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Abstract 

Determination of the hydraulic jump characteristics can play a crucial role to design an optimized stilling 

basin or other facilities at downstream of the hydraulic jump. In other words, the length of hydraulic jump is 

one the most important parameters involved to obtain the length of the structures. In contrast, the artificial 

intelligence techniques have been extensively applied to simulate various hydraulic problems such as 

hydraulic jump features. In this work, the length of hydraulic jump on sloping rough beds was predicted 

using the Gene Expression Programming (GEP) model for the first time because the GEP model could 

provide an explicit equation to estimate the target function. The Monte Carlo simulations were used to 

enhance the capability of the GEP model. In addition, k-fold cross-validation was employed in order to 

verify the results of the GEP model. In order to determine the length of hydraulic jump, five different GEP 

models were introduced using the input parameters. Then by analyzing the GEP model results, the superior 

model was presented. For the superior model, the correlation coefficient, mean absolute percentage error, 

and root mean square error were computed to be 0.901, 11.517, and 1.664, respectively. According to the 

sensitivity analysis, the Froude number at upstream of hydraulic jump was identified as the most important 

parameter to model the length of hydraulic jump. Furthermore, the Partial Derivative Sensitivity Analysis 

(PDSA) was performed. For instance, PDSA was calculated as positive for all the input variables. 

 

Keywords: Length of Hydraulic Jump, Sloping Rough Bed, Sensitivity Analysis, Gene Expression Program, 

Partial Derivative Sensitivity Analysis. 

1. Introduction 

Hydraulic jumps are usually accompanied by the 

turbulence and rapid transformation of flow 

regime from subcritical to supercritical. This 

phenomenon occurs at the downstream of the 

structures such as slide gates, perpendicular weirs 

or ogee spillways. Generally, beds with hydraulic 

jump occurring on them are sloping and rough. 

On the other hand, determination of the hydraulic 

jump length (Lj) is necessary for a precise design 

of the structures such as detention ponds. In figure 

1, the schematic representation of hydraulic jump 

on the bed is illustrated. 

Due to the importance of hydraulic jump, many 

experimental, analytical, and numerical studies 

have been carried out on this phenomenon by 

various researchers. 

 
Figure 1. Schematic representation of hydraulic jump 

formation on rough sloping beds 

 

For example, Rajaratnam [1] was one of the first 

ones who investigated the hydraulic jump 

behavior on rough beds. He showed that the 

presence of the rough bed had a significant impact 

on the hydraulic jump length reduction. Hughes 

and Flack [2] have conducted an experimental 

study regarding the hydraulic jump occurrence on 

rough beds. The analysis of their results showed 
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that the reduction of the hydraulic jump length 

depended on the upstream Froude number and the 

roughness height of the bed. Also Mohammed Ali 

[3], by conducting an experimental study, has 

investigated the effects of roughness in the 

rectangular form on the hydraulic jump 

characteristics. The range of the Froude number in 

his study varied from 4 to 10. He concluded that 

the applied roughness decreased the hydraulic 

jump length down to 27-67%. After that, Ead and 

Rajaratnam [4] have conducted an experimental 

study on the behavior of the hydraulic jump on 

rough beds with labyrinth roughness. In their 

study, the range of the upstream Froude number 

varied from 4 to 10. Ead and Rajaratnam [4] have 

investigated the hydraulic jump characteristics for 

three relative roughness conditions including 0.25, 

0.43, and 0.5, and proved that the length of the 

hydraulic jump on the rough bed was half the 

hydraulic jump length on the smooth bed. Carollo 

et al. [5] have studied the hydraulic jump in 

rectangular canals for rough and smooth beds 

though an experimental research work. By 

analyzing the results of their study, they proposed 

a relationship for calculating the roller length on 

rough beds. Elsebaie and Shabayek [6] have also 

carried out an experimental study by the range of 

Froude number between 3 and 7.5 on five types of 

rough beds including sine, triangular, trapezoid 

with two different rectangular slopes. Their results 

indicated the hydraulic jump reduction on rough 

beds compared to smooth beds. Ahmed et al. [7] 

have experimentally investigated the effects of 

rough beds on the hydraulic jump characteristics. 

They suggested a relationship in terms of the flow 

Froude number for calculating the roller length. 

Nissi and Shafaee Bajestan [8], by conducting an 

experimental study for Froude numbers between 

4.9 and 12.4, have examined the effects of 

rhombus roughness on the behavior of hydraulic 

jumps occurring in detention ponds. By analyzing 

the mentioned model results, they showed that the 

rough bed decreased hydraulic jump length down 

to 41%.  

In the recent decades, the various artificial 

intelligence methods have been broadly used for 

modeling complex engineering phenomena. Also 

several studies have been carried out on the 

application of artificial intelligence techniques for 

modeling different problems [9-14]. Omid et al. 

[15] have modeled the hydraulic jump 

characteristics such as the jump length and the 

sequent depth ratio in rectangular channels using 

the artificial neural network. Naseri and Othman 

[16], using the artificial neural network (ANN), 

have evaluated the hydraulic jump characteristics 

in rectangular channels. They modeled the 

hydraulic jump length for the Froude number 

range between 1.7 and 19.5. Karbasi and 

Azamathulla [17] have modeled the sequent depth 

ratio and the roller length of the hydraulic jump 

on rough beds using the gene expression 

programming model. They compared the 

mentioned model results with ANN and support 

vector regression and showed that the gene 

expression programming model simulated the 

hydraulic jump characteristics with a higher 

accuracy.  

Regarding the literature, the soft computing 

techniques and artificial intelligence methods 

have been used to estimate the hydraulic jump 

because these tools are inexpensive, accurate, and 

fast. Besides, the length of hydraulic jump is 

utilized to determine the optimized length of the 

stilling basin at downstream of the hydraulic 

jump. Indeed, natural channels and hydraulic 

structures have sloping rough beds. However, a 

vast majority of the conducted studies on 

hydraulic jump have a smooth bed with an 

insignificant slope. Moreover, the length of 

hydraulic jump is an important parameter 

involved to estimate the length of the stilling 

basins or other hydraulic structures. Thus in the 

current work, the length of hydraulic jump in a 

sloping rough channel was simulated using the 

gene expression programming models, and then 

an explicit equation was presented to estimate this 

parameter. 

Therefore, further investigations should be 

conducted on modeling the length of hydraulic 

jumps occurring on rough sloping beds. In this 

work, using the gene expression programming 

(GEP), the hydraulic jump length in a rectangular 

channel with a rough sloping bed was modeled for 

the first time.  

Furthermore, this model is a robust tool that can 

simulate different problems. Additionally, the 

model provides an explicit equation to estimate 

the target function (length of hydraulic jump). For 

introducing the superior GEP model and 

identification of the parameter effective on the 

hydraulic jump length, five GEP models are 

defined. Then the superior model is identified by 

analyzing the results of the mentioned models, 

and a relationship is provided for computing the 

length of hydraulic jumps occurring on rough 

beds. Finally, the influence of each input 

parameter on the objective function (hydraulic 

jump length) is examined using the sensitivity 

analysis. 
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2. Methods and Materials 

2.1. Gene Expression Programming (GEP) 

There are numerous artificial intelligence methods 

and soft computing tools to simulate the hydraulic 

problems like the hydraulic jump on the sloping 

rough beds. It is worth noticing that GEP owns 

many advantages. For instance, it is quite accurate 

and fast, and can simulate linear and non-linear 

issues. In addition, this model can provide an 

explicit equation to calculate the length of 

hydraulic jump in the sloping rough flumes. 

GEP is an evolutionary artificial intelligence 

method provided for the first time by Ferreira 

[18]. The basic difference between GEP, the 

genetic algorithm (GA), and the genetic 

programming is in the nature of the individuals. In 

GA, the individuals are as strings with fixed 

lengths (chromosomes), and in genetic 

programming, the individuals have different 

shapes and sizes (decomposition tree). However, 

in GEP, the individuals are as linear strings with 

fixed lengths (chromosomes) that express a non-

linear nature and various sizes. In fact, GEP uses 

the advantages of both GA and genetic 

programming simultaneously. GEP employs the 

chromosomes and expression trees that are 

provided as programs. The chromosomes are 

usually a combination of genes with the same 

size, and the programs provide coded genetic data 

in chromosomes [13]. GEP is a 

phenotype/genotype system whose genotype and 

phenotype are completely separate from each 

other. In this method, linear chromosomes and 

expression trees represent phenotype and 

genotype, respectively [12]. The process of data 

decoding from chromosomes to expression trees, 

known as "translation", consists of a set of rules. 

These rules are related to the organization of 

functions and terminals in expression trees, and 

indicate the connection between different sub-

expression trees (Sub-ETs). In order to create 

chromosomes and genes, the terminal set (TS) and 

the function set (FS) should be defined. FS 

consists of various signs such as FS = {+, -, ×, /, 

√}. TS is composed of different components that 

represent different variables and fixed values (for 

example {a, b, c, 0, 1, 2}). Genes used in GEP 

contain two types of different information. The 

first type includes the data that is used to provide 

the GEP model and is stored in the head, while the 

second type consists of the terminals that are 

stored in the tail and employed for generating the 

next models. The length of genes in GEP is 

calculated by the following formula: 
1)1(  nhhthl             (1) 

where l is the gene length, h is the head, t is the 

tail, and n is the number of arguments in a 

mathematical function that has the highest number 

of arguments. Figure 2 illustrates a sample of the 

organized GEP model. 

 
Figure 2. Chromosomes related to a GEP model. 

 

FS should be determined for each non-linear 

problem (Table 1). FS is the evolutionary nature 

in the GEP model and so allows unlimited 

changes in a gene or among different genes in a 

chromosome. Firstly, GEP creates a random 

distribution of functions and terminals in the 

chromosome genes regarding the problem of 

interest. The initial individuals generated 

randomly are called “parents”. These parents are 

produced to create an off-spring using the genetic 

operators. In order to create a new off-spring 

adapted with the environment and more chance to 

survive, each individual benefits from its genetic 

information. In the evolutionary process of a 

function, the natural selection procedure is based 

on the fitness of the relationships related to an off-

spring producing less error. Hence, GEP benefits 

from an evolutionary process to reach the best off-

spring without an evolution stop in the next 

generations. If the fitness function used in this 

study is considered as the root relative squared 

error (RRSE), the fitness function related to the 

ith program is calculated as follows: 

i
i RRSE1

1000
f

+
=               (2) 

 

By considering the fact that the RRSEi value can 

be zero to infinity, the value of the fitness function 

is placed on the domain of 0 to 100. The RRSEi 

fitness function is calculated by the following 

equation: 
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where, Pij is the value predicted by the jth 

program for the ith fitness, Oi is the observed 

value, O is the average of the observed values, 

and n is the number of samples. It should be stated 

that the key parameters used in the current work 

were adjusted by a trial-and-error procedure to 

find the most optimized values. In table 1, the 

optimized values of the key parameters related to 

the GEP model were tabulated. 

 
Table 1. Optimized values of key parameters related to 

the GEP model. 

 

Parameters Setting 

P1 Number of generations 250000 

P2 Number of chromosomes 200 
P3 Number of genes 6 

P4 Head size 4 

P5 Linking function Addition 
P6 Type of fitness function RRSE 

P7 Mutation rate 0.01 

P8 Inversion rate 0.05 
P9 IS Transporition 0.05 

P10 Ris Transporition 0.05 

P11 One-point recombination rate 0.35 
P12 Two-point recombination rate 0.35 

P13 Gene recombination rate 0.2 

P14 Gene transportation rate 0.2 

P15 Function set 

+, -, ×, /, x2, sqrt, 

Pow, Log, Exp, 

sin, Atan 

2.2. Experimental Model 

It should be stated that natural channels and 

hydraulic structures own sloping rough beds. In 

contrast, most of the studies related to the 

hydraulic jump have been implemented on the 

smooth bed with trivial slop. Also the length of 

hydraulic jump is a significant variable to 

calculate the length of stilling basins or other 

structures. Therefore, in the current work, the 

length of hydraulic jump in a sloping rough 

channel is estimated. To do this, the experimental 

measurements obtained by Kumar et al. [19] are 

employed. The experimental model is composed 

of a rectangular channel in which the experiments 

are conducted in three slopes including 0.000463, 

0.00986, and 0.01552. The length and width of the 

rectangular channel are 8 m and 0.6 m, 

respectively. The rough bed is created by means 

of stone materials for four different roughness 

conditions with the average diameters (d50) of 

0.00398 m, 0.0056 m, 0.007 m, and 0.011 m. 

Kumar et al. [19] have measured the values for 

the flow rate (Q), bed slope (S0), bed roughness 

height (Ks), and flow depth at the hydraulic jump 

upstream (h1) and the hydraulic jump length (Lj). 

The maximum, minimum, average, variance, and 

standard deviation of the experimental parameters 

are listed in table 2. 

 

 
Table 2. The minimum, maximum, variance, and standard deviation of the experimental parameters measured by Kumar et 

al. [19]. 

 Q S0 Ks h1 h2 Lj 

Maximum 0.072 0.016 0.011 0.087 0.344 0.9 
Minimum 0.034 0.005 0.002 0.03 0.026 0.3 

Average 0.057 0.009 0.006 0.053 0.262 0.638 

Variance 8.98×10-5 3.79×10-5 9.09×10-6 0.0002 0.002 0.017 
Standard deviation 0.009 0.006 0.003 0.012 0.044 0.129 

 
 

2.3. Hydraulic Jump Length on Sloping Rough 

Bed 

Different researchers such as Hager et al. [20], 

Ead S. & Rajaratnam [1], and Carollo et al. [5] 

have assumed that the length of the hydraulic 

jump is a function of the parameters such as the 

flow Froude number at the hydraulic jump 

upstream (F1) and the ratio of bed roughness to 

the flow depth at the hydraulic jump upstream 

(Ks/h1). Also Azimi et al. [21-23] have assumed 

the hydraulic jump length on rough beds as a 

function of the Froude number (F1), the ratio of 

bed roughness to the flow depth at the upstream of 

the hydraulic jump (Ks/h1), and the sequent depth 

ratio (h2/h1). Also, Kumar and Lodhi [19], by 

establishing an experimental research work, have 

examined the influence of the channel slope (S0). 

Thus in the current work, the influence of the flow 

Froude number (F1), the ratio of bed roughness 

(Ks/h1), the sequent depth ratio (h2/h1), and the 

channel bed slope (S0) are considered on the 

length of the hydraulic jump: 









 0

11

2
1

1

,,, S
h

Ks

h

h
Ff

h
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            (4) 

As discussed, for modeling the length of the 

hydraulic jump using the GEP model, the 

influence of the Froude number at the hydraulic 

jump upstream (F1), the ratio of bed roughness 

(Ks/h1), the sequent depth ratio (h2/h1), and the 

bed slope (S0) are considered.  Also in this work, 

the Monte Carlo simulations are used to enhance 

the capability of the numerical models. These 

simulations are a broad classification of 
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computational algorithms using random sampling 

for calculating the numerical results. The main 

idea of this method relies on this principle that 

using random making-decisions solves the 

phenomena that might be actual in nature. The 

Monte-Carlo methods are usually implemented 

for simulating the physical and mathematical 

systems that are not solvable by means of other 

methods. Generally, this method solves different 

problems such as optimization and numerical 

integration using the probability distribution. In 

the current work, the Monte Carlo simulation was 

encoded with the GEP model to increase the 

number of iterations during the numerical 

simulation (for instance, 1000 iterations), meaning 

that in each iteration of the GEP model, the 

simulation was iterated 1000 times using the 

Monte Carlo simulation. Therefore, the flexibility 

of the numerical model was significantly 

enhanced. 

There are some methods available to verify the 

numerical models, for example, the traditional 

training and testing or k-fold cross-validation 

method. In the traditional training and testing 

method, each observation value is used in just the 

training or testing mode, whereas all the observed 

values are utilized in both the training and testing 

procedures at least once. 

Generally, the k-fold cross-validation method is 

utilized for validation of the mentioned models. In 

the k-fold cross-validation method, the main 

sample is divided into k sub-samples with the 

same size randomly. Among k sub-samples, one 

sub-sample is used as the validation data and the 

remaining as the test data for each one of the GEP 

models. Then the method repeats k times (equal to 

the number of layers) so that each k sub-sample is 

used exactly once as the validation data once. 

Then the results obtained from the mentioned k 

layers are averaged and provided as an 

approximation. The advantage of this method is 

the random repetition of sub-samples in the test 

and learning process for all observations. In other 

words, each observation is used exactly once for 

the numerical model validation. The schematic 

layout of k-fold cross-validation is shown in 

figure 3. 

In this work, five different GEP models are 

introduced for modeling the hydraulic jump length 

occurring on rough sloping bed. The combinations 

of the input parameters for five GEP models are 

illustrated in figure 4.  

 

 
Figure 3. Schematic layout of the k-fold cross-validation. 

 

It is worth mentioning that these five GEP models 

were defined to perform the sensitivity analysis of 

the input parameters. This means that GEP 1 was 

a function of all input parameters, and then the 

effect of each input was eliminated for GEP 2 to 

GEP 5. After that, the performance of GEP 1 to 

GEP 5 was compared, and lastly, the levels of 

effectiveness of different input parameters were 

easily identified. 

 

 
Figure 4. Combinations of the input parameters for 

simulating objective function of hydraulic jump length 

for different GEP models. 

 

3. Results and Discussion 

3.1. Criteria for Examination of Accuracy of 

Numerical Models 

In the current work, in order to examine the 

accuracy of different GEP models, the statistical 

indices including the correlation coefficient (R), 

mean absolute percent error (MAPE), root mean 

square error (RMSE), scatter index (SI), and 

BIAS are employed. The best GEP model should 

have a reasonable accuracy (MAPE, RMSE, SI, 

and BIAS) and an acceptable correlation with the 

experimental measurements (R). Additionally, the 

accuracy of the model should be evaluated by 

means of the absolute (RMSE) and relative criteria 

(MAPE) indices simultaneously. Therefore, all the 

statistical indices are required to assess the GEP 

models appropriately. 
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In Equations (5) to (9), ( )
( )iObserved1hLj is the 

length of the experimental hydraulic jump, 
( )

( )iedictedPr1hLj  is the length of the predicted 

hydraulic jump, ( )
( )iObserved1hLj  is the average of 

the experimental hydraulic jumps, and n is the 

number of experimental measurements. The 

values of R, MAPE, RMSE, SI, and BIAS for 

different GEP models are shown in table 3. In 

addition, the scatter plots for the values of the 

hydraulic jump lengths simulated by the GEP 1 to 

GEP 5 models are shown in figure 5. As 

mentioned, the FEP 1 model simulates the 

hydraulic jump length as a function of all the 

input parameters. According to the modeling 

results, among all the defined models, the results 

of this model have the highest correlation with the 

experimental values. The R value for GEP 1 was 

computed to be 0.901. In contrast, the minimum 

error values were achieved for GEP 1. In other 

words, the values of MAPE and RMSE for this 

model were calculated to be 11.517 and 1.664, 

respectively. However, the BIAS value is equal to 

-0.021. In this paper, four models with a 

combination of three input parameters are 

introduced (GEP 2 to GEP 5 models). The GEP 2 

model approximates values of the hydraulic jump 

length on sloping rough beds in terms of the flow 

Froude number, the ratio of bed roughness, and 

the channel slope. In other words, the effects of 

the sequent depth ratio (h2/h1) are eliminated. For 

the mentioned model, the values of SI, RMSE, and 

BIAS were obtained to be 0.149, 1.872, and -

0.023, respectively. Also the value of R for GEP 2 

was computed to be 0.873. In the GEP 3 model, 

the influence of the ratio of the channel bed 

roughness on the modeling results is neglected. It 

should be noted that the GEP 3 model is a 

function of the flow Froude number, the sequent 

depth ratio, and the channel bed slope. For GEP 3, 

the values of R and SI were estimated to be 0.876 

and 0.147, respectively. Furthermore, the values 

of MAPE, RMSE, and BIAS for the mentioned 

model were calculated to be 12.459, 1.850, and -

0.091, respectively. Among all models with three 

input parameters, the GEP4 model has a higher 

accuracy. The R value for this model is equal to 

0.879. Also MAPE and RMSE for this model were 

approximated to be 12.211 and 1.828, 

respectively. It is worth noting that the GEP 4 

model simulates values of the hydraulic jump 

length in terms of 1121 hKs,hh,F . For this 

model, the effects of the channel bed slope were 

removed. According to the modeling results, 

among all the GEP models, GEP 5 has the 

maximum error and the lowest correlation 

coefficient. This model simulates values of the 

hydraulic jump length in terms of the sequent 

depth ratio, ratio of bed roughness, and channel 

bed slope. In other words, the effects of the flow 

Froude number are neglected in this model. For 

the GEP 5 model, the R value was estimated to be 

equal to 0.856. Furthermore, the values of MAPE, 

RMSE, and SI for this model were obtained to be 

13.566, 1.987, and 0.158, respectively. Thus 

according to the results of different GEP models, 

GEP 1 was detected as the superior model. In 

addition, by eliminating the Froude number at the 

hydraulic jump upstream, the modeling accuracy 

is reduced dramatically. Therefore, the mentioned 

parameter is identified as the most effective input 

parameter in estimating the hydraulic jump length 

on sloping rough beds. 

Regarding the simulation results, GEP 1 was 

identified as the best GEP model. Also GEP 4, 

GEP 5, and GEP 3 were detected as the second, 
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third, and fourth best GEP models. Moreover, 

GEP 2 had the lowest accuracy and worst 

performance to estimate the target function. 

According to the performed sensitivity analysis, 

the Froude number owned the highest 

effectiveness on modeling the roller length of 

hydraulic jump. Furthermore, the ratio of bed 

roughness to the flow depth (Ks/h1), sequent depth 

ratio (h2/h1), and the channel bed slope (S0) were 

introduced as the most influencing input 

parameters. 
 

 

Table 3. Values of different statistical indices for GEP 

models. 

 
R MAPE RMSE SI BIAS 

GEP 1 0.901 11.517 1.664 0.133 -0.021 

GEP 2 0.873 12.748 1.872 0.149 -0.023 

GEP 3 0.876 12.459 1.850 0.147 -0.091 

GEP 4 0.879 12.211 1.828 0.146 -0.068 

GEP 5 0.879 13.566 1.987 0.158 -0.032 

 

 

 

 

 
Figure 5. Comparison of hydraulic jump length measured 

and predicted by a) GEP 1 (b) GEP 2 (c) GEP 3 (d) GEP 

4 (e) GEP 5. 
 

Regarding the simulation results, GEP 1 was 

identified as the best GEP model. Also GEP 4, 

GEP 5, and GEP 3 were detected as the second, 

third, and fourth best GEP models. Moreover, 

GEP 2 had the lowest accuracy and worst 

performance to estimate the target function. 
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According to the performed sensitivity analysis, 

the Froude number owned the highest 

effectiveness on modeling the roller length of 

hydraulic jump. Furthermore, the ratio of bed 

roughness to the flow depth (Ks/h1), sequent depth 

ratio (h2/h1), and the channel bed slope (S0) were 

introduced as the most influencing input 

parameters. 

 

3.2. Partial Derivative Sensitivity Analysis 

(PDSA) 

By introducing GEP 1 as the superior model, a 

relationship was provided for calculating the 

length of hydraulic jumps on sloping rough beds. 

This formula estimates values of the hydraulic 

jump length ( )
1hLj  as a function of the Froude 

number ( )̀F1 , the ratio of bed roughness ( )
1s hK , 

the sequent depth ratio ( )
12 hh , and the bed slope

( )
0S .  

Generally, PSDA is performed for identifying the 

influence of the input parameters on the objective 

parameter. In other words, PSDA is a method for 

identifying the changing pattern of the objective 

parameter according to the input parameters. A 

positive PSDA means that the objective function 

(the roller length) is increasing, while a negative 

sign means that the objective function is 

decreasing. In other words, in this method, the 

relative derivative of each input parameter is 

calculated according to the objective function. 

In the followings, the partial derivative sensitivity 

analysis (PDSA) is carried out to examine the 

effects of the input variables on the output of the 

GEP 1 model. The positive sign of the partial 

derivative means that by increasing the input 

parameter, the output value increases. Figure 5 

illustrates the results of the sensitivity analysis for 

the GEP 1 input parameters. As shown, for all 

Froude number ( )
1F  values, the sensitivity analysis 

was calculated to be positive, thus by increasing 

the Froude number value, the hydraulic jump 

values increased as well. Furthermore, for all 

values of the bed slope ( )
0S , the sensitivity 

analysis value was obtained to be negative. It 

means that the output parameter (hydraulic jump 

length) has decreased. According to figure 6, the 

behavior of the parameters 1s hK
 

and 12 hh  

versus the sensitivity analysis is complex, and a 

part of the sensitivity analysis results was 

calculated to be positive and negative for another 

part. 
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4. Conclusions 

Determination of the hydraulic jump length for 

estimating the length of detention ponds is very 

important. In this paper, using the gene expression 

programming (GEP), the length of the hydraulic 

jump occurring on sloping rough beds was 

modeled. To this end, five different GEP models 

were defined according to the parameters 

affecting the hydraulic jump length. Then by 

analyzing the results of the mentioned models, the 

superior model and the most effective parameter 

were detected. The superior model predicts the 

values of the hydraulic jump length with a 

reasonable accuracy. For example, the values of 

R, MAPE, and RMSE for the mentioned model 

were obtained to be 0.901, 11.517, and 1.6644, 

respectively. Also the flow Froude number was 

considered as the most effective parameter in 

estimating the hydraulic jump length. Then a 

relationship was proposed for calculating the 

hydraulic jump length on sloping rough beds. 

Furthermore, by conducting a sensitivity analysis, 

it was concluded that by increasing the Froude 

number value, the hydraulic jump length also 

increased. According to PDSA, PDSA increased 

by increasing the Froude number parameter. It is 

suggested that the optimization algorithms like 

genetic algorithm (GA) or particle swarm 

optimization (PSO) can be used to enhance the 

performance of the GEP model. 
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Figure 6. Results of sensitivity analysis for GEP 1 model 

(a) Froude number (b) bed slope (c) bed roughness (d) 

sequent depth ratio. 
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  ژن انیت یسنویتا استفاده از ترنامه دارةیتستر زتر ش یتر رو یکیدرولیطول پرش ه سازیمدل

 

 سعید شعثانلو و ، فریثرز یوسفوند*احمد رجثی، ایرج پسندیده

 .رانیکرمانشاه، ا ،یآب، واحد کرمانشاه، دانشگاه آزاد اسلام یگروه مهندس

 02/00/2020 ؛ پذیزش00/02/2020 ببسوگزی؛ 11/04/2013 ارسبل

 چکیده:

 دس ت  هیپ بئ  س ب  تبسی ي َ ب محبفظ ت اس س بسٌ   یب ًدٌ ه ٍ ب زا    یفزاياو   یاوزص یدارا بحزاویفًق بنیجز یايج یشَبیسزر دستهیدر پبئ بنیمعمًلا جز

ُ  تیاس اَم یکیذريلیطًل پزش َ هییآرامص  تع َبیحًضچٍ ىٍیبُ طزاحی مىظًر. بٍضًوذیم ٍیآرامص تعب َبیحًضچٍ بزخ ًردار اس ت.    یلببل ت ًج

ٍ    س بسی م ذل  داربیبستز سبز ض یبز ري یکیذريلیَ َبیطًل پزش (GEP)صن  بنیب یسوًیمطبلعٍ حبضز  بب استفبدٌ اس مذل بزوبمٍ در -ض ذ. م ذل بزوبم 

ٍ  هیصن ب ذ  بنی  ب یسوًیرا دارد. ريوذ حل مذل بزوبمٍ ذٌیچیپ یًتزیهبمپ َبیتًسعٍ بزوبمٍ ییاست هٍ تًاوب یريش تکبمل کیصن  بنیب یسوًی اس ت   گًو 

 یبزرس   ی. در مطبلع ٍ حبض ز  ب زا   ضًدیتببع بزاسش جُت حل مسئلٍ مًرد وظز استفذٌ مي  ببىذییمختلف تکبمل م یًتزیهبمپ َبیاس بزوبمٍ یهٍ تعذاد

 GEP َ بی م ذل  ییتًاو ب  یبزرس یبزا یا ٍیچىذ لا یمًوت هبرلً  استفبدٌ ضذ. در ممببل  اس ريش اعتببر سىج َبیسبسیٍیاس ضب یعذد َبیمذل ییتًاوب

 لی  يتحل ٍی  ض ذ. س پب ب ب تجش    یمعزف   GEPپىج مذل مختلف  یيريد یبب استفبدٌ اس پبرامتزَب یکیذريلیطًل پزش َ هتعیی مىظًر. بٍذیاستفبدٌ گزد

 بیض ز  زیمذل بزتز مم بد  ی. بزاسوذیم هیتخم یرا بب دلت مىبسب یکیذريلیطًل پزش َ زیضذ. مذل مذهًر ممبد ی  مذل بزتز معزفGEP َبیمذل جیوتب

ع ذد ف زيد در    هیض ذ. َمچى   محبس بٍ   110/1ي  012/11  401/0بزابز  بتزتیمزبعب  بٍ هیبوگیجذر م یدرصذ میبوگیه مطلك خطب ي خطب  یَمبستگ

محبس بٍ ط ًل پ زش     یزارابطٍ ب   کیضذ. در ادامٍ  ییضىبسب یکیذريلیطًل پزش َ سبسیپبرامتز در مذل همًثزتزی عىًانبٍ یکیذريلیببلادست پزش َ

بستز  وس بت اعم بق م شدي  ي     یوسبت سبز بن یطًل پزش را بز حسب عذد فزيد جز زیرابطٍ ممبد هی. اذیارائٍ گزد داربیبستز سبز ض یبز ري یکیذريلیَ

 .بفتی صیافشا یکیذريلیطًل پزش َ زیممبد بنیعذد فزيد جز صیوطبن داد هٍ بب افشا تیحسبس شیآوبل هی. َمچىهىذیبستز محبسبٍ م بیض

 صن. بنیب یسوًیبزوبمٍ ت یحسبس شیآوبل دار بیبستز سبز ض  یکیذريلیطًل پزش َ :کلمات کلیدی

 


