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Abstract

Determination of the hydraulic jump characteristics can play a crucial role to design an optimized stilling
basin or other facilities at downstream of the hydraulic jump. In other words, the length of hydraulic jump is
one the most important parameters involved to obtain the length of the structures. In contrast, the artificial
intelligence techniques have been extensively applied to simulate various hydraulic problems such as
hydraulic jump features. In this work, the length of hydraulic jump on sloping rough beds was predicted
using the Gene Expression Programming (GEP) model for the first time because the GEP model could
provide an explicit equation to estimate the target function. The Monte Carlo simulations were used to
enhance the capability of the GEP model. In addition, k-fold cross-validation was employed in order to
verify the results of the GEP model. In order to determine the length of hydraulic jump, five different GEP
models were introduced using the input parameters. Then by analyzing the GEP model results, the superior
model was presented. For the superior model, the correlation coefficient, mean absolute percentage error,
and root mean square error were computed to be 0.901, 11.517, and 1.664, respectively. According to the
sensitivity analysis, the Froude number at upstream of hydraulic jump was identified as the most important
parameter to model the length of hydraulic jump. Furthermore, the Partial Derivative Sensitivity Analysis
(PDSA) was performed. For instance, PDSA was calculated as positive for all the input variables.

Keywords: Length of Hydraulic Jump, Sloping Rough Bed, Sensitivity Analysis, Gene Expression Program,
Partial Derivative Sensitivity Analysis.

1. Introduction

Hydraulic jumps are usually accompanied by the
turbulence and rapid transformation of flow
regime from subcritical to supercritical. This
phenomenon occurs at the downstream of the
structures such as slide gates, perpendicular weirs
or ogee spillways. Generally, beds with hydraulic

jump occurring on them are sloping and rough.
On the other hand, determination of the hydraulic
jump length (Lj) is necessary for a precise design
of the structures such as detention ponds. In figure
1, the schematic representation of hydraulic jump
on the bed is illustrated.

Due to the importance of hydraulic jump, many
experimental, analytical, and numerical studies
have been carried out on this phenomenon by
various researchers.

Figure 1. Schematic representation of hydraulicjump
formation on rough sloping beds

For example, Rajaratnam [1] was one of the first
ones who investigated the hydraulic jump
behavior on rough beds. He showed that the
presence of the rough bed had a significant impact
on the hydraulic jump length reduction. Hughes
and Flack [2] have conducted an experimental
study regarding the hydraulic jJump occurrence on
rough beds. The analysis of their results showed
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that the reduction of the hydraulic jump length
depended on the upstream Froude number and the
roughness height of the bed. Also Mohammed Ali
[3], by conducting an experimental study, has
investigated the effects of roughness in the
rectangular form on the hydraulic jump
characteristics. The range of the Froude number in
his study varied from 4 to 10. He concluded that
the applied roughness decreased the hydraulic
jump length down to 27-67%. After that, Ead and
Rajaratnam [4] have conducted an experimental
study on the behavior of the hydraulic jump on
rough beds with labyrinth roughness. In their
study, the range of the upstream Froude number
varied from 4 to 10. Ead and Rajaratnam [4] have
investigated the hydraulic jump characteristics for
three relative roughness conditions including 0.25,
0.43, and 0.5, and proved that the length of the
hydraulic jump on the rough bed was half the
hydraulic jump length on the smooth bed. Carollo
et al. [5] have studied the hydraulic jump in
rectangular canals for rough and smooth beds
though an experimental research work. By
analyzing the results of their study, they proposed
a relationship for calculating the roller length on
rough beds. Elsebaie and Shabayek [6] have also
carried out an experimental study by the range of
Froude number between 3 and 7.5 on five types of
rough beds including sine, triangular, trapezoid
with two different rectangular slopes. Their results
indicated the hydraulic jump reduction on rough
beds compared to smooth beds. Ahmed et al. [7]
have experimentally investigated the effects of
rough beds on the hydraulic jump characteristics.
They suggested a relationship in terms of the flow
Froude number for calculating the roller length.
Nissi and Shafaee Bajestan [8], by conducting an
experimental study for Froude numbers between
49 and 12.4, have examined the effects of
rhombus roughness on the behavior of hydraulic
jumps occurring in detention ponds. By analyzing
the mentioned model results, they showed that the
rough bed decreased hydraulic jump length down
to 41%.

In the recent decades, the various artificial
intelligence methods have been broadly used for
modeling complex engineering phenomena. Also
several studies have been carried out on the
application of artificial intelligence techniques for
modeling different problems [9-14]. Omid et al.
[15] have modeled the hydraulic jump
characteristics such as the jump length and the
sequent depth ratio in rectangular channels using
the artificial neural network. Naseri and Othman
[16], using the artificial neural network (ANN),
have evaluated the hydraulic jump characteristics
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in rectangular channels. They modeled the
hydraulic jump length for the Froude number
range between 1.7 and 19.5. Karbasi and
Azamathulla [17] have modeled the sequent depth
ratio and the roller length of the hydraulic jump
on rough beds using the gene expression
programming model. They compared the
mentioned model results with ANN and support
vector regression and showed that the gene
expression programming model simulated the
hydraulic jump characteristics with a higher
accuracy.

Regarding the literature, the soft computing
techniques and artificial intelligence methods
have been used to estimate the hydraulic jump
because these tools are inexpensive, accurate, and
fast. Besides, the length of hydraulic jump is
utilized to determine the optimized length of the
stilling basin at downstream of the hydraulic
jump. Indeed, natural channels and hydraulic
structures have sloping rough beds. However, a
vast majority of the conducted studies on
hydraulic jump have a smooth bed with an
insignificant slope. Moreover, the length of
hydraulic jump is an important parameter
involved to estimate the length of the stilling
basins or other hydraulic structures. Thus in the
current work, the length of hydraulic jump in a
sloping rough channel was simulated using the
gene expression programming models, and then
an explicit equation was presented to estimate this
parameter.

Therefore, further investigations should be
conducted on modeling the length of hydraulic
jumps occurring on rough sloping beds. In this
work, using the gene expression programming
(GEP), the hydraulic jump length in a rectangular
channel with a rough sloping bed was modeled for
the first time.

Furthermore, this model is a robust tool that can
simulate different problems. Additionally, the
model provides an explicit equation to estimate
the target function (length of hydraulic jump). For
introducing the superior GEP model and
identification of the parameter effective on the
hydraulic jump length, five GEP models are
defined. Then the superior model is identified by
analyzing the results of the mentioned models,
and a relationship is provided for computing the
length of hydraulic jumps occurring on rough
beds. Finally, the influence of each input
parameter on the objective function (hydraulic
jump length) is examined using the sensitivity
analysis.
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2. Methods and Materials

2.1. Gene Expression Programming (GEP)
There are numerous artificial intelligence methods
and soft computing tools to simulate the hydraulic
problems like the hydraulic jump on the sloping
rough beds. It is worth noticing that GEP owns
many advantages. For instance, it is quite accurate
and fast, and can simulate linear and non-linear
issues. In addition, this model can provide an
explicit equation to calculate the length of
hydraulic jump in the sloping rough flumes.

GEP is an evolutionary artificial intelligence
method provided for the first time by Ferreira
[18]. The basic difference between GEP, the
genetic algorithm (GA), and the genetic
programming is in the nature of the individuals. In
GA, the individuals are as strings with fixed
lengths  (chromosomes), and in  genetic
programming, the individuals have different
shapes and sizes (decomposition tree). However,
in GEP, the individuals are as linear strings with
fixed lengths (chromosomes) that express a non-
linear nature and various sizes. In fact, GEP uses
the advantages of both GA and genetic
programming simultaneously. GEP employs the
chromosomes and expression trees that are
provided as programs. The chromosomes are
usually a combination of genes with the same
size, and the programs provide coded genetic data
in chromosomes [13]. GEP is a
phenotype/genotype system whose genotype and
phenotype are completely separate from each
other. In this method, linear chromosomes and
expression trees represent phenotype and
genotype, respectively [12]. The process of data
decoding from chromosomes to expression trees,
known as "translation", consists of a set of rules.
These rules are related to the organization of
functions and terminals in expression trees, and
indicate the connection between different sub-
expression trees (Sub-ETs). In order to create
chromosomes and genes, the terminal set (TS) and
the function set (FS) should be defined. FS
consists of various signs such as FS = {+, -, x, /,
\V}. TS is composed of different components that
represent different variables and fixed values (for
example {a, b, c, 0, 1, 2}). Genes used in GEP
contain two types of different information. The
first type includes the data that is used to provide
the GEP model and is stored in the head, while the
second type consists of the terminals that are
stored in the tail and employed for generating the
next models. The length of genes in GEP is
calculated by the following formula:

I=h+t=h+hx(n 1)+1 (1)
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where | is the gene length, h is the head, t is the
tail, and n is the number of arguments in a
mathematical function that has the highest number
of arguments. Figure 2 illustrates a sample of the
organized GEP model.
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Figure 2. Chromosomes related to a GEP model.

FS should be determined for each non-linear
problem (Table 1). FS is the evolutionary nature
in the GEP model and so allows unlimited
changes in a gene or among different genes in a
chromosome. Firstly, GEP creates a random
distribution of functions and terminals in the
chromosome genes regarding the problem of
interest. The initial individuals generated
randomly are called “parents”. These parents are
produced to create an off-spring using the genetic
operators. In order to create a new off-spring
adapted with the environment and more chance to
survive, each individual benefits from its genetic
information. In the evolutionary process of a
function, the natural selection procedure is based
on the fitness of the relationships related to an off-
spring producing less error. Hence, GEP benefits
from an evolutionary process to reach the best off-
spring without an evolution stop in the next
generations. If the fitness function used in this
study is considered as the root relative squared
error (RRSE), the fitness function related to the
ith program is calculated as follows:
1000

et 2
'~ 1+ RRSE, @)

By considering the fact that the RRSE; value can
be zero to infinity, the value of the fitness function
is placed on the domain of 0 to 100. The RRSE;
fitness function is calculated by the following
equation:
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where, Pj is the value predicted by the jth
program for the ith fitness, O; is the observed

value, O is the average of the observed values,
and n is the number of samples. It should be stated
that the key parameters used in the current work
were adjusted by a trial-and-error procedure to
find the most optimized values. In table 1, the
optimized values of the key parameters related to
the GEP model were tabulated.

Table 1. Optimized values of key parameters related to
the GEP model.

Parameters Setting
P1 Number of generations 250000
P2 Number of chromosomes 200
P3 Number of genes 6
P4 Head size 4
P5 Linking function Addition
P6 Type of fitness function RRSE
P7 Mutation rate 0.01
P8 Inversion rate 0.05
P9 IS Transporition 0.05
P10 Ris Transporition 0.05
P11 One-point recombination rate  0.35
P12 Two-point recombination rate  0.35
P13 Gene recombination rate 0.2
P14 Gene transportation rate 0.2

+, -, %, 1, X2, sqrt,

P15 Function set Pow, Log, Exp,

sin, Atan

2.2. Experimental Model

It should be stated that natural channels and
hydraulic structures own sloping rough beds. In
contrast, most of the studies related to the
hydraulic jump have been implemented on the
smooth bed with trivial slop. Also the length of
hydraulic jump is a significant variable to
calculate the length of stilling basins or other
structures. Therefore, in the current work, the
length of hydraulic jump in a sloping rough
channel is estimated. To do this, the experimental
measurements obtained by Kumar et al. [19] are
employed. The experimental model is composed
of a rectangular channel in which the experiments
are conducted in three slopes including 0.000463,
0.00986, and 0.01552. The length and width of the
rectangular channel are 8 m and 0.6 m,
respectively. The rough bed is created by means
of stone materials for four different roughness
conditions with the average diameters (dso) of
0.00398 m, 0.0056 m, 0.007 m, and 0.011 m.
Kumar et al. [19] have measured the values for
the flow rate (Q), bed slope (So), bed roughness
height (Ks), and flow depth at the hydraulic jump
upstream (h;) and the hydraulic jump length (Lj).
The maximum, minimum, average, variance, and
standard deviation of the experimental parameters
are listed in table 2.

Table 2. The minimum, maximum, variance, and standard deviation of the experimental parameters measured by Kumar et

al. [19].
Q SO KS h1 hz LJ
Maximum 0.072 0.016 0.011 0.087 0.344 0.9
Minimum 0.034 0.005 0.002 0.03 0.026 0.3
Average 0.057 0.009 0.006 0.053 0.262 0.638
Variance 8.98x10°  3.79x10°  9.09x10°  0.0002 0.002 0.017
Standard deviation ~ 0.009 0.006 0.003 0.012 0.044 0.129

2.3. Hydraulic Jump Length on Sloping Rough
Bed

Different researchers such as Hager et al. [20],
Ead S. & Rajaratnam [1], and Carollo et al. [5]
have assumed that the length of the hydraulic
jump is a function of the parameters such as the
flow Froude number at the hydraulic jump
upstream (F;) and the ratio of bed roughness to
the flow depth at the hydraulic jump upstream
(Ks/hy). Also Azimi et al. [21-23] have assumed
the hydraulic jump length on rough beds as a
function of the Froude number (F,), the ratio of
bed roughness to the flow depth at the upstream of
the hydraulic jump (Ks/h;), and the sequent depth
ratio (h,/h;). Also, Kumar and Lodhi [19], by
establishing an experimental research work, have
examined the influence of the channel slope (So).
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Thus in the current work, the influence of the flow
Froude number (F,), the ratio of bed roughness
(Ks/hy), the sequent depth ratio (h,/h;), and the
channel bed slope (Sy) are considered on the
length of the hydraulic jump:

Lj h, Ks SoJ

SR,
hl ( ' hl hl (4)

As discussed, for modeling the length of the
hydraulic jump using the GEP model, the
influence of the Froude number at the hydraulic
jump upstream (F;), the ratio of bed roughness
(Ks/hy), the sequent depth ratio (h,/h;), and the
bed slope (Sy) are considered. Also in this work,
the Monte Carlo simulations are used to enhance
the capability of the numerical models. These
simulations are a broad classification of
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computational algorithms using random sampling
for calculating the numerical results. The main
idea of this method relies on this principle that
using random making-decisions solves the
phenomena that might be actual in nature. The
Monte-Carlo methods are usually implemented
for simulating the physical and mathematical
systems that are not solvable by means of other
methods. Generally, this method solves different
problems such as optimization and numerical
integration using the probability distribution. In
the current work, the Monte Carlo simulation was
encoded with the GEP model to increase the
number of iterations during the numerical
simulation (for instance, 1000 iterations), meaning
that in each iteration of the GEP model, the
simulation was iterated 1000 times using the
Monte Carlo simulation. Therefore, the flexibility
of the numerical model was significantly
enhanced.

There are some methods available to verify the
numerical models, for example, the traditional
training and testing or k-fold cross-validation
method. In the traditional training and testing
method, each observation value is used in just the
training or testing mode, whereas all the observed
values are utilized in both the training and testing
procedures at least once.

Generally, the k-fold cross-validation method is
utilized for validation of the mentioned models. In
the k-fold cross-validation method, the main
sample is divided into k sub-samples with the
same size randomly. Among k sub-samples, one
sub-sample is used as the validation data and the
remaining as the test data for each one of the GEP
models. Then the method repeats k times (equal to
the number of layers) so that each k sub-sample is
used exactly once as the validation data once.
Then the results obtained from the mentioned k
layers are averaged and provided as an
approximation. The advantage of this method is
the random repetition of sub-samples in the test
and learning process for all observations. In other
words, each observation is used exactly once for
the numerical model validation. The schematic
layout of k-fold cross-validation is shown in
figure 3.

In this work, five different GEP models are
introduced for modeling the hydraulic jump length
occurring on rough sloping bed. The combinations
of the input parameters for five GEP models are
illustrated in figure 4.
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Figure 3. Schematic layout of the k-fold cross-validation.

It is worth mentioning that these five GEP models
were defined to perform the sensitivity analysis of
the input parameters. This means that GEP 1 was
a function of all input parameters, and then the
effect of each input was eliminated for GEP 2 to
GEP 5. After that, the performance of GEP 1 to
GEP 5 was compared, and lastly, the levels of
effectiveness of different input parameters were
easily identified.

Figure 4. Combinations of the input parameters for
simulating objective function of hydraulic jump length
for different GEP models.

3. Results and Discussion

3.1. Criteria for Examination of Accuracy of
Numerical Models

In the current work, in order to examine the
accuracy of different GEP models, the statistical
indices including the correlation coefficient (R),
mean absolute percent error (MAPE), root mean
square error (RMSE), scatter index (SI), and
BIAS are employed. The best GEP model should
have a reasonable accuracy (MAPE, RMSE, SI,
and BIAS) and an acceptable correlation with the
experimental measurements (R). Additionally, the
accuracy of the model should be evaluated by
means of the absolute (RMSE) and relative criteria
(MAPE) indices simultaneously. Therefore, all the
statistical indices are required to assess the GEP
models appropriately.
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In Equations (5) to (9), (Lj /hl)(ot)served)i is the

length of the experimental hydraulic jump,
(Li/n,) is the length of the predicted

1/(Predicted )i

hydraulic jump, (Lj/hl )(Observed)i is the average of

the experimental hydraulic jumps, and n is the
number of experimental measurements. The
values of R, MAPE, RMSE, SI, and BIAS for
different GEP models are shown in table 3. In
addition, the scatter plots for the values of the
hydraulic jump lengths simulated by the GEP 1 to
GEP 5 models are shown in figure 5. As
mentioned, the FEP 1 model simulates the
hydraulic jump length as a function of all the
input parameters. According to the modeling
results, among all the defined models, the results
of this model have the highest correlation with the
experimental values. The R value for GEP 1 was
computed to be 0.901. In contrast, the minimum
error values were achieved for GEP 1. In other
words, the values of MAPE and RMSE for this
model were calculated to be 11.517 and 1.664,
respectively. However, the BIAS value is equal to
-0.021. In this paper, four models with a
combination of three input parameters are
introduced (GEP 2 to GEP 5 models). The GEP 2
model approximates values of the hydraulic jump
length on sloping rough beds in terms of the flow
Froude number, the ratio of bed roughness, and
the channel slope. In other words, the effects of
the sequent depth ratio (hy/h;) are eliminated. For
the mentioned model, the values of SI, RMSE, and
BIAS were obtained to be 0.149, 1.872, and -
0.023, respectively. Also the value of R for GEP 2
was computed to be 0.873. In the GEP 3 model,
the influence of the ratio of the channel bed
roughness on the modeling results is neglected. It
should be noted that the GEP 3 model is a
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function of the flow Froude number, the sequent
depth ratio, and the channel bed slope. For GEP 3,
the values of R and SI were estimated to be 0.876
and 0.147, respectively. Furthermore, the values
of MAPE, RMSE, and BIAS for the mentioned
model were calculated to be 12.459, 1.850, and -
0.091, respectively. Among all models with three
input parameters, the GEP4 model has a higher
accuracy. The R value for this model is equal to
0.879. Also MAPE and RMSE for this model were
approximated to be 12.211 and 1.828,
respectively. It is worth noting that the GEP 4
model simulates values of the hydraulic jump
length in terms of F ,h,/h ,Ks/h,. For this

model, the effects of the channel bed slope were
removed. According to the modeling results,
among all the GEP models, GEP 5 has the
maximum error and the lowest correlation
coefficient. This model simulates values of the
hydraulic jump length in terms of the sequent
depth ratio, ratio of bed roughness, and channel
bed slope. In other words, the effects of the flow
Froude number are neglected in this model. For
the GEP 5 model, the R value was estimated to be
equal to 0.856. Furthermore, the values of MAPE,
RMSE, and SI for this model were obtained to be
13.566, 1.987, and 0.158, respectively. Thus
according to the results of different GEP models,
GEP 1 was detected as the superior model. In
addition, by eliminating the Froude number at the
hydraulic jump upstream, the modeling accuracy
is reduced dramatically. Therefore, the mentioned
parameter is identified as the most effective input
parameter in estimating the hydraulic jump length
on sloping rough beds.

Regarding the simulation results, GEP 1 was
identified as the best GEP model. Also GEP 4,
GEP 5, and GEP 3 were detected as the second,
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third, and fourth best GEP models. Moreover,
GEP 2 had the lowest accuracy and worst
performance to estimate the target function.
According to the performed sensitivity analysis,
the Froude number owned the highest
effectiveness on modeling the roller length of
hydraulic jump. Furthermore, the ratio of bed
roughness to the flow depth (K/h;), sequent depth
ratio (hy/h;), and the channel bed slope (S,) were

introduced as the most influencing input
parameters.
Table 3. Values of different statistical indices for GEP
models.
R MAPE  RMSE Sl BIAS
GEP 1 0.901  11.517 1664  0.133 -0.021
GEP 2 0.873  12.748 1872  0.149 -0.023
GEP 3 0.876  12.459 1.850  0.147 -0.091
GEP 4 0879 12211 1.828  0.146 -0.068
GEP5 0.879  13.566 1.987  0.158 -0.032
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Figure 5. Comparison of hydraulic jump length measured
and predicted by a) GEP 1 (b) GEP 2 (c) GEP 3 (d) GEP

4 (e) GEP 5.

Regarding the simulation results, GEP 1 was
identified as the best GEP model. Also GEP 4,
GEP 5, and GEP 3 were detected as the second,
third, and fourth best GEP models. Moreover,
GEP 2 had the lowest accuracy and worst
performance to estimate the target function.
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According to the performed sensitivity analysis,
the Froude number owned the highest
effectiveness on modeling the roller length of
hydraulic jump. Furthermore, the ratio of bed
roughness to the flow depth (K¢/h;), sequent depth
ratio (hy/h;), and the channel bed slope (So) were

introduced as the most influencing input
parameters.

3.2. Partial Derivative Sensitivity Analysis
(PDSA)

By introducing GEP 1 as the superior model, a
relationship was provided for calculating the
length of hydraulic jumps on sloping rough beds.
This formula estimates values of the hydraulic

jump length (Lj/hl) as a function of the Froude
number (FJ , the ratio of bed roughness (Ks/hl),
the sequent depth ratio (h2 / hl), and the bed slope

(s,).

Generally, PSDA is performed for identifying the
influence of the input parameters on the objective
parameter. In other words, PSDA is a method for
identifying the changing pattern of the objective
parameter according to the input parameters. A
positive PSDA means that the objective function
(the roller length) is increasing, while a negative

%:(Fl);g) +|:l(4z.54x\/?1)+sin{ 8.14x Log(%xExp[%JDJrsin( 1'41Xh_hij Atan(6.14 &j

4. Conclusions

Determination of the hydraulic jump length for
estimating the length of detention ponds is very
important. In this paper, using the gene expression
programming (GEP), the length of the hydraulic
jump occurring on sloping rough beds was
modeled. To this end, five different GEP models
were defined according to the parameters
affecting the hydraulic jump length. Then by
analyzing the results of the mentioned models, the
superior model and the most effective parameter
were detected. The superior model predicts the
values of the hydraulic jump length with a
reasonable accuracy. For example, the values of
R, MAPE, and RMSE for the mentioned model
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sign  means that the objective function is
decreasing. In other words, in this method, the
relative derivative of each input parameter is
calculated according to the objective function.

In the followings, the partial derivative sensitivity
analysis (PDSA) is carried out to examine the
effects of the input variables on the output of the
GEP 1 model. The positive sign of the partial
derivative means that by increasing the input
parameter, the output value increases. Figure 5
illustrates the results of the sensitivity analysis for
the GEP 1 input parameters. As shown, for all
Froude number (Fl) values, the sensitivity analysis

was calculated to be positive, thus by increasing
the Froude number value, the hydraulic jump
values increased as well. Furthermore, for all
values of the bed slope (So), the sensitivity

analysis value was obtained to be negative. It
means that the output parameter (hydraulic jump
length) has decreased. According to figure 6, the
behavior of the parameters K,/h, and h,/h

versus the sensitivity analysis is complex, and a
part of the sensitivity analysis results was
calculated to be positive and negative for another
part.

(10)

were obtained to be 0.901, 11.517, and 1.6644,
respectively. Also the flow Froude number was
considered as the most effective parameter in
estimating the hydraulic jump length. Then a
relationship was proposed for calculating the
hydraulic jump length on sloping rough beds.
Furthermore, by conducting a sensitivity analysis,
it was concluded that by increasing the Froude
number value, the hydraulic jump length also
increased. According to PDSA, PDSA increased
by increasing the Froude number parameter. It is
suggested that the optimization algorithms like
genetic algorithm (GA) or particle swarm
optimization (PSO) can be used to enhance the
performance of the GEP model.



Rajabi et al./ Journal of Al and Data Mining, Vol 8, No 4, 2020.

21
a)
L ]
[ ]
e O
14 . L
= METR
= °
== ]
Sk TGl
o -
o L]
7 : :TT; o
° .. .. N
® o N
. N
s, .
0
0 2 4 6
) Fr
0
(b)
4 .
Ll
D 18 .
— L]
NN e
32 | :
N .
3|8 . .
H H
o H
. i :
-4 ¢ [ ]
! : :
[ ] °
. H H
-5
0 0.005 0.01 0.015 0.02
- So
50
(©) "
1
. L]
0 \ ° & mee o
o« XN
\J'
NS Loc :
=(&-100
v .
T .
L]
L]
H
L]
L]
-350 : !
0 02 04
Ks/n

i
G
@, .
.. °
2.5 . -
o o
Ll
L] o e o .
BlE | L §
S 0 "\!\n\
% % S s SO . :
b R \\\
P )
2.5 3 o8
. (1 .
' L]
¥ .

5
h2/h

Figure 6. Results of sensitivity analysis for GEP 1 model
(a) Froude number (b) bed slope (c) bed roughness (d)
sequent depth ratio.
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