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Abstract 

Network security is very important when confidential data is sent through a network. Cryptography is the 

science of hiding information, and a combination of cryptography solutions and cognitive science starts a new 

branch called cognitive cryptography that guarantees the confidentiality and integrity of the data. Brain signals, 

as a biometric indicator, can be converted to a binary code, which can be used as a cryptographic key. In this 

paper, we propose a new method for decreasing the error of the electroencephalogram-based key generation 

process. Discrete Fourier transform, discrete wavelet transform, autoregressive modeling, energy entropy, and 

sample entropy are used to extract the features. All features are used as the input of the new method based on 

the window segmentation protocol, and then are converted to the binary mode. We obtained the 0.76% and 

0.48% mean half total error rate (HTER) for the 18-channel and single-channel cryptographic key generation 

systems, respectively. 
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1. Introduction

The traditional cryptography is a science that uses 

symmetric or asymmetric techniques to hide 

information, and by executing various protocols, 

ensures the confidentiality and integrity of the data 

[1]. Almost any algorithm uses a sequence of bits 

(keys) with a specific length to guarantee the 

computational security of the algorithm or 

encryption method used. In the traditional Shannon 

information theory, the best cryptographic keys are 

random keys. Such algorithms are very secure but 

do not allow the cryptographic process to be related 

to the biometric information of individuals [2]. It is 

really difficult to remember long and random keys, 

and also storing them in a database will cause 

security problems [3].  

A secure storage of keys is an important 

responsibility, and a key management is often the 

weakest part of many systems. Private keys must 

be kept secret, and here, biometric technologies can 

help [4]. The biometric methods have solved the 

problem of remembering the old keys, and because 

they are not required to be kept or written, it is hard 

to fake, copy, and share these keys in comparison 

with the old passwords and pin codes [3]. The 

biometric indicators are the physiological 

properties of the human body or behavioral 

characteristics [5]. These indicators should be 

measurable, unique, and unreplictable, and should 

remain constant for a reasonable period of time [6, 

7].  

In the recent years, there have been a few research 

works in the fields of cognitive informatics and 

computer security. The analysis of progress in 

many cognitive informatics departments shows 

that these sections contribute to the development of 

contemporary cryptography, and can even be used 

to create the fields that combine the algorithms that 

guarantee the confidentiality and integrity of the 

data with the biometric information of people. Such 

a combination has created a branch of computer 

science called cognitive cryptography [2].  

One of the cognitive cryptographic applications 

available to prevent data leakage is the use of 

personal cryptography and the application of 
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biological models or biometric information for 

various security tasks. The most important example 

is the generation of personalized cryptographic 

keys for the symmetric or asymmetric encryption 

known as biometric encryption [8]. Encryption is a 

process that securely attaches a digital key to a 

biometric or generates a biometric key.  

In principle, the key is "encrypted" with a biometric 

and stored. If a correct biometric representation is 

provided, the digital key will be “decrypted” when 

it is checked. This encryption/decryption process is 

obscure because the biometric sample is different 

from the encryption key in normal cryptography at 

any time. An important technological challenge is 

that despite the natural change in the biometric 

input, a digital key will be re-created [9]. 

 The traditional biometric indicators are based on 

iris patterns [10] facial features [11], fingerprints, 

and audio features. However, using spoof attacks, 

these attributes can easily be falsified [12]. 

Recently, attention has been drawn to the use of 

electrical medical signals for biometric 

applications. An example of these signals is the 

electroencephalographic (EEG) signal [13].  

An EEG signal is an electrical record of brain 

activity that is known as voltage fluctuation due to 

ionic flow within the brain neurons [14]. The EEG 

signals can be recorded using electrodes placed on 

the scalp (non-invasive). 

 The EEG signals are divided into five standard 

sub-bands: the Delta (1-4 Hz), Theta (4-8 Hz), 

Alpha (8-12 Hz), Beta (12-30 Hz), and Gamma 

(30-44 Hz) frequencies [15]. Since the EEG signals 

are generated from the electrical field by pyramidal 

cells of the cortex, they belong to the physiological 

characteristics and can be classified as biometric 

behavioral characteristics based on the visual or 

emotional stimuli [13].  

The traditional biometric indicators like iris 

pattern, fingerprint, sound, hand geometry, and 

facial recognition used in biometric cryptographic 

systems have a limited number of features (for 

example, each person only has ten fingerprints, two 

irises, and one face); with the loss of these features, 

there is no other alternative. This problem is solved 

by the cancelable systems [3]. Ratha et al. have 

first introduced the concept of “cancelable 

biometric”. It consists of distortions on the 

biometric features based on a chosen transform to 

provide different versions of a biometric template 

[16]. 

Some of the practical reasons for using brain 

signals to generate encryption keys are as follow: 

1. Physical unclonable function (PUF): Neurons 

in the brain have unique connections for each 

subject and end in a different pattern from 

EEG, even if they have the same mental 

activity. 

2. Revocable: The EEG signals do not require a 

cancellable transformation of the biometric 

template to provide revocability. The key is 

generated using EEG derived from a particular 

mental activity, and if the key is at risk, by 

changing the mental activity, a new key can be 

generated using another mental activity. 

3. Entropy: Biometric EEGs measured across the 

population have a high entropy and raise the 

level of uncertainty in the key from the enemy's 

perspective. 

4. Coercion attack: Since the brain signals depend 

on a person's state such as stress, it is not 

possible to obtain a key by force and pressure 

[3]. 

Only a few research works have studied the 

possibility of generating cryptographic keys from 

brain signals. K.V.R Ravi et al. have used a method 

based on event-related brain signals for data 

encryption. The idea is to shuffle the Huffman tree 

using a cryptographic key generated by EEG 

signals recorded when the user perceives a 

common black and white line picture [17]. 

Palaniappan et al. have introduced one of the early 

ideas about the use of EEG for PIN generation. 

Their system was based on the P300-based BCI, 

which included an external visual stimulus. They 

considered the Cz electrodes to be suitable for a 

limited number of experiments [18].  

Lokeshwai et al. have introduced a new approach 

to data security that combines the concept of EEG, 

genetic algorithm, and pseudo-random binary 

sequences. For the key generation step, the 

extracted features of EEG are compressed using 

SPIH (Set Partitioning in Hierarchical Trees) for an 

efficient bandwidth usage, and are given as inputs 

to the pseudo-random generators. This system has 

been proposed as a theoretical idea with less 

analysis for implementation [19].   

Akhila et al. have proposed a set of independent 

components that combine the characteristics of 

several regions of the brain. In this work, the 

Principal Component Analysis (PCA) was used as 

the feature extraction algorithm. They also 

introduced the key generating techniques using the 

EEG signals. The system is heavily influenced by 

emotions [20].  

Garima Bajwa et al. have introduced the 

cryptographic key generation system, which in the 

first step, uses the EEG signals for authentication, 

and in the second step, key generation involves 

feature selection using normalized thresholds and 

segmentation window protocol. In this system, the 

discrete Fourier transform and discrete wavelet 
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transform were used for the feature extraction 

process. Finally, the mean Half Total Error Rate 

(HTER) for generating cryptographic keys from 18 

electrodes was 4.53% [3]. 
The recent published papers propose robust 

features to emotion and epilepsy based on the EEG 

signals. Dang Nguyen et al. have studied the 

influence of emotions on EEG- based key 

generation systems.  The experimental results 

showed that emotion had impacts on the accuracy 

of EEG-based cryptographic key generation. The 

accuracy of the system was at a maximum of 

97.88% for 16 channels selected from the DEAP 

dataset [21].  

Dang Nguyen et al also studied the influence of 

epilepsy on the EEG-based key generation systems 

and showed that epilepsy had impacts on the 

generated keys. They could achieve a minimum 

equal error rate of 2.10% for epileptic and 8.27% 

for the normal people using the EEG signal and 

Gama band, respectively [22]. 

1.1. System overview 

EEG-based cryptographic key generation consists 

of the following steps, as shown in figure 1. 

Enrolment: Before the key can be successfully 

generated by the system, the biometric indicators 

must be collected, processed, and stored. The 

quality of the stored biometric data is important for 

the next steps; usually, several biometric examples 

are used for registration, and the main template is 

created for the user, and is located in the template 

storage or database system. This process is called 

enrolment in the biometric systems [23].  

Key generation: The key generation step does not 

require to store the original biometric data, and it 

receives the EEG signals generated from mental 

activity, and then extracts the appropriate features 

and produces appropriate feature vectors. Feature 

vectors are converted to the binary mode in order 

to generate valid keys by using the templates in the 

template storage. After applying the hash 

functions, the generated key is compared with the 

generated key at the enrolment step to accept or 

reject. 

For the first time, Bajwa and Dantu proposed a new 

method for generating the cryptographic keys from 

an individual’s EEG signals, while a subject 

performed certain mental tasks to provide portable 

cognitive keys with a possibility of regeneration 

even on mobile devices. In order to achieve this 

goal, the system must have the least error. 

In this paper, we introduce a new method based on 

the window segmentation protocol for 

cryptographic key generation and add a new 

parameter to this protocol for decreasing the error 

rate of the system. The software used for 

implementation in this paper is Matlab R2018a. 
 

2. Methods 

2.1. Experimental data 

The dataset used in this work was taken from UC 

Irvine Machine Learning Repository. In this 

experiment, there were two groups of subjects: 

alcoholic and control. Each subject was exposed to 

either a single visual stimulus (S1) or to two stimuli 

(S1 and S2). In the case of the second stimulus 

(S2), it was presented in either a matched 

condition, where S1 was identical to S2 or in a non-

matched condition where S2 differed from S1.  

The duration of each picture stimulus in each test 

trial was 300 ms. The interval among each trial was 

fixed to 3.2 s. The occurrence of matching and non-

matching stimuli were randomized. The dataset 

 

Figure 1. Flow of key generation from EEG of the subjects. 
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contained EEG measurements from 64 electrodes 

placed on a subject’s scalp at a sampling rate of 256 

Hz for a 1-second duration. There were 122 

subjects, and each subject completed 120 trials of 

the three visually evoked stimuli presented in a 

random fashion. The data was recorded in a sound-

attenuated RF shielded room with the subject 

seated in a reclining chair. 

The signals were amplified with a gain of 10,000 

by EpA2 amplifiers with a bandpass between 0.02 

and 50 Hz. Data readings involving eye and body 

movements (> 73.3 μV) were rejected as noise [3, 

24]. We removed the data of two subjects as the 

EEG signals were noisy and contained many error 

trials. 

 

2.2. Feature extraction process 

Feature extraction can be considered as a mapping 

from the original space to the space of features in 

which new samples of different classes can be 

distinguished better.  

 

2.2.1. Fourier transform and power spectrum 

density 

Fourier transform is one of the non-parametric 

feature extraction techniques for EEG signals. The 

discrete Fourier transform of the EEG signal can be 

obtained according to (1). 

where, S(k) represents the k-factor of the discrete 

Fourier transform [5] and  N represents the number 

of signal samples. 

One of the most common signal representations in 

the frequency domain is the analysis of the signal 

power spectrum, so the spectrum estimation 

discussion is one of the most commonly discussed 

issues in defining and extracting the features of the 

signal. 

Previous researches have shown that there is a clear 

difference in the shape of the EEG signal power 

spectrum of different individuals, which have led 

the power spectrum to be one of the most important 

features used in most studies in the biometric field 

of the EEG signal [13].  

The power spectral density of EEG signals can be 

estimated directly from (2) [5].  

(2)    
21

sP k S k
N

  

The EEG signals are divided into five standard sub-

bands frequencies. In this paper, the time-domain 

signals were converted to the frequency domain 

using Fast Fourier transform (FFT), which is an 

efficient algorithm for calculating DFT.  

FFT was applied to all channels, and the frequency 

spectrum was obtained. Then by averaging this 

value on the EEG standard bands, five features 

were obtained for each channel. The power of each 

frequency band from 1 to 44 Hz was also 

calculated.  

2.2.2. Wavelet transform 

In this work, Discrete Wavelet Transforms (DWT) 

from the Daubechies family of wavelets were used 

to extract the features. The general decomposition 

of the signal into its detailed and approximate 

coefficients was achieved by applying a series of 

high and low-pass filters to the signal. 

 Unlike FFT, DWT displays a time-frequency 

representation of the signal and helps in analyzing 

the signals with discontinuity or severe changes. 

Daubechies's versions of "db4", "db6", and "db8" 

were compared, and "db8" was found to be more 

suitable for recording the significant changes in the 

EEG signals [3].  

Relationship between the EEG signal bands and 

wavelet decomposition tree are shown in figure 2.  

 

 

  
Figure 2. Relationship between the EEG band and 

wavelet decomposition tree [25]. 

In order to derive the feature by the DWT method, 

instead of using all the coefficients at each 

decomposition level, the following statistical 

information was extracted from the wavelet 

coefficients at each level. 

 Mean of the absolute value of the 

coefficients at each level. 

(1) 
21
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(k) (n)e
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 Average power of wavelet coefficients in 

each sub-band. 

 Standard deviation of coefficients in each 

sub-band. 

 

2.2.3. Autoregressive modeling 
In autoregressive modeling, the value of a signal in 

each moment is defined as a linear combination of 

the signal amount in a previous moment with the 

effect of white noise.  The mathematical expression 

x [k] is modeled as (3). 

     
1

p

i

i

x k x k i e k


     (3) 

In (3), e[k] is the gaussian white noise. Parameters 

of the model are the coefficients of this linear 

combination (αi). These coefficients are directly 

considered as the features [26]. In this paper, using 

the search method, p = 10 was selected. 

2.2.4. Log energy entropy 

This feature can clearly illustrate the complexity of 

the signal in time, and shows the spectral feature of 

the signal. That is why it can be used as a feature. 

If 𝐸(0) 𝐸(1), … , 𝐸(𝑁 − 1) represent the distribution 

of energy in N samples of the spectrum in each 

frequency band, the probability distribution 

function denoted by 𝑃(𝐸) can be defined as: 

 
 

 
1

0

i N

m

E i
P E

E m   






   

(4) 

The Log energy entropy of E can be obtained from 

[27]: 

   
1

2

2

0

N

i

i

logEn log P E        




 
  

(5) 

 

2.2.5. Sample entropy 

Sample entropy is a revised version of the 

approximate entropy, and is less sensitive to noise; 

it can be applied for the short-length time series 

data. This entropy can be expressed as the negative 

logarithm of the probability of two sequences that 

are similar in m points, with the condition that they 

remain similar at the next point, where self-

matches are not included in calculating the 

probability.  

This similarity is calculated by considering the 

tolerance ±𝑟. In order to calculate the sample 

entropy, the time series {𝑢(𝑗)  1 ≤ 𝑗 ≤ 𝑁} is 

expressed in an m-dimensional space with vectors 

of length m, as follows: 

  1

0
(i) (i k) ,i 1,..N m 1

m

m k
x u




    

  
(6) 

For vectors with length m, −𝐵𝑚(𝑟) is the 

probability of sharing two sequences in m points, 

and is obtained by counting the average number of 

vectors with Euclidean distance less than ±𝑟. (In 

this paper, the value of r is 0.1.) 

The same procedure was repeated by adding a unit 

to the vector 𝑚 ← 𝑚 + 1, and similar to the 

probability 𝐵𝑚(𝑟) at this stage, calculating the 

probability of −𝐴𝑛(𝑟) for 𝑛 ← 𝑚 + 1 [28]. 

(r)
(m, r, N) ln( )

(r)

n

m

A
SampEn

B
 

 
(7) 

 

2.3. Feature analysis 

In order to assess the effectiveness of signals in the 

generation of cryptographic keys, it is necessary to 

detect signals from one subject among other 

people.  

The similarity between the two signals is used as a 

criterion for illustrating this issue. Similarity gives 

a value between 0 and 1; when the similarity is 1, 

it represents a complete match.  

Self-similarity shows the similarity between the 

signals registered from one subject, while cross-

similarity shows the similarity between the signals 

of different people. The hypothesis is that self-

similarity in all tasks should always be more than a 

cross-similarity for all individuals. If this 

hypothesis is correct, the authentication system 

will be able to confirm the identities of the 

individuals. The key generation system will be able 

to generate unique keys for each person [29].  

The difference between self-similarity and cross-

similarity is used as a criterion with the name of the 

relative percentage difference to measure the 

degree of differentiation. 

The more distinguished signals have a higher 

relative percentage difference. Equation (8)  

represents a general mode for determining the 

similarity between the two feature vectors A and B 

based on the cosine distance [3]. 
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(A) 

(B) 

Figure 3. Self-similarity and cross-similarity (A) relative 

percentage differences (B) scores obtained across each 

subject. 

 

In figure 3.A, the highness of self-similarity 

compared to cross-similarity indicates that the 

similarity between the extracted features of one 

subject’s signals is greater than the similarity 

between the extracted features of different person's 

signals. The higher the relative percentage 

difference, the more distinguishability of the 

extracted features of the signal. A high 

distinguishability means that the extracted features 

are suitable for the cryptography key generation 

(figure 3.B). 

 

3. Key Generation 

In this work, a method was used for the biometric-

based key generation process, which is an extended 

version of the method used by G. Bajwa et al. [3]. 

This work also expands the methods used by Y.-J. 

Chang et al. [30] and F. Monrose et al. [31]. 

3.1. Feature mapping 
Initially, feature vectors are extracted for all 

electrodes, tasks, and subjects, and then feature 

vectors for generating keys are calculated as (9) for 

each electrode. 
3 3 3 3 3(

)
 

)

(
featurevector

    

    

   


   

 

(9) 

Here, α, β, γ, δ, and θ represent the values for the 

features of the standard frequency bands of EEG. 

The distribution of feature vectors for each subject, 

activity, and electrode is computed using the 

training dataset, and the parameters such as the 

standard deviation 𝜎𝑠𝑢𝑏,𝑓𝑒𝑎𝑡𝑢𝑟𝑒  and mean 

𝜇𝑠𝑢𝑏,𝑓𝑒𝑎𝑡𝑢𝑟𝑒 are obtained using these distributions. 

Also for the feature vectors of an electrode of the 

training set for all subjects, the global standard 

deviation 𝜎𝑔𝑙𝑜𝑏𝑎𝑙, the global mean 𝜇𝑔𝑙𝑜𝑏𝑎𝑙  and its 

global distribution is calculated. 

The global distribution width is obtained using the 

global standard deviation and the global mean 

calculated for the distribution of the training 

datasets for each task and electrode using (10). 

(10) 

  _

  _

global global

global global

windowstart k seg

windowend k seg

 

 

  

  
  

𝑘_𝑠𝑒𝑔 is a criterion used for determining the width 

of global feature distribution, and with increase in 

this criterion, the distribution width is increased. 

The interval bins for each subject’s feature vectors 

(features of an electrode) were derived in the global 

distribution using the authentication region of each 

subject’s feature vector. 

_ , , ,  

, , ,

(

,  )

reg interval sub feature sub feature sub feature

sub feature sub feature sub feature

Auth k

k

 

 

  

 
 

(11) 

The maximum value for 𝑘𝑠𝑢𝑏,𝑓𝑒𝑎𝑡𝑢𝑟𝑒 is obtained 

using the distinguishability criterion calculated in 

(12). 

, ,

,

,

global feature sub feature

sub feature

sub feature

k
 



 
  
 
 

 

(12) 

The number of bins can be obtained from (13). 

_

   
    1

reg interval

windowend windowstart
number of segment

Auth

 
  
  

 

(13) 

Each feature vector (feature vectors of a single 

electrode) is mapped from the training set to a bin 

of global distribution. 

  
   

_

_

    & 

  1

reg interval

reg interval

if FV windowstart index Auth

FV windowstart index Auth

  

   

 

(14) 

The index in (14) is the index of the mapped bin. 

For each subject and electrode, the most frequent 

index is selected as Ar.  

For each subject and electrode, the extracted 

patterns from the above steps are stored in the 

template storage. The templates are the number of 
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segment, Ar, Authreg- interval, window start and 

do not require the original biometric data to be 

stored. An example of a key generation process 

from the global feature distribution of an electrode 

for each subject is shown in figure 4. 

3.2. Proposed method 

The proposed method for improving the key 

generation algorithm is as follows. 

The index of bins for each electrode in (14) that is 

generated from a different trial of one subject is 

stored in vector V in accordance with (15). 

 1 2 3, , ,...v v vV  (15) 

After generating V, the distribution of this vector is 

calculated by the mean (μ) and standard deviations 

(σ). The distribution is defined as (16). 

   _ ,  _ ,l start l end k k       (16) 

In (16), k is a criterion for determining the width of 

distribution and is a parameter that has been added 

as the proposed method to the feature mapping 

algorithm. 

The start and end of the distribution width are 

stored as one of the templates in the template store.  

For the proposed method, Ar is defined as the mean 

of V and is different from Ar generated from (14).  

Because the size of 𝐴𝑢𝑡ℎ𝑟𝑒𝑔−𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 for each 

electrode of a subject is different, the number of 

global distribution bins for each subject and the 

electrode will be different.  

The templates for the proposed method are the 

number of segments, Ar, Authreg-interval, window 

star l_start, l_end, and do not require the original 

biometric data to be stored. 

3.3. Conversion to binary mode 

In order to use the key in the cryptographic 

systems, the generated key is used for the biometric 

features of individuals such as the number of 

segments, and Ar is converted to the binary mode 

using the algorithm in Appendix from [3]. 

Processing of the binary key generation involves 

two hash functions called SHA-1 and MD5 that are 

shown in figure 5, which results in a 640-bit-length 

key. The result of applying two duplicate functions 

creates more disturbance of the generated key. 

 

 
Figure 5. Flow of applying hash functions. 

 

3.4. Key evaluation 

For each subject, the features of the EEG signals 

are extracted, and then using (9) for each electrode, 

new feature vectors whose dimensions are equal to 

the number of electrodes are produced. Then the 

feature vector of each electrode is mapped to the 

corresponding bin using the stored template for 

each subject and the electrode in the template 

storage according to (14). If the index of bin 

belongs to the interval defined in (14), then Ar 

(mean of V) is chosen as a new feature vector. 

If the bin index does not belong to this distribution, 

the new feature will be the same as the bin index.  

Then using the algorithm presented in the 

Appendix for converting to the binary mode, the 

features are converted to the desired keys. 

This process is repeated for all electrodes. If 18 

electrodes are used to generate the keys, the keys 

  

Figure 4. An example of key generation process from the global feature distribution of an electrode for a subject[3,26]. 
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from each electrode are connected to each other, 

and after applying the hash function, the generated 

key is compared for rejection or acceptance with 

the key in the template storage.  

This system is named as an 18-channel system but 

if the generated key of each electrode is used 

separately, it is called a single-channel system.  

3.5. Parameter selection 

To reduce the key generation error, the appropriate 

values for both the k and 𝑘_𝑠𝑒𝑔 values that are 

introduced in the key generation section and the 

proposed method must be selected.   

According to (16), as the value of k increases, the 

amount of l_start decreases and the amount of 

l_end increases, so the width of the distribution and 

the probability of the belonging index of the bin to 

this interval increases. As a result, the value of FRR 

decreases.  

In figure 6.A, the FRR diagram for the 18-channel 

system is shown in terms of different 𝑘_𝑠𝑒𝑔 values 

for different k values. As shown, the amount of 

FRR decreases with an increase in the k value.  

By increasing the value of 𝑘_𝑠𝑒𝑔, the distance 

between the distributions in (16) increases, so the 

overlap with FAR is decreased. In figure 6.B, the 

FAR diagram for the 18-channel system is shown 

in terms of different values of 𝑘𝑠𝑒𝑔; as shown, 

increasing 𝑘_𝑠𝑒𝑔 decreases FAR. However, the 

FRR changes are not significant with increasing the 

k value, except in certain cases, and the diagrams 

are on each other. 

In figure 7.A, the HTER diagram for the 18-

channel system is obtained in terms of different 

values of 𝑘_𝑠𝑒𝑔 for various k values. As it is 

known, increasing k results in decreasing HTER 

but the amount of these changes decreases too, and 
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 Figure 6. FRR (A) and FAR (B) diagrams in terms of different values of k_seg for different k values for the 18-channel 

system. 
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eventually, in k = 8, 9, 10. The amount of these 

changes is negligible and can be ignored, so k = 10 

is chosen. 

In figure 7.B, the HTER diagram is shown in terms 

of 𝑘_𝑠𝑒𝑔 for the 18-channel system, which is 

obtained for k = 10. As shown in the diagram, 

increasing 𝑘_𝑠𝑒𝑔 decreases HTER, and finally, it 

becomes almost constant, and there are no 

significant changes, so  𝑘_𝑠𝑒𝑔 = 180 is selected. 

 

4. Experimental results 

For the database used in this paper, the tasks were 

the visual images. Considering the occipital and 

parietal areas of the human brain are related to 

vision and the activities of the occipital and parietal 

areas will be noticeable when performing these 

tasks. 18 electrodes are selected among the 64 

electrodes in these areas (T7, T8, O1, O2, PO7, 

PO8, TP8, TP7, P3, P4, P5, P6, C3, C4, P8, P7, P1, 

and P2).  The position of the selected electrodes is 

shown in figure 8 on the international system 10-

10. 

 
Figure 8. Position of selected electrodes on the 

international system 10-10. 
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Figure 7. HTER diagram in terms of different k_seg values for different k values, 18-channel system (A) The HTER 

diagram in terms k_seg for the 18-channel system and k = 10 (B). 
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Different feature extraction methods, for 

example, frequency features, time-frequency 

features, statistical features, and entropy-based 

features are used in this paper. Among the 

entropy-based features, the extracted features of 

sample entropy, Log energy entropy had a higher 

relative percentage difference. 
The combined feature vector for a subject from 18 

selected channels has 79 features per electrode 

containing (44+5) FFT features, 18 DWT features, 

one energy entropy feature, one sample entropy 

feature, and 10 autoregressive coefficients features. 

The justification that has in the literature, splitting 

a dataset into 60% to 80% for training to better 

model the underlying distribution and then test the 

results with the remaining 20-40% is a good 

choice.  

In this paper, 70% of the database was randomly 

selected and used for the training system, and 30% 

of the database was used for key evaluation. The 

evaluation of the keys will be based on the FAR 

and FRR criteria. The system may create two types 

of errors: a false acceptance (FA) error when the 

system accepts an imposter and a false rejection 

(FR) error when the system rejects a client. 

(17) 𝐹𝐴𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑅𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑖𝑒𝑛𝑡  𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 

(18) 𝐹𝑅𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐴𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 

(19) 𝐻𝑇𝐸𝑅 =
𝐹𝐴𝑅 + 𝐹𝑅𝑅

2
 

FRR is the ratio of the number of times the key 

generation system will incorrectly reject the 

derived key of a genuine user to the total attempts. 

FAR is the measure of the likelihood that the key 

generation system will incorrectly accept the 

derived key from an unauthorized user [3]. In most 

cases, the system can be measured using a decision 

threshold for obtaining a compromise between a 

small FAR or a small FRR [32]. Therefore, a trade-

off depends on the system policies. If systems try 

to reduce FAR to the lowest possible level, FRR 

will rise. In other words, the more secure your 

access control, the less convenient it will be, as 

users are falsely rejected by the system. The same 

also applies the other way round.  

The mean FAR and FRR values for all individuals 

in the database and 18 selected electrodes are 

shown in figure 9.A, and the mean HTER values 

for all individuals in the database and 18 selected 

electrodes are shown in figure 9.B. 
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Figure 9.The mean FAR and FRR (A), HTER (B) values for all individuals on 18 electrodes for all tasks. 
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Table 1 shows the mean HTER, FAR, and FRR of 

the 18-channel system for all electrodes and 

subjects. The total error shows the average of 

HTER, FAR, and FRR for three tasks.  

 

Table 1. Mean error for tasks for all individuals of the 18-

channel system. 

Total 

Error 

S2-

NoMatch 

S2-

Match 
S1-task  

0.76 0.89 0.86 0.54 HTER (%) 

0.33 0.43 0.27 0.30 FAR (%) 

1.18 1.34 1.44 0.78 FRR (%) 

 

For evaluation of the probability of success, the 

generated keys at the key evaluation step are 

compared with the generated key at the feature 

mapping step, which is stored in the template 

storage for all subjects and tasks. Table 2 shows the 

probability of success in the key generation for 

three tasks and subjects of the 18-channel system. 

Total probability shows the average value of the 

probability of success for three tasks.  

 

Table 2. Mean probability of success in the key generation 

for tasks for all individuals of the 18-channel system. 

Total 

probability 
S2-

NoMatch 
S2-

Match 
S1-

task 
 

95.1 94.1 95.4 96 
Probability 

of success 
(%) 

 

HTER for the single-channel system is shown in 

table 3. In this table, among the 18 available 

electrodes, 6 electrodes are selected with the lowest 

HTER. 

 

Table 3. Mean HTER for tasks for all individuals of the 

single-channel system. 

Total 

Error (%) 
S2-NoMatch 

(%) 
S2-Match 

(%) 
S1-task 

(%) 
 

0.59 0.57 0.73 0.49 P8 

0.64 0.86 0.68 0.39 O2 

0.48 0.74 0.48 0.23  TP8 

0.62 0.72 0.56 0.59 TP7 

0.54 0.55 0.58 0.49 P5 

0.59 0.72 0.61 0.44 PO8 

 

5. Discussion 

Network security is very important when 

confidential data is sent within organizations or 

between organizations through the network. 

Biometric cryptography is an emerging 

methodology in communication networks. From 

the brain signals, we can generate a binary code 

that can be used as a cryptographic key. The 

security of the key can be improved because brain 

waves will be one of the most powerful biometrics 

compared to others. For practical applications, 

error of the generating keys must be decreased. The 

goal of the proposed method in this paper is to 

decrease HTER.  

 

Table 4. Comparison of results obtained with those of 

previous works. 

Results (%) Methods 

2.1  EER Dang Nguyen et al. [22] 

4.78  HTER Garima Bajwa et al. [3] 

0.76  HTER This paper 

 

Table 4 shows a comparison of the results obtained 

with those of some previous works in the field of 

cryptographic key generation using EEG signals. 

For 18-channel cryptographic systems, according 

to the results presented by the G. Bajwa and R. 

Dantu’s method, HTER for the three S1-task, S2-

Match, and S2-NoMatch tasks was 4.28%, 4.80%, 

and 4.78%, respectively, and the total HTER of the 

system was 4.62%.  

Dang Nguyen et al. achieved 2.1% EER (Equal 

Error Rate) for their systems. According to the 

results tabulated in table 1, HTER for the proposed 

algorithm is 0.76%, which is significantly reduced. 

In table 1, the mean FAR and FRR for each one of 

the three tasks were 0.33 and 1.18, respectively. 

Comparing to the G. Bajwa and R. Dantu’s 

method, FAR has increased slightly and FRR has 

decreased. 

The low amount of FAR indicates that the 

generated keys are unique for each subject and 

people (with a small error) cannot generate other 

people's keys. 

Table 2 shows the 95.1% total probability access 

for three tasks. The high amount of probability of 

success and a low amount of FRR (Table 1) 

indicate that the generated keys are repeatable for 

one subject during different trails. This means that 

using the same task at different times and records, 

the key generation systems can produce the same 

keys. 

The proposed algorithm was applied to three 

different activities, for which there was an 

acceptable error rate, thus the generated key had the 

property of revocability. If the generated key from 

one visually evoked task is at risk, changing the 

task produces another key. 

Considering that the HTER value varies for 

different electrodes, it can be concluded that the 

system error rate is sensitive to the selection of the 

electrode. According to the type of task or mental 
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activity, a better combination of electrodes with 

high relative percentage difference can be selected. 

A key space is one of the important security factors 

in a cryptographic system, and is referred to as all 

possible states for key generation. If the binary key 

has n bits, the key space is 2𝑛. The key length in 

this system is 200-230 bits before applying the hash 

function. In comparison to other biometric 

indicators, we can say [33]:  

Token (1012) > Password (1014–106) > Iris (106) > 

Fingerprint, PIN (104) > EEG-based cryptographic key 

(1/0.0027 ~ 370) > Face (6.25) 

The key space of the generated key by this system 

is only higher than the face. Increasing key space 

to prevent search attacks is one of the most 

important priorities of this system. In this database, 

with the combination of different assignments, the 

key length can be increased up to three times. 

The key generated from the proposed algorithms 

for hash function has 640 bits, and can be increased 

up to 1920 bits with combining different activities.  

One of the problems with EEG-based 

cryptographic keys is the difficulty of collecting 

signals. The solution proposed is to use single-

channel and portable signal recording devices. In 

this paper, based on the results obtained and the 

acceptable error rate for each electrode, single-

channel EEG-based systems could be generated. 

Table 3 shows the results for the six electrodes P8, 

O2, TP8, TP7, P5, and PO8, among which the TP8 

electrode has the lowest mean HTER for all three 

activities and is equal to 0.48. Also the mean FAR 

and FRR for all three activities were achieved to be 

0.1 and 0.87, respectively. 

Before applying hash functions, the generated key 

by the single-channel system is weak in terms of 

key space and is, on average, 10-15 bits, which are 

not usable in cryptographic systems. 

 

6. Conclusions and future works 

In this paper, unique and cancelable cryptographic 

keys with repeatability were studied using the EEG 

signals for 120 subjects. The purpose of the 

biometric cryptographic key generation systems in 

this paper was to reduce the error of generating 

keys in order to increase the efficiency of the 

system for practical applications; the proposed 

method and different extracted features from the 

signal significantly reduced this error.  

Also a single-channel EEG-based cryptographic 

key generation system was introduced in this paper. 

Given that the EEG signal and its application in 

BCI systems is an active area, it is expected that 

with portable devices and dry electrodes, this 

biometric index enters practical applications in the 

daily lives of individuals. 

The proposed system has some limitations such as 

sensitivity social engineering attacks, dictionary 

attacks, and phishing attacks that have not been 

studied in this work. The key space of the generated 

keys by the proposed system is weak, so one of the 

most important goals of future works should be to 

increase the key space of these keys, especially in 

the single-channel mode. The generated keys in 

this system are outputs of the hash functions, so the 

length of the generated keys from the single-

channel systems with 18-channel systems will be 

the same, and considering the nature of the hash 

functions, these two keys must be checked for 

security. 

 

7. Appendix  

Pseudo-code for converting feature vector to binary 

mode. 
Algorithm 1: Binary Feature Vector Quantization 

Input: Biometric feature vector Fv, number of segmentation N, 
Authentication region Ar 

For i : 1 to  Number of subjects 

       For j : 1 to Number of electrodes. 
              temp_key[0] :dec to bin (Fv[i][j])      %Binary quantization 

              Seed : Fv[i][j] mod Ar[i][j] 

 % Determine seed for temporary key 
          temp_key[k]: XOR(temp_key[k-1], seed) 

              key[i]: circularshift(temp_key[k],N[i][j]) 

              % Use the number of segments to perform the circular shift 
              N_key[i]: (N_key[i] || key[k]) 

              % Concatenate the bits from each round to form the key 

       End for 

End for 

Return N_key 
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