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Abstract

Due to the existing interactions among the variables of a multiple input-multiple output (MIMO) non-linear
system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary Kiln
(CRK) is a MIMO non-linear system in the cement factory with a complicated mechanism and uncertain
disturbances. The identification of CRK is very important for different purposes such as prediction, fault
detection, and control. In the previous works, CRK was identified after decomposing it into several multiple
input-single output (MISO) systems. In this work, for the first time, the rough-neural network (R-NN) is
utilized for the identification of CRK without the usage of MISO structures. R-NN is a neural structure
designed on the basis of the rough set theory to deal with the uncertainty and vagueness. In addition, a
stochastic gradient descent learning algorithm is proposed for training R-NNs. The simulation results show the
effectiveness of the proposed methodology.

Keywords: Cement Rotary Kiln, Rough-Neural Network, Stochastic Gradient Descent Learning, System

Identification, Uncertainty.

1. Introduction

Multiple input-multiple output (MIMO) non-linear
systems have some interactions among their
outputs. Therefore, the identification and control of
these systems are difficult tasks [1]. In the presence
of noises, which commonly exist in all of the real
systems, these problems are crucial. Recently, the
problem of identifying and controlling the MIMO
systems have received much attention [1,2,3]. Due
to the aforementioned problems, using the multiple
input-single output (MISO) structures is not
suitable for these problems [11].

Cement rotary kiln (CRK) is the central part of the
cement factory that produces the cement clinker
from the input materials. Due to the inherent
complexities, the automation problem of CRK has
remained unsolved, and therefore, most CRKSs are
under the control of human operators [5]. In this
situation, achieving the desired product quality
with an optimized cost is hard. In order to cope with
these complexities, one approach is the design of
intelligent controllers on the basis of human-

machine interactions. In order to design these
controllers, the identification of CRK is necessary.
In the literature, some attempts have been made for
the identification of CRK. Some dynamic and
thermal models are given for CRK in [6] and [7],
respectively. Sadeghian and Fatehi have used a
locally linear neuro-fuzzy technique for the
identification of CRK [8]. Noshirvani et al. have
used the multilayer perceptron (MLP), and
Makaremi et al. have used a locally linear neuro-
fuzzy technique for this purpose [9]. Sharifi et al.
have used the hierarchical wavelet TS-type fuzzy
inference system [10]. Ahmadi and Teshnehlab
have used the sinusoidal rough-neural network
(SR-NN) for the identification of CRK [11].
Recently, Moradkhani and Teshnehlab have used
the Takagi-Sugeno neuro-fuzzy system for the
identification of CRK in a noisy condition [12]. In
these works, CRK is decomposed into some MISO
systems, and then the identification is done. This
approach has some drawbacks in achieving an
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appropriate model. Due to the existing interactions
among the outputs of CRK, these models are
usually far from the real system, and this can affect
the performances of the controllers and other tasks
such as fault detection and prediction that are done
on the basis of this model.

On the other hand, the undeniable noises and
uncertainties in the real systems that are originated
from the environment or measurement instruments,
influence the collected data for the identification.
This can affect the reliability of the produced
models. For this reason, during the last years, there
have been some attempts to cope with the
uncertainties. In this context, some successful
theories such as fuzzy sets and rough sets have
appeared. In the context of neural networks,
Lingras has proposed the rough-neural network (R-
NN) on the basis of the rough set theory to cope
with the uncertainties [13]. In the recent years, R-
NNSs have been applied to solve different problems
such as the traffic volume prediction [13], image
classification [14], medical diagnostic support
system [15], system identification [11,16,17],
social networks [18], machine translation [19],
interval data classification [20], and forecasting
travel behavior [21].

Recently, SR-NN has been used for the
identification of discrete dynamic non-linear
systems, and as an example, CRK has been
identified by the usage of four MISO systems
corresponding to the system outputs [11]. In [11],
SR-NN has been trained by a Lyapunov stability
theory-based (LST-B) learning algorithm. In that
approach, the learning laws are derived such that
we have Av,, < 0 without using the gradient of v,
where vy, is the cost function [11,17,22].

In this work, to increase the reliability of the
models and to deal with the uncertainties and
noises, R-NN was used for the identification of
CRK without decomposing it into the MISO
structures. To the best of our knowledge, CRK is
identified in this manner for the first time. Due to
the existing interactions among the variables of the
MIMO system, the reliability of the constructed
model would be increased. In addition, a learning
algorithm on the basis of stochastic gradient
descent (SGD) is proposed for training R-NN, and
it is proved that the identification error converges
to zero. SGD is a powerful learning algorithm with
a good convergence speed. It is usually able to
escape local minima due to its random behavior
[23].

In the SGD-based learning algorithm, the gradients
of loss function are used to derive the learning
laws. In this algorithm, the examples are randomly
presented to the neural network one by one and in
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each step and the parameters are updated. In the
LST-B learning algorithm that has been proposed
in [11], the terms containing the second order of
differences of parameters are ignored; in this work,
they were considered in the mathematical
computations with fewer words. Therefore, the
stability proof of SGD is stronger than the stability
proof of LST-B.

The organization of this paper is as what follows.
In Section 2, the structure of R-NN is described. A
SGD-based algorithm for training R-NN is
proposed in Section 3. The error convergence is
proved in Section 4. In Section 5, CRK is identified
by R-NNs. Finally, the conclusions are drawn in
Section 6.

2. Rough-neural network (R-NN)

R-NN has a great ability in dealing with noises and
uncertainties. In this structure, the uncertainty is
modeled as an interval (the lower and upper bounds
are the inputs of the neural network) and the rough
neuron is defined as a pair of conventional neurons,
where the information is exchanged among them.
R-NN is very flexible in comparison with the
interval neural networks [24].

Consider the R-NN with n rough neurons in the
hidden layer and g conventional neurons in the
output layer, as shown in figure 1. Let y be the
output vector of R-NN and x = [x; x; 1] be the
input vector of R-NN, where x and X are the
vectors of the lower and upper bounds of inputs,
respectively, and 1 is the input for the biases of
hidden neurons. Suppose that V, V, W, and W are
the parameters between all inputs and hidden lower
bound neurons, and the parameters between all
inputs and hidden upper bound neurons, the
parameters between the hidden lower bound
neurons and output neurons, and the parameters
between the hidden upper bound neurons and
output neurons, respectively. In addition, let O and

0 be the outputs of lower and upper bound hidden
neurons, respectively, and ¢ be the activation
function of the hidden neurons.

Then the output vector y of R-NN is given by [11]:

y=Wwo+wo

= Wmin (9, a) + Wmax (Q, E) (D)
where, ¢ = ¢(Vx) and ¢ = ¢(Vx). To achieve an
algebraic description of 0 and 0, the vectors § and
6 are introduced such that:

— —1 _n
Q:(gl,...’gn)’gz(g o, 8 ) (2)
8,5 = 00r1,6/ +5 =1,j=1,-,n (3)
§j£j+5]$] ng’al S5]9j+§f$] 4
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In (4), 91' denotes the jth component of ¢, and 51

denotes the jth component of ¢. According to (2)-
(4), we have:

min (¢, ) = diag(®)¢ + diag(®)$
max (¢, $) = diag(3)¢ + diag(8)$

(®)
(6)

I

v

Then  with introducing C = Wdiag($) +
Wdiag(6), D = Wdiag(5) + Wdiag(s), and
using (1), (5), and (6), we have

9=C¢+D¢ 7

Figure 1. Structure of R-NN.

3. Stochastic gradient descent learning
Stochastic gradient descent (SGD) is a powerful
on-line learning algorithm for neural networks. In
SGD, the examples are randomly presented to the
neural network one-by-one, and after the
presentation of each example, the parameters are
updated. SGD is a fast learning algorithm for large
datasets, and due to the random behavior, it is
commonly able to escape local minima [22,25]. In
this section, a SGD learning algorithm is proposed
for R-NN.

Suppose that {(x;,y;),i = 1,2,---,N} be a set of
input-output examples that are randomly presented
into the neural network one by one. Lete; = y; —
9; be the error of the i-th observed data. We can
define the energy function for R-NN as follows

(using (7)):

N
JQ, WY,V = min )" J(W;, W, Vi V1)
i=1
=min; L, e 1> (®)
Then we have:
Ji = I(W, WV, V))

1
=5 Il e; II2
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A daptrre laws f :

1
=5 Iy =3 I1?

1 = 2
=51y = Cidi =D, |

4 _
=y — Cipi —Dip; II?

1 —\T —
=3 (}’i —Cipi — Di¢i) (Yi —Ci¢i — Di¢i)
1 — 1
= EYiT}’i —¥{ Cipi — y{ Dip; + EQiCiTCi@
_ T _
+£iclTDi¢i + E(piDiTDi(pi (9)

where ¢; = ¢(V;x;) and ¢, = dp(Vixy).

Remark 1. For the arbitrary matrices A,,, and
Brx1, We have AB = BTAT. Therefore, if we
suppose that A = y! and B = C;¢;, then we have
yfci@- = (Cl-gi)Tyi. This relation has been used
in (9).

Using (5), we have:
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dJ; 9C; ~ 0J; 0D;

i _ 0 9C | 0Ji OD;

oW,  ac;0W; = 0D; oW,
= (—yip] + Ciud] + Digp, 9] ) diag(8)"
T —__T T _
+(~yi; +Didb; + Ciid; ) diag(8)"
= (—J’i +Ci¢; + D@i) $i diag(8)"
+ (—}’i + D, + Cifi) Efdiag(&)T
= —e; (diag(8)g + diag(3)%,)
— T
= —e; (min(¢:,6,)) (10)

Using (6) and similar to these relations, we have:

;—% = —e; (max(@, Ei))T (11)
In addition, we have:
Z—IJ, = (¢'D"Clyxl + (¢'DTel Ciix]
+(¢'D)"C D x]
= —(¢'DTer (—yi + D, + (,’l-@) x!
=—(¢'D"Clex] (12)

where ¢'; = diag(¢’(V;x;)), and similar to these
relations,

d i o
5r = —(@)"D] eix] (13)
where ¢'; = diag(¢'(V;x;)).
From (10)-(13), we can conclude that:
— T

AW; = —Tye; (min(g;, $,)) (14)

— — T
AW, = ~Tye; (max(¢y, 6,)) (15)
AV; = —T3(¢')"Cl x| (16)
AV; = —Ty(¢') D] eix] (17)

where the matrices I';, I, I3, and T, are the learning
gains.

4. Error convergence
Assume that R-NN can model the system output y;

using the ideal parameters C,,D,,V,, and V,:

yi = C.o(Vux;) + Dp(V.x;) (18)
Using the Taylor’s expansion for the terms in (18),
we have:

Vi = Cipi + Cipy + Cid"iVix; + Ry

+D;¢,Dip, + Did':Vix; + R, (19)
where R, and R, are the Taylor’s series reminders,
and:
éi = C* - Ciiﬁi = D* _Di
V=V.-V,V;=V.-V, (20)
Then the neural network error can be computed as
follows:

e; =y — Cip; — Dy,
= Cii + C9'Vix; + Dy, + D' Vix; + & (21)
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where {; = R, + R,, which is supposed to be
bounded.

Theorem 1. Suppose that the parameters of R-NN
are adjusted according to (14)-(17), and:

2¢[ ;< 2= Pllell (22)
where T, T, T3, and T, are the positive definite
matrices, and

B = Amax(rl)’{l + Amax(FZ)KZ + Amax(FS)KS

FAmax (T K4 (23)
K; = max || min (ﬂi'ai) 12 (24)
K, = max || max(@,@i) & (25)
K3 = max || C;p'; 171 x; II? (26)
Kk, = max || D;¢"; 121l x; II? (27)

Then the error e; converges to zero as i tends to

infinity.

Proof. Consider the following Lyapunov function:
~ ~ =T —

v = w(WT'W,) + tr (Wl- rz-lwl-)

~ ~ =T ~
+tr(VTT5Y) + tr (Vl- r;lvl-)

where W, = W, — W;, W; = W, — W,. At first, we

notice that:

(W I Wiy ) — oW T W)

= tr((W; + AW) T (W, + AW)) — te(W] T W)

= (W' T W) + (AW T W) + tr(WT T AW
+tr(AW T AW, — tr(W T W)

= 2tr(W' TP AW;) + (AW T AW,) (28)

Similar to (26), the other terms of Av; can be

simplified. Therefore, we have:

Av; = vipq —v;

=T =
= 2t (W T 1AW,) + 2tr (Wl- I‘z‘lAWi)
~ . =T =
+2tr(VT T AV, + 2tr (Vl- r;lAV,-)
=T =
(AW TAAW,) + tr (AWL- I‘z‘lAWi)
_ _ =T =
+tr(AVT5 1AV, + tr <AVi r;lAVi)
= —2tr (@Teimin(ii, ai)T)
T _
—2tr (Wl- e;max(g;, ¢l.)T>
_ ~T _
—2tr (Z’T(QIL')TCireixiT) —2tr (Vi (d)’i)TDiTeixiT)
+tr (min(@, ai)eiTFleimin(@, ai)T)
+tr (max(@, ai)eiTerimax(@, ai)T)
+tr (xieiTCiﬂlirs(ﬂ'i)TCiTeix”
+tr(x;e/ D' T4 (¢') D] esx])
— =T —
= —2tr (mrmin(@-, del +W;max(d, ¢,)el

7 i =T Y
+VT (@' ) C xie] +V; (¢ i)TDTxieiT)
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+e/Tye;min(¢;, @) min(¢;, ;)
+e/ Le;max(¢y, ;) 'max(¢y, ¢,)
+e Ci¢'iT3(9' ) Cl ex! x;
+e! D" i Ta(¢') D] epx] x; .
= —2tr(ee]) + 2tr(Gie]) + e/ Tye; || min(¢y, ¢,) II?
+elTye; |l max(gi,ai) 112
+e/ Cip'iT5(9')Cle; Il x; I7
+e/ D" iTu (') D e; Il x; I?
< -2lle >+ 2e¢
+Amax(T1) I &; 171l min(g;, ¢,) II?
+Amax(T2) Il e; 171l max(¢y, ,) I°
FAmax (T3) Il €] €' 171 x; 117
+Amax (T) Il ] D" 121 2, 117
=-21 € ”2+ 2eiTZi + (Amax(rl)Kl + Amax(FZ)KZ
+Amax(l—‘3)K3 + Amax(l—‘z})’cz}) I €; "2
= (B —2) Il e; 1>+ 2¢{q; (29)
According to (22), we have: Av; < 0. As a result,
the sequence (v;) is decreasing and bounded
below. Therefore, (v;) is convergent:

limv; = v, < 0 (30)
L—00
According to (27), we have:
0<2=-BXZ llell* —2X20 /¢
= — Xizo Av;
= Vg — Ve < © (31)

Thus (e;) € 1%, and according to the Barbalat’s
lemma in discrete case, we have [26]:
limei =0

i—oo

(32)

Remark 2. Since the Lyapunov function v; is
positive definite, the learning gains Iy, T, I3, and
I, are necessarily some positive definite matrices.
In this work, they are chosen empirically for the
simulations.

Remark 3. In contrast to the recent paper [11], the
proposed stability proof of SGD in the training of
R-NN, is stronger than the stability proof of LST-
B. In [11], the terms containing the second order of
differences of parameters are ignored, where as in
this work, they are considered in the mathematical
computations with fewer words.

5. Identification of Cement Rotary Kiln

The discussed algorithm in the previous section
was utilized for modeling of the complex MIMO
non-linear system CRK. The schematic
representation of cement rotary kiln is shown in
figure 2. The identification process is done on the
sensory data gathered from the Saveh white cement
factory during several weeks. This system contains
five inputs and four outputs that are shown in table
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1. The outputs of CRK for some seconds are shown
in figure 3.
In this work, the behavior of CRK is modeled using
the non-linear auto-regressive with exogenous
input (NARX):

yi =
f(Uics Vi Ty Vi Vi Vies Vig)  (39)
where, u; € R> represent the inputs of CRK,
vy, ER* (I=i—1,i—2,i— 3) represent the
lower and upper bounds of the outputs of CRK for
each minutes, respectively, and y; € R* represents
the model output, and f represents the non-linear
function characterized by the model. The orders of
lags in 31 are chosen empirically.
Here, the available data is gathered for each second
where the smallest time constant is three minutes.
According to the results in [1], the resampling time
would be one minute. In this work, to increase the
usage of the available data and to cope with the
uncertainties and noises, for each minute, the
minimum and maximum values of the inputs and
outputs are used to achieve some intervals for use

in the rough-neural identifiers.
co

|

+—1D. Fan Spead

+— Pre-heater Temprature

Fotary Kiln

_rl'll

I

Back-end Temprature T HH

Kiln Speed Cement Clinker

Figure 2. Schematic representation of CRK.

Before the usage of the available data in the
identification, they are filtered by a Butterworth
filter of order three with a cut-off frequency of
0.025. In modeling CRK, all the inputs and outputs
of the system are available, and therefore, the
supervised learning can be employed. The behavior
of this dynamic non-linear system can be identified
using a series-parallel model.

Table 1. The input and output variables of CRK.

Input variables Output variables

Material feed Kiln Amper (KA)

Fuel feed CO content (CO)
Kiln speed Pre-heater temperature (Pre)
ID fan speed Back-end temperature (BE)

Air pressure

The identification of CRK is done by MLP,
sinusoidal neural networks (SNN), rough MLP
(RMLP), and SR-NN, where the activation
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function of the hidden neurons of MLP and RMLP
is a hyperbolic tangent and the activation function
of the hidden neurons in SNN and SR-NN is
sinusoidal. These models are trained by LST-B,
which has been proposed in [11], and SGD, which
is proposed in this work. The datasets of sizes 8000
and 1000 are used for training and testing,
respectively.

=T,
s
0 2 4 6
Time (Seconds) <104
1000
z
~ e00
800
0 2 4 6
Time (Seconds) < 10%

BE

The initial values of the weights V and V are the
uniformly distributed pseudorandom numbers
between -0.05 and 0.05. The initial values of the
pseudorandom numbers between -0.5 and 0.5. The
weights W and W are the uniformly distributed
design parameters of the proposed algorithm for
SNN and MLP were chosen as follow:

I, =T, = 4001,0x10, 400131531, = 19,31 (34)

0.6
0.4
0.2
0

0 2 4 6

Time (Seconds) . qp4
820
800
780
760

0 2 4 6

Time (Seconds) . 4p*

Figure 3. Outputs of CRK for seconds (collected data).

Table 2. Normalized MSE of MLP, SNN, RMLP, and SR-NN in the identification of CRK. n; denotes the number of hidden
(rough) neurons.

Model Learning n, Para.  Train MSE Test MSE
MLP LST-B 19 418 0.0063 0.0014
MLP LST-B 31 682 0.0035 8.8(-4)
SNN LST-B 19 418 0.0062 0.0014
SNN LST-B 31 682 0.0035 8.8(-4)
RMLP LST-B 6 408 0.0062 6.0(-4)
RMLP LST-B 10 680 0.0046 6.9(-4)
SR-NN LST-B 6 408 0.0060 5.5(-4)
SR-NN LST-B 10 680 0.0045 7.2(-4)
MLP SGD 19 418 0.0067 8.0(-4)
MLP SGD 31 682 0.0036 4.4(-4)
SNN SGD 19 418 0.0066 7.7(-4)
SNN SGD 31 682 0.0036 4.4(-4)
RMLP SGD 6 408 0.0071 3.7(-4)
RMLP SGD 10 680 0.0050 2.5(-4)
SR-NN SGD 6 408 0.0068 3.2(-4)
SR-NN SGD 10 680 0.0049 2.4(-4)

422



Ahmadi & Teshnehlab/ Journal of Al and Data Mining, Vol 8, No 3, 2020.

and the design parameters of the proposed
algorithm for SR-NN and RMLP were chosen as
follow:

Iy =T, = I3 =T, = 400/5x,400119x10

n, = 6,10 (35)
where n;, for MLP and SNN denotes the number of
hidden neurons, and for RMLP and SR-NN,
denotes the number of hidden rough neurons. The
number of hidden (rough) neurons are chosen such
that the number of adjustable parameters of the
models is equal or near to each other.

—— Actual
—— Estimated

&80

a5

KA

800 850 900 850

0.35

0.3

0

0.25

800 850 900 950

900
880
860
840
820

Pre

800 950

850

800

805

800

BE

795

790

800 850 900

Time (Minutes)

950

The normalized MSEs of MLP, SNN, RMLP, and
SR-NN in the identification of CRK are listed in
table 2, and for a better illustration, the actual
outputs of CRK, the estimated outputs, and the test
MSEs of SGD-based MLP with nineteen hidden
neurons and SGD-based RMLP with six hidden
rough neurons are shown in figures 4 and 5,
respectively. The column "Para." in table 2 shows
the number of parameters in the model.

e
5

!
0 \/_\WJ\/\/\
=5 . . . .
2000 400 600 800
0.05
2 sl W
-0.05 * ! * *
200 400 600 800
20
g o J\/\/\/\“WW
20 ' ' ' '
200 400 600 800
5
& o /W%
-9
200 400 600 800

Time (Minutes)

Figure 4. Actual and estimated outputs and errors of the outputs of CRK in the identification by SGD-based MLP.

The following results can be concluded from table
2:

* By paying attention to the number of
parameters, the rough-neural models with six and
ten hidden rough neurons are comparable with the
conventional models with nineteen and thirty-one
hidden neurons, respectively. Therefore, the test
MSEs of RMLP and SR-NN are less than MLP and
SNN.
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* The test MSEs of models with SGD learning
are less than their test MSEs when they are trained
by LST-B.

* Since the examples are randomly presented to
the neural network in SGD, the train MSEs of
models with SGD learning are a bit more than their
train MSEs when they are trained by LST-B.
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* With increase in the number of hidden (rough)
neurons, the MSEs of SGD-based models are
decreased.

» The MSEs of SNN and SR-NN are a bit less
than MLP and RMLP, respectively, and therefore,
the behavior of CRK may be periodic.

6. Conclusion

In this work, the uncertain complex MIMO non-
linear system CRK was identified using the SGD-
based R-NNs. Unlike the previous works, this was
done without the usage of the MISO systems. Due
to the existing interactions among the variables of

—— Actual
—— Estimated

60

KA

a5

800 850 900 950

0.35

< 03
&

0.25

800 850 800 950

900 | |
880
860
840
820

Pre

800

900

950

805

800

BE

795

790

800 850 800

Time (Minutes)

950

-t
S0 A e VNS
-5 . . . .
200 400 600 BOOD
0.05

o

CRK and the ability of R-NN in dealing with
uncertainties, a more reliable model was obtained.
The proposed SGD learning algorithm was fast for
large datasets and it could usually escape local
minima. The error convergence to zero was proved
and the efficiency of the proposed method was
shown. Our future work focuses on designing the
rough-neural controllers for CRK, and to increase
the efficiency, we try to combine the proposed
methodology with the other efficient approaches
such as fuzzy systems and extreme learning
machines.

S R

D\/W\/v\mp

-0.05 * * * *
200 400 600 800
20
SINVTTINA WV
=20
200 400 600 800
5
E 0 MLVW\/
-5
200 400 600 800

Time (Minutes)

Figure 5. Actual and estimated outputs and errors of the outputs of CRK in the identification by SGD-based RMLP.
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