptation. After a few iterations, a new 

set of chaotic numbers are generated to update the 

parameters of PSO. They implemented twelve 

chaos-embedded PSO methods and used eight 

different chaotic maps to generate random numbers 

and applied them to a benchmark of complex 

functions. Inserting a high degree of randomness 

improved their exploration as well as avoiding the 

premature convergence.  

Gao et al. [23] have introduced a new hybrid PSO, 

which incorporates the Henon map mutation 

operation (HPSO) to enhance the exploration 

ability of PSO. Their new mutation strategy divides 

the mutation operator into the global and local 

mutation operators, enabling particles to move in 

the search space with different step sizes. Their 

comparison results imply the superiority of HPSO 

over other hybrid PSO algorithms over all the 16 

complex functions. Jia et al. [24] have introduced 

a new mimetic PSO (CGPSO) by equipping the 

standard PSO with a chaotic function and Gaussian 

local search procedure. Using a chaotic local search 

enables it to widely explore as well as avoid the 

premature convergence. In addition, the solutions 

are refined through Gaussian optimization. Their 

results over thirteen benchmark functions show 

that CGPSO is more effective, faster to converge, 
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and less sensitive to the dimensions of the search 

space in comparison with the other chaotic PSO 

variants. 

The contribution of this paper is to insert a chaotic 

term in the updating formulas of AIW-PSO as well 

as initialization of the particles in order to increase 

its exploration property. In the early iterations of 

the proposed scheme, the perturbation rate is high, 

and the particles are moved according to the quasi-

random values that the chaotic functions generate. 

As the iteration number is increased, the threshold 

(perturbation rate) is decreased, and the movement 

of particles obeys the AIW-PSO algorithm more. 

In other words, at first, the random movements lead 

to explore and scatter the particles in the search 

space, and little by little (by increasing the number 

of iterations), the exploitation capability of the 

algorithm is increased. Preserving both the 

exploration and exploitation capabilities is 

impossible but in this manner, we increased the 

diversity (exploration) at the first iterations of the 

algorithm and then the particles were exploited 

around a suitable local optima, though in a few 

iterations the particles might move randomly.  

The rest of this paper is structured as what follows. 

Section 2 proposes the chaotic-based PSO method. 

Sections 3 expresses the experimental results over 

the benchmark of complex functions, and their pros 

and cons are discussed. Finally, the paper is 

concluded in Section 4. 

 

2. Materials and methods 

In this section, the benchmark of complex 

functions [25-27] is expressed to assess the 

proposed methods in finding the minimum values 

for each function. Next, the standard PSO and 

chaotic-based PSO are explained in detail.  

 

2.1. Benchmark functions 

In order to assess the proposed methods, a known 

benchmark of complex functions [25-27] was 

employed, which are described in tables 1, 2, and 

3. Each one of these functions has several local 

minima. Moreover, the global minimum (grand 

truth) as well as the search range for each function 

is provided.  

 

2.2. Chaos theory 

Chaotic systems [28] are rule-based and 

deterministic systems that are mainly characterized 

by time-varying or non-linear differential 

equations. The output of these systems is highly 

sensitive to their initial conditions in a way that by 

changing a very small change in their values, the 

behavior of their output signal is significantly 

changed. Their output signals are irregular and 

behave like noise, and therefore, these outputs are 

mainly used as a random signal generator. This 

randomness can be inserted in the movement of 

particles in PSO for diversing the population and 

avoiding the premature convergence. In addition, 

these irregular signals are repeatedly used for the 

initialization of a diverse population [22]. What 

follows is the description of three known chaotic 

systems that have been formerly used for 

improving different evolutionary algorithms [29]. 

 

2.2.1. Lorenz system  
The Lorenz system [30] is one of the well-known 

chaotic systems that are originally derived from a 

model of the earth’s atmospheric convection flows 

of heating and cooling from below and above, 

respectively. This system is described by three 

coupling differential equations: 

( )

( )

dx
y x

dt

dy
x z y

dt

dz
xy z

dt







 

  

 

 

(1) 

where, x, y and z are the state variables of the 

system, t is the time, and , ,   are the system 

parameters. For the values of 8
10, 28

3
and    

the Lorenz system exhibits a chaotic behavior, as 

shown in figure 1.  

 

Figure 1. Chaotic behavior of the state variables of the 

Lorenz system. 

 

2.2.2. Henon map 

The Henon map [31] is a simplified version of the 

Poincare map of the Lorenz system. The Henon 

map equations are described below: 
2

1

1

1n n n

n n

x y ax

y bx





   



 

(2) 

where, 𝑥 and 𝑦 are the state variables of this 

system, and the parameters a and b can control the 

behavior of the system. For the values of 1.4a   

and 0.3b  , the Henon map shows a chaotic 

behavior, as shown in figure 2. 

 
Figure 2. Chaotic behavior of the Henon map. 
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Table 1. Unimodal test functions (D = 30 in this work). 
Functions Range 

2

1

1

( )
D

i

i

f x x


  [ 100,100]D  

2

2

1

( )
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i

i

f x x

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3

1 1

( )
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i i

i i

f x x x
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4 1
1
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i

D

ji
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f x x
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1
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i

i
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2 2 2

6 1

1
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
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Table 2. Multimodal test functions (D = 30 in this work). 
Functions Range 

2 2 2 2 2 2

8 1 1

1 1
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Table 3. Multimodal test functions with fix dimension. 
Functions Range 

2
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2.2.3. Tent map 

The Tent map [32] is the simplest kind of 1D 

chaotic dynamic mapping, which is described in 

Eq. (3): 

( )

1

1
( )

2

1
(1 )

2

n

n n
x

n

n n

x for x

x f

x for x










  
  


 

 

(3) 

where, x is the state variable of the system, and for 

1 2   , the system is in a chaotic state. Figure 

3 shows the behavior of the chaotic Tent map. 

Figure 3. Chaotic behavior of the Tent map. 

 

2.3. Particle swarm optimization (PSO) 

At the beginning, PSO creates a population of 

candidate solutions, which are so-called particles. 

They are randomly generated, and each particle of 

this population has a potential for being a proper 

solution after some epochs. At each iteration, the 

particles are optimized under two different criteria; 

𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡, which, respectively, assess the 

global and local fitness of each particle. The 𝑖𝑡ℎ 

particle is denoted as
1 2( , ,..., )i i i isX x x x , where 

𝑠 is the dimension on the particles. The velocity 

and position of each particle are updated according 

to the following relations: 

1

2

* * ()*( )

* ()*( )

id id id id

gd id

v w v c rand p x

c rand p x

   



 
(4) 

id id idx x v    (5) 

where, 1,2,...,d s  and 𝑤 is the inertia weight. 

The two acceleration parameters 1c  and 2c  

represent the weight of the stochastic acceleration 

terms that pull each particle toward the ( )idPbest p  

and ( )gdgbest p  positions. ()Rand and ()rand

are two random functions in the range of [0,1] . The 

velocity of each particle (v) is limited between 

minw  and 
maxw  that are defined by the user as the 

input parameters that determine the step size of 

each particle through the solution space.   

 

2.4. Chaotic-based adaptive inertia weight PSO 

(AIW-PSO) 

AIW-PSO [33] uses the success rate of the whole 

particles as a feedback parameter to control the 

particles’ movement in the search space. The 

inertia weight (w) is one of the PSO parameters, 

which makes a balance between the exploration 

and exploitation of the particles. AIW-PSO is 

required to determine the situation (success rate in 

percentage) of the swarm at each epoch. A high 

success rate indicates that the particles have 

converged to a point that is far from the optimum 

point, and the entire swarm slowly move toward 

the optimum. In contrast, a low success rate shows 

that the particles are oscillating around the 

optimum without a significant improvement. The 

success rate of the swarm is calculated as follows: 

1

( , )

( )

n

id
s

s id t

P t
n




 (6) 

where, 𝑛 is the number of particles, ( , )s id t  is the 

number of particles that have had an improvement 

in their fitness in the last iteration. Finally, the 

inertia weight is updated as follows: 

max min min( ) ( ) ( )sw t w w P t w    (7) 

where, the range of the inertia weight 

min max([ , ])w w  is randomly selected within the 

range of[0,1] .  

In order to find the extremum points of complex 

non-linear problems, similar to PSO, AIW-PSO 

may lead to premature convergence [34, 35]. In 

order to overcome this drawback, the three 

mentioned chaos systems are employed to increase 

the diversity among the initial population.  

In addition, the perturbation stage is added, which 

permits more exploration, traverse the search space 

sufficiently, and decrease the chance of premature 

convergence. In this work, the velocity of particles 

is perturbed as follows: 
1 2* * ()* * ()*id idv w v c rand NewP c rand NewG  

 
(8) 

( ) ()

()

id id pp x rand r
NewP

rand otherwise

 
 


 
(9) 

( ) ()

()

gd id pp x rand r
NewG

rand otherwise

 
 


 
(10) 

where, the perturbation rate, 
pr , is decreased 

during the iterations. Figure 4 describes the 

pseudo-code of the chaotic-based AIW-PSO. 
 

3. Experimental results and discussion 

In this work, the proposed chaotic AIW-PSO along 

with AIW-PSO, chaotic PSO, and GA are applied 

to 21 complex functions [36] (described in tables 1, 

2, and 3). The proper values of parameters are 

selected through the cross-validation phase. Table 

4 illustrates the selected values of the parameters 

for the AIW-PSO and GA methods.  The results of 

applying the compared methods to the functions 

are presented in table 5. In order to evaluate the 

chaotic AIW-PSO, three chaotic systems are 

executed to generate the random sequences for 

initializing the population of the standard and the 

chaotic-based AIW-PSO methods. 
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Table 4. Values of the parameters for the chaotic 

AIW-PSO and GA. 
AIW-PSO GA 

Parameter Value Parameter  Value 

Particles 20 Population size 20 

Maximum 
iterations 

20000 
Maximum  
iterations 

20000 

𝑉𝑚𝑖𝑛 -0.15 Crossover rate 0.9 

𝑉𝑚𝑎𝑥 0.15 Mutation rate 0.1 

𝑐1 2   

𝑐2 2   

The results obtained show that the chaotic-based 

AIW-PSO (with Lorenz system) obtains the best 

results among the other selected optimization 

algorithms. In the Lorenz chaotic system, the 

perturbation rate is initially set to 0.8 but in the 

Henon and Tent maps, this parameter is initially set 

to 0.3. Nonetheless, in all cases, this rate is linearly 

decreased through successive iterations. For some 

functions such as 𝑓15(𝑥), we have increased the 

perturbation rate for improving the accuracy of the 

optimization work. Our finding shows that this 

function requires more exploration in comparison 

with the other functions. 

 

 ,

( & & ax ){

( ){

( ) _ ( );

( ( ) ( )){

( ) ( );

}

( ( )

id id

id id
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 









1

2

){

( );

;

}

}

( ){
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( ) ()

()

( ) ()

()

* * ()*

* ()*

id id p

gd id p

id id

id id

est

Gbest fitness i

gbest i

for every particle i

for every particle d

p x rand r
NewP

rand otherwise

p x rand r
NewG

rand otherwise

v w v c rand NewP

c rand NewG

x x





 
 


 
 


  



}

}

1;

}

idv

Iter iter



 

 

Figure 4. Pseudo-code of the chaotic-based PSO 

algorithm. 
 

Our statistical evaluation using the Students’ T-test 

show that there is a significant difference between 

the results of the chaotic-based AIW-PSO (with 

Lorenz system) and the other optimization 

algorithms in some of the functions. Figures 5, 6, 

and 7 show the convergence of chaotic-based 

AIW-PSO for three sample functions. 
 

 
(a) 

 
(b) 

Figure 5. Convergence of the chaotic-based AIW-PSO 

with Lorenz system for two sample functions (a) f2 (b) f11. 

 

 
(a) 

 
(b) 

Figure 6. Convergence of the chaotic-based AIW-PSO 

with Henon map for two sample functions (a) f2 (b) f11. 
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Table 5. The mean and Std of the best solution of the GA, AIW-PSO, chaotic-based PSO, and chaotic-based AIW-PSO 

methods over the complex functions. 

Fu

nction 
GA 

AIW-

PSO 

Chaotic-based 

PSO 

Chaotic-based 

AIW-PSO 

Lorenz Henon Tent Lorenz Henon Tent 

𝑓1(𝑥) 
0.0± 
0.04 

0.00 ± 
0.00 

0.16 ± 
0.01 

0.15 ± 
0.03 

0.15 ± 
0.03 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

𝑓2(𝑥) 
0.0± 

0.0 

1.29e3 

± 523.76 

0.17 ± 

0.02 

1.01e3 ± 

795.01 

760.10 ± 

560.13 

0.00 ± 

0.00 

0.00 ± 

0.00 

270.00 ± 

188.86 

𝑓3(𝑥) 
-3.43 ± 

2.44 

0.00 ± 

0.00 

1.73 ± 

0.12 

1.69 ± 

0.17 

1.78 ± 

0.09 

0.00 ± 

0.00 

0.00 ± 

0.00 

0.00 ± 

0.00 

𝑓4(𝑥) 
-222.98± 

21.38 

0.00 ± 

0.00 

2.50 ± 

0.57 

2.29 ± 

0.49 

2.46 ± 

0.34 

0.00 ± 

0.00 

0.00 ± 

0.00 

0.00 ± 

0.00 

𝑓5(𝑥) 
3.04± 

0.91 

0.05 ± 

0.04 

0.15 ± 

0.04 

0.11 ± 

0.03 

0.15 ± 

0.04 

0.05 ± 

0.04 

0.03 ± 

0.02 

0.05 ± 

0.06 

𝑓6(𝑥) 
28.88 ± 

34.35 

0.83 ± 

1.67 

41.17 ± 

3.36 

52.62 ± 

20.16 

51.01 ± 

19.81 

3.85 ± 

2.52 

2.38 ± 

2.72 

4.42 ± 

2.43 

𝑓7(𝑥) 
23.00 ± 

5.81 
18.90 ± 

6.57 
0.00 ± 
0.00 

31.90 ± 
9.77 

15.20 ± 
8.23 

0.00 ± 
0.00 

36.90 ± 
13.92 

24.30 ± 
13.77 

𝑓8(𝑥) 
0.00 ± 
0.00 

30.40 ± 
5.50 

0.03 ± 
0.00 

26.99 ± 
6.63 

50.09 ± 
10.51 

0.01 ± 
0.01 

32.22 ± 
2.80 

47.31 ± 
6.32 

𝑓9(𝑥) 
-483.68± 

66.12 

-377.10 

± 56.34 

-418.98 ± 

0.00 

-418.98 ± 

0.00 

-418.98 ± 

0.00 

-418.98 ± 

0.00 

-418.98 ± 

0.00 

-418.98 ± 

0.00 

𝑓10(𝑥) 
-3.25e3± 

17.64 

0.00 ± 

0.00 

0.00 ± 

0.01 

0.00 ± 

0.01 

0.03 ± 

0.04 

0.00 ± 

0.00 

0.00 ± 

0.00 

0.00 ± 

0.00 

𝑓11(𝑥) 
44.27 ± 

14.42 

39.20 ± 

13.71 

45.85 ± 

12.59 

74.61 ± 

22.91 

58.83 ± 

11.48 

29.80 ± 

0.42 

76.92 ± 

19.81 

39.70 ± 

9.18 

𝑓12(𝑥) 
2.81 ± 

0.74 

9.08 ± 

1.28 

2.76 ± 

0.44 

18.11 ± 

0.19 

9.24 ± 

1.81 

2.66 ± 

0.24 

12.65 ± 

0.24 

8.70 ± 

1.30 

𝑓13(𝑥) 
2.42 ± 
4.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

𝑓14(𝑥) 
27.33 ± 
25.42 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

𝑓15(𝑥) 
-3.02e3± 

1.47e3 

-186.73 

± 0.00 

11.18 ± 

0.00 

5.32e15 ± 

0.00 

5.32e15 ± 

0.00 

11.18 ± 

0.00 

5.32e15 

± 0.00 

5.32e15 

± 0.00 

𝑓16(𝑥) 
-0.66 ± 

5.11 

0.39 ± 

0.00 

0.85 ± 

0.49 

0.59 ± 

0.21 

0.75 ± 

0.33 

0.40 ± 

0.00 

0.40 ± 

0.00 

0.40 ± 

0.00 

𝑓17(𝑥) 
0.00 ± 

0.00 

0.01 ± 

0.01 

0.01 ± 

0.00 

0.01 ± 

0.00 

0.01 ± 

0.01 

0.00 ± 

0.00 

0.00 ± 

0.00 

0.00 ± 

0.00 

𝑓18(𝑥) 
-1.03 ± 

0.00 

-1.03 ± 

0.00 

-1.03 ± 

0.00 

-1.03 ± 

0.00 

-1.02 ± 

0.01 

-1.03 ± 

0.00 

-1.03 ± 

0.00 

-1.03 ± 

0.00 

𝑓19(𝑥) 
3.00 ± 

0.00 
3.00 ± 
0.00 

22.05 ± 
13.12 

85.57 ± 
1.28 

3.27 ± 
0.23 

30.00 ± 
0.00 

84.00 ± 
0.00 

11.10 ± 
25.61 

𝑓20(𝑥) 
-3.88 ± 
0.00 

-3.88 ± 
0.00 

-3.84 ± 
0.04 

-3.86± 
0.02 

-3.85 ± 
0.02 

-3.88 ± 
0.00 

-3.88 ± 
0.00 

-3.88 ± 
0.00 

𝑓21(𝑥) 
-9.41 ± 

2.36 

-6.38 ± 

3.39 

-9.22 ± 

0.39 

-5.01 ± 

0.06 

-4.14 ± 

2.40 

-10.15 ± 

0.00 

-5.10 ± 

0.00 

-4.94 ± 

2.66 

 

 
(a) 

 
(b) 

Figure 7. Convergence of the chaotic-based AIW-PSO with Tent map for two sample functions (a) f2 (b) f11. 
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With a hard look over figures 5-7, we can come into 

this conclusion that the Lorenz system can generate 

sequences with more randomness, which enables 

the proposed chaotic-based AIW-PSO to fall less 

into the local extremums (premature convergence) 

because this randomness increases its exploration 

and exploitation capabilities. In addition, AIW-

PSO encodes the experience of all particles into the 

inertia weight in each pace such that each particle 

is being awarded about the status of the whole 

particles and then moves chaotically in each epoch 

accordingly. Hence, the proposed manner benefits 

from a high degree of randomness to avoid 

premature convergence while the particles share 

their status. This leads to a fast and stable 

convergence, where the error is smoothly 

decreased through successive iterations. A closer 

look at the convergence curves of the compared 

methods over the benchmark functions provides 

more insight into the behavior of the algorithms. As 

one can see in figures 5-7, the learning curves of 

the proposed methods on the optimization 

benchmark imply a fast and smooth convergence 

behavior compared to the counterparts.  

In this work, we adopted two measures [37] for 

determining the population diversity of different 

PSO algorithms: population fitness standard 

deviation and population position standard 

deviation.  

Population fitness standard deviation: If the 

particles of a population 1( ,..., ,..., )i NS X X X  at 

generation t get their fitness value 

1( ( ),..., ( ),..., ( ))i Nf t f t f t , the population fitness 

standard deviation of different PSO algorithms is 

defined as:  

2

( )

1

1
( ( ) ( ))

1

N

fitness t i

i

STD f t f t
N 

 

  (11) 

where,  
1

( ) ( )
N

i

i

f t f t


 .     

Population position standard deviation: If the 

particles of a population 1( ,..., ,..., )i NS X X X at 

generation t get their positions 

1( ),..., ( ),..., ( )i NX t X t X t , the population position 

standard deviation for generation t can be 

computed as: 

( ) 2

1

1
( ) ( ( ) ( ))

1

N
j j

ij

i

s t X t X t
N

tdev


 

  (12) 

 

where, 1 2( ) ( ), ( ),..., ( )i i i iDX t X t X t X t , 𝑋̅(𝑡) 

can be expressed as 
(1) (2) ( )( ) ( )... ( )DX t X t X t  and 

( )

1

1
( ) ( ( )

N
j

ij

i

X t X t
N 

  , figure 8 shows the 

diversity of populations for a randomly selected 

function. As shown in this figure, the chaotic-based 

PSO with Lorenz system has a more diversity 

(more exploration) in comparison with the other 

algorithms. 

 

 
(a) 

 
(b) 

Figure 8. (a) Population fitness standard deviation (b) 

Population position standard deviation 

for different algorithms. 

 

The chaotic operators have been applied in order to 

improve the performance of GA, ACO, and also 

other evolutionary algorithms. Nonetheless, GA 

has highly effective operators (cross-over and 

mutation) to improve its exploration capacity, and 

adding the chaotic operator does not highly affect 

its performance. GA suffers from the exploitation 

ability that the chaotic operators cannot help GA in 

this regard. Furthermore, ACO obeys a 

probabilistic function when an ant wants to choose 

a path. Similar to PSO, the chaotic operators can 

help both GA and ACO to diversitize their initial 

population but to increase the randomness of GA 

and ACO operators, the chaotic functions cannot 

help them that much. 

The PSO algorithm is naturally a continuous 

optimization algorithm; consequently, the 

proposed methods provided a significantly superior 
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result in terms of finding extremum points over the 

continuous functions in comparison with the GA 

and ant colony optimization (ACO) algorithms. 

Therefore, GA and ACO are naturally designed for 

discrete optimization problems. In the employed 

benchmark, there are two discrete functions, and as 

we have expected, the PSO versions cannot 

outperform GA on these cases, though the 

proposed chaotic AIW-PSO provides better results 

than that the other implemented PSO versions (see 

Table 5).  

 

4.Conclusion 

In this paper, some chaotic-based PSO versions 

equipped with the inertia weight strategy are 

suggested as strong optimizers for continuous 

optimization problems. The inertia weight depends 

on the size of the particles and integrate the 

experience of all particles as an auxiliary clue to 

better guide the particles toward the extremum 

points. In this strategy, each particle is awarded the 

state of the particles in the search space by this 

inertia weight (as a feedback parameter). In order 

to avoid the premature convergence, the three 

known chaotic systems (Lorenz system, Tent map, 

and Henon map) are implemented to generate 

quasi-random sequences to be inserted into the 

updating position of particles. Among the chaotic 

systems employed, sequences that are generated by 

the Lorenz system have led to a better optimization 

performance as well as producing a smoother 

convergence behavior through a lesser number of 

epochs, compared with AIW-PSO. The suggested 

chaotic AIW-PSO can be considered as an 

alternative scheme to solve a wide range of multi-

dimensional complex optimization problems, 

especially for continuous problems.   
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نرسی تطبیق شونده در سازی ازدحام ذرات آشوبگون با ایاستفاده از الگوریتم بهینه

  سازیمسائل بهینه

 

 3ملیحه ثابتی و ،*2رضا بوستانی، 1ندا مبارکی 

 .ایران شیراز، آپادانا، عالی آموزش موسسه کامپیوتر، مهندسی گروه 1

 .ایران شیراز، شیراز، دانشگاه کامپیوتر، و برق مهندسی دانشکده ،مهندسی کامپیوتر و فناوری اطلاعات گروه2

  .ایران تهران، اسلامی، آزاد دانشگاه شمال، تهران واحد کامپیوتر، مهندسی گروه3

 15/04/2020 پذیرش؛ 22/02/2020 بازنگری؛ 18/06/2019 ارسال

 چکیده:

را  ( AIW)با وزن اینرسی تطبیق شونده  ( PSO)سازی ازدحام ذرات  مبتنی بر جمعیت، الگوریتم بهینه های جستجوی فرا ابتکاری میان انواع الگوریتمدر 

لایی دارد اما    الگوریتم توانایی باکند. اگرچه این را با حرکت ذرات جابجا می جمعیت سازی کارایی در نظر گرفت که تجربه کل توان بعنوان ابزار بهینهمی

شود. در این          این الگوریتم نمی ست پس از تعداد محدودی تکرار در حداقل محلی گرفتار  ضای جستجو را به صورت جامع جستجو کند و ممکن ا تواند ف

شاف ذرات در  شوبگون ب    AIW-PSO مطالعه برای افزایش تنوع و همچنین افزایش توانایی اکت سه تابع آ سپس اعمال   ، از  رای مقدار دهی اولیه ذرات و 

، بی روش پیشنهادی شود. برای ارزیا توابع پیچیده غیرخطی استفاده می  اغتشاش در ذرات در حین جستجو برای جلوگیری از همگرایی زودرس بویژه در  

شده    از توابع بهینه شناخته  شده و نتایج آن با     سازی  ستفاده  شامل توابع پیچیده غیرخطی ا ستاندارد ای  و   AIW-PSO، الگوریتم PSOنتایج الگوریتم ا

سه  (GA) الگوریتم ژنتیک  ست. نتایج تجربی این مطالعه   مقای شنهادی    21بر روی بیش از  شده ا شان از برتری روش پی سبت به     AIW-PSO تابع ن ن

دهد که روش پیشنهادی فتار ذرات نشان میکند. تحلیل ررا تأیید می AIW-PSO مهمتایان دارد که تاثیر مثبت افزایش تصادفی بودن ذرات در الگوریت

 .تواند بدون مشکل همگرایی زودرس، مینیمم مناسب را پیدا کندمی

 .، تصادفی، تئوری آشوبگون، تجربه ذرات، نرخ همگراییPSO-AIW الگوریتم :کلمات کلیدی

 


