

Journal of AI and Data Mining

Vol 8, No 2, 2020, 189-199. DOI: 10.22044/JADM.2019.7564.1900

A Hybrid Meta-heuristic Approach to Cope with State Space Explosion in

Model Checking Technique for Deadlock Freeness

N. Rezaee and H. Momeni*

Department of Computer Engineering, Golestan University ,Gorgan, Iran.

Received 13 October 2018; Revised 31 May 2019; Accepted 01 December 2019

*Corresponding author: h.momeni@gu.ac.ir (H.Momeni).

Abstract

Model checking is an automatic technique for software verification through which all the reachable states are

generated from an initial state in order to find the errors and desirable patterns. In the model checking approach,

the behavior and structure of the system should be modeled. The graph transformation system is a graphical

formal modeling language used to specify and model the system. However, modeling large systems with the

graph transformation system suffers from the state space explosion problem, which usually requires huge

amounts of computational resources.

In this paper, we propose a hybrid meta-heuristic approach in order to deal with this searching problem in the

graph transformation system because meta-heuristic algorithms are efficient solutions to traverse the graph of

large systems. Using the artificial bee colony and simulated annealing, our approach replaces a full state space

generation, only by producing part of it checking the safety, and finding the errors (e.g. deadlock). The

experimental results obtained show that the proposed approach is more efficient and accurate compared

with other approaches.

Keywords: Software Verification, Model Checking, State Space Explosion, Meta-heuristic Approaches,

Graph Transformation System.

1. Introduction

Model checking is an automated technique used for

the verification of concurrent finite state systems,

through which the behavior of the system is

analyzed based on the time characteristics by

searching for a state graph [1-4]. The graph

transformation system (GTS) is a suitable visual

modeling language used to formally describe and

verify the system behavior [2]. GTS describes the

properties of systems including the behavioral and

structural properties, and it is widely used for

system specification and verification. GTS is

determined as a triple (TG, HG, R), whereby TG is

the type graph, HG is the host graph, and R is the

rules set.

In the model checking-based verification through

GTS, the temporal logic properties such as safety

are examined by a comprehensive search of the

whole state space. Since in a large and complex

system the size of the state space expands

exponentially with the number of processes, GTS

encounters the state space explosion that consumes

all the memory space that is consumed [5- 7]. When

the state space explosion occurs, GTS cannot

traverse through the whole graph. In this situation,

it has been suggested to use a refutation technique

to check the violation of a property instead of its

proof so that there is no need to generate the entire

state space [8- 10]. In this work, we checked the

violation of safety property through deadlock

detection.

In the recent years, some meta-heuristic approaches

such as Genetic Algorithm (GA), Ant Colony

Optimization (ACO), Artificial Bee Colony (ABC),

Particle Swarm Optimization (PSO), and Simulated

Annealing (SA) have been widely used to cope with

state space explosion because these approaches do

not search for exhaustive states that, in turn, lead to

a reduction in the state space size. In this

paper, a hybrid ABC-SA algorithm is proposed to

cope with the state space explosion problem in the

http://dx.doi.org/10.22044/jadm.2018.6311.1746
mailto:h.momeni@gu.ac.ir

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

190

refutation technique. As ABC may get trapped into

the local optima, SA is an efficient algorithm in

local search as well as in escaping from the local

optima. The main contribution of our paper is to

map the deadlock detection onto a search problem

in the graph transformation system. Since the state

space to deadlock detection is large for the complex

systems, we solved this problem using the ABC-SA

algorithm. The other contribution of our paper is to

consider the efficiency and accuracy in the

refutation technique in GTS.

The proposed approach is implemented in model

checker Groove [11], and is verified in terms of

deadlock-freeness and correctness.

The rest of this paper is organized as what follows.

Section 2 provides a brief background. Section 3

presents some notable related works. Section 4

presents the proposed approach. Section 5 presents

our model and the evaluation results. Sections 6 and

7 provide the running details and Wilcoxon signed-

rank test for evaluating the results, and finally,

Section 8 concludes the paper.

2. Background

2.1 Model checking

In the model checking technique, a model checker

requires a model of the system and a set of

properties (such as reachability [9], safety [22-27],

liveness [22-24, 26-27], and fairness [5, 8]) as

inputs to systematically examine whether the given

model meets these characteristics or not. This is

accomplished by searching for the entire state space

of the system to determine whether the current

behavior described by the time property is obtained

from the system graph state or not [20-21]. The

main challenge of the model checking technique is

to cope with the state space explosion problem [28-

29].

2.2 Artificial bee colony algorithm

ABC algorithm [31] simulates the behavior of real

honey bees. There are three groups of bees in the

colony of artificial bees including the employed,

onlookers, and scouts bees. The population of ABC

consists of SND-dimensional vectors of decision

variables [32] as (1):

 ,1 ,2 , , , , , 1,2, , i i i i DX x x x i SN    (1)

Each Xi, which is defined by the lower and upper
bounds Xmin and Xmax, is generated by (2):

  , , , , 0,1 i j min j max j min jx x rand x x   (2)

where, i = 1, 2, …, SN, and j = 1, 2, …, D. With
respect to each individual Xi, a candidate Vi is

produced by adding the scaling difference of two
population members to the base individual as (3):

 , , , , , i j i j i j i j k jv x x x    (3)

where,   1, 2, , k SNò and   1, 2, , j Dò are

randomly selected indices, k has to be different
from i, and ,i j is a random number in the range of

[-1, 1]. Then a greedy selection is performed
between the old individual iX and the candidate

iV

. The employed bees will share the information
received from their searches with onlooker bees.
Given the probability value iP of the corresponding

solution, each onlooker chooses a solution by (4):

1

i
SN

j

j

fit
Pi

fit






 (4)

where,
ifit is proportional to the nectar amount of

the food source in the position i, is called the fitness
value of the ith solution, and defined by (5):

 

 
i i

i

i i

1 f , f 0
fit

1/ 1 f , f 0

abs 
 

 

 (5)

where, if is the objective function value of solution

i that can be computed by (9). Then each onlooker
bee generates a new candidate solution by (3), and
the greedy selection is performed again. The value
of the pre-defined number of cycles is one of the
important control parameters for ABC, named limit.
If iX is an abandoned individual, then the scout

generates a new solution by (2) to replace
iX .

2.3 Simulated annealing algorithm
The simulated annealing is a meta-heuristic
algorithm for approximating global optimization in
large search spaces [30]. In order to escape from the
local optima during exploration of the solution
space, the SA algorithm lets the worse neighbor
solutions in a controlled manner to be accepted
[33]. In each iteration, for a current solution x, a
neighbor x’ is selected from the neighborhood of x.
For each movement, the objective difference ∆ is
evaluated by (6), where  f x and  ’f x are the

objective function values of x and x’; x’ could also
be accepted with a probability by (7):

    ’ – f x f x  (6)

 /Ps exp T  (7)

where, the probability of acceptance is compared
with a number  0,1rò generated randomly, and x’

is accepted whenever p r [34]. T is a temperature,

which is controlled by a cooling scheme. In a

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

191

typical implementation of SA, decreasing the
temperature T takes place in each iteration, starting
from an initial value T0 and using an attenuation
factor  0,1ò , which is constant, and typically,

0.75 β 0.95  . In the first iteration, T0 must be high

enough to let a worse solution to be accepted. In
each iteration i, the current temperature value is
evaluated by (8):

0 i

iT T (8)

3. Related works

To the best of our knowledge, no work has been

done yet on mapping deadlock detection in the

large state space to a searching problem in GTS.

The techniques available for coping with state

space explosions could be divided into several

categories according to how they make and search

for their state space. The classic methods first

create the entire state space, and then search for all

the possible states [35], e.g. depth-first search

(DFS) and breadth-first search (BFS) [36]. Several

methods have been proposed to reduce the size of

the state space, e.g. symbolic verification, partial

order reduction, symmetry checking methods,

scenario-driven model checking, and abstraction.

The other kinds of methods are on-the-fly

techniques, which construct the state space on

demand dynamically during the model checking

operation [37-47, 53]. In the recent years,

intelligent methods have been considered in model

checking systems. In [10, 48], the use of GA to

explore very large state spaces in search of error

states has been examined.

In [49], a model has been presented for solving the

Travel Salesman Problem (TSP) using ACO. The

goal is to guarantee that most of the time the

shortest paths are probabilistically taken. In [50],

the use of ACO to reduce the state space explosion

problem by finding the shortest counter examples

has been provided. In [60], the use of ACO to refute

the safety property in the concurrent systems has

been presented.

In [51], a comparison has been made between five

meta-heuristic algorithms for the state space

explosion problem including SA, ACO, PSO, and

two types of GA, and five other classic search

algorithms to solve the problem of finding the

properties violation in concurrent Java programs.

Teaching-learning-based optimization (TLBO) is a

new type of meta-heuristic approach used in this

scope, which finds better or equal solutions much

faster than ES, PSO, ABC, etc. [32].

By the same token, in [35], a new ACO

optimization model, called ACO-hg, has been

presented to violate the safety properties in the

concurrent systems. In [54], using this algorithm

has been proposed to investigate the violation of

the liveness property in the concurrent systems.

Furthermore, in the recent years, a combination of

heuristic or meta-heuristic algorithms with one

another or with other algorithms has been used to

improve the process of finding errors in the model

checking technique. In [55], two new algorithms

have been utilized to find the deadlock in the

complex software systems specified by GTS. The

former is a hybrid algorithm that uses PSO and

BAT (BAPSO), and the latter is a greedy algorithm

to find deadlocks.

Besides, in [2], the PSO algorithm has been used to

find the optimal path for a deadlock state. To

increase the accuracy, a hybrid algorithm has been

proposed using PSO and GSA. Similarly, in [56],

symmetry reductions and heuristic search have

been combined to detect safety errors in

asynchronous systems.

In [61], a data mining-based approach, called

EMCDM, has been proposed for detecting

deadlocks in models that are specified by GTS.

In [62], a new method based on the Bayesian

Optimization Algorithm (BOA) has been proposed

to deadlock detection in systems specified through

GTS.

In [63], a data mining-based approach has been

proposed, where after getting the required

knowledge, only a small portion of the state space

is explored to refute the desired property. Meta-

heuristic algorithms increase the performance and

accuracy of search problems[64] and we use these

algorithms in our proposed approach.

4. Proposed approach

We now describe our approach to cope with the

state space explosion problem in the systems that

are specified and modeled by GTS in this section.

We used the refutation technique to check to refuse

an error or property rather than providing that error

or property. This goal can be reached by looking

for a path that contains a property violation (called

a counter-example).

In our case, we aimed to detect deadlock as a type

of safety property. Safety property states that a

good event must occur in all states or a bad event

(for example, a deadlock) must not occur in any of

the states. If we reach a deadlock in the system’s

state space, we can conclude that the safety

property has been violated.

In addition, we used the meta-heuristic algorithms

in our approach due to the efficiency of these

algorithms for searching for the problems with very

large state spaces.

The objective of this paper is to cope with the state

space explosion problem in the complex system

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

192

specified with GTS to find errors (e.g. deadlock).

To detect a deadlock, a set of paths in graph should

be traversed. We employed the ABC algorithm to

find an optimal path to a deadlock state but since

the ABC algorithm, like many other artificial

intelligence algorithms, may stick in the local

optima, we combined it with the SA algorithm,

which is another intelligent algorithm that is good

at escaping from the local optima [31]. We present

our proposed algorithm, namely ABC-SA, in this

section and apply it to the searching strategy in

GTS and Groove tool.

4.1 Food sources as problem solutions
In the proposed algorithm, the position of each bee
in ABC is considered as a candidate solution. This
position is represented by a sequence of numbers
that demonstrate a path.

These numbers are generated randomly with a
random function, and the values are between 0 and
the maximum number of outgoing transitions in
each problem. This maximum number relies on the
rules of the model that we are checking. In figure 1,
a path that is a representative of a food source in the
ABC algorithm in a hypothetical state space is
shown in a dark blue color. In this example, the
position of the food source is <0, 2, 0, 1, 0>.

Figure 1. A path in a hypothetical state space.

4.2 Applying ABC-SA in model checking

In the ABC algorithm, by generating new candidate

solutions, if the algorithm selects a new solution,

provided that it definitely becomes better, it may be

trapped into the local optima; therefore, we

combine ABC with the SA algorithm as is shown

below. SA selects the neighbor that is worse with a

specific probability computed by (7). In each

iteration, at first, the possibility of accepting a

worse solution is higher but since the temperature

cooling procedure takes place, it reduces.

The pseudo-code of the ABC-SA algorithm.

1. Create the initial population and initialize the SA parameters; T

(initial temperature)

2. Iteration = 1

3. Send the employed bees to their food source

4. Calculate probabilities of each food source

5. Send the onlooker bees to the food sources with higher

nectar amounts

6. Send the scout bees to the search area to find new food

sources randomly instead of abandoned food sources

7. Memorize the best food source up to now

8. Simulated Annealing search process

9. Reduce the temperature

10. Record the global minimum

11. Calculate the fitness of each food source

12. Iteration = iteration + 1

13. If termination criterion (iteration, temperature, deadlock found), met,

return the result

14. Else, go to 3

4.3 Objective function

Our goal was to verify the model and find

deadlocks, so we sought for paths through which

the outgoing transitions of the states were

decreased. We computed the sum of the outgoing

transitions in a path as the fitness function. This

fitness value was calculated by (9), where Sumi is

the sum of the generated states in a depth of i.

1

() Sumi
DepthOfSearch

i

F x


 
(9)

5. Modeling and evaluation

In this section, we present a formal model of our

approach with GTS, and use the refutation

technique to formally verify the soundness of the

ABC-SA algorithm for the deadlock detection.

The results obtained are displayed as to whether the

desired characteristic is satisfied or not. We

considered the number of times that the path was

generated to the final state (deadlock) as the “Hit

Rate” and the time consumed for the verification as

the “Response Time”.

The control parameters of the ABC-SA algorithm

are presented in table 1. Each experiment was

repeated for 30 times, and the average response

time (in seconds) was recorded.

In order to test our proposed approach, we used four

famous problems that could not be verified by the

existing tools due to the state space explosion

problem. These problems were dining philosophers

[57], Pacman game [58], N-queen [59], and 8-

puzzle. We compared the results of the proposed

approach with the classical strategies such as BFS,

DFS, and A* in the same machine. We also

compared our results with the meta-heuristic-based

strategies such as GA, PSO, ABC,PSO+GSA

nBOA, and BAPSOS, presented in [10], [2], [61],

and [55] with the same parameters and the same

machine.

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

193

Table 1. Control parameters of the ABC-SA algorithm.

Control parameters of ABC-SA algorithm

Iteration 100

Swarm size It is different in different

models
Limit Number of onlooker bees

*Dim

Number of onlookers 50% of the swarm
Number of employed bees 50% of the swarm

Number of scouts 1

5.1 GTS model
In this section, we present the model of the dining
philosopher problem with GTS completely by
showing its Type Graph, Host Graph, Graph
Transformation Rules, and Final State Graphs but
for the other problems, we will not describe their
models here so as to avoid additional explanations.

Dining Philosophers

In this problem, a number of philosophers are

sitting around a table. At first, each philosopher is

thinking, and then he gets hungry; each philosopher

needs two forks to eat. After eating, he starts

thinking again. This process can be repeated.
Figure 2 shows the type graph of this problem in
Groove tool, which is composed of philosopher and
fork classes. Forks taken by the philosophers are
modeled using Hold's edges. The philosopher’s
class has a status attribute, which specifies the
current status of the philosopher. This attribute is an
integer, which refers to 0 for thinking, 1 for hungry,
2 for having a left fork, and 3 for eating.

Figure 2. Type graph of the dining philosopher problem.

Figure 3 shows the Host Graph (start state) of this
problem. In the initial state, all forks are on the
table, so there are no hold edges in the model, and
the status of all the philosophers is think = 0.

Figure 3. Host graph of the dining philosopher problem

with 3 philosophers and forks.

In figure 4, the graph transformation rules are

shown for the dining philosopher problem.

Figure 4. Dining philosopher’s graph transformation

rules.

If all the three philosophers take their left fork and

wait for the right fork to start eating, then a deadlock

occurs. A graph of this deadlock state (final state) is

shown in figure 5.

Figure 5. The final state graph for the dining

philosophers problem with 3 philosophers and 3 forks.

5.2 Evaluation

The results of the experiments in these 4 problems

by applying the proposed algorithm and comparing

with other algorithms are presented in tables 2-5.

As shown in table 2, the speed of ABC-SA as a

search strategy is much better than that of the other

algorithms, and in all cases, in all 30 runs of the

algorithm, it succeeds to detect the deadlock, so the

"hit rate" of this algorithm is 100%.

As shown in table 3, since in the state space of this

problem the number of deadlock states is high, and

they can be reached from different paths, the

response time is low.

Table 4 shows that the response time of the ABC-

SA algorithms is lower than that of the other

algorithms. However, it is worth mentioning that

the hit rate of the ABC algorithm in comparison

with ABC-SA is lower. For example, in the first

case, the 8 × 8 dimension, in the 30 runs of these

algorithms, ABC can find deadlock in 24 runs; this

means that its hit rate is 80% (that happens because

of trapping in the local optima problem of the ABC

Fork

Philosopher

Hungry
Status: int

Left

Hold

Right

Left Right

Right

Left
Right

Left

Phil

Think

Fork Fork

Fork

Phil

Think
Phil

Think

Release right Release left

Get Left

Hold

Left

Think

Get Right

Eat

Hold
Fork

Right

Go Hungry

Hold

Hold

HasLeft

Phil

Hungry

Phil

Fork Left

Right Hold

HasLeft

Phil

Phil

Hungry
Phil

Fork
Right

Think
Phil

HasRight

Hold
Fork

Left

Eat Phil
HasRight

Hold

Left
Right

Hold

Left

Right

Hold

Left Right

Phil

HasLeft

Fork Fork

Fork

Phil

HasLeft Phil

HasLeft

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

194

algorithm) but in the same situation, the ABC-SA

algorithms get response in all 30 runs, so its hit rate

is 100%.

As it is shown in table 5, although the nBOA

response time is lower than that of ABC and ABC-

SA in the first two cases, it cannot find deadlocks in

the third case; however, ABC and ABC-SA can find

it in all cases and all runs, so their hit rates are 100%

in this complicated problem.

Figures 6-9 show comparison of response time of

the dining philosopher problem, Pacman problem,

N-Queen problem, and 8-puzzle problem in our

proposed approach and in the other approaches. As

they show, the response time of our approaches is

lower than that of the other approaches.

Figure 6. Comparison of response time for the dining

philosophers problem.

Figure 7. Comparison of response time for the pacman

problem.

Figure 8. Comparison of response time for the N-Queen

problem.

Figure 9. Comparison of response time for the 8-puzzle

problem.

6. Running details
In tables 6 and 7, we describe the running details of
different approaches on the dining philosophers’
and N-Queen models (we only show the results of
two models due to the limitation of the page
numbers but the Pacman and 8-puzzle’s results are
the same). In these tables, we have the maximum
and minimum numbers of explored states, and the
transitions and runtimes in each 30 runs for every
algorithm on the specific models. As shown in the
results obtained, in both the maximum and
minimum columns, the number of explored states
and transitions in the ABC algorithm is more than
that of ABC-SA in most cases. This shows that the
hybrid algorithm can find deadlocks by finding the
smaller counter-examples and by comparing the
runtimes, so we see that the ABC-SA algorithm can
also find deadlocks in a shorter time compared to
the ABC algorithm. The results obtained indicate
that the explored states and transitions of the ABC-
SA algorithm in almost all the cases are less than
those in the other algorithms. They showed that we
reached our goal because we found deadlocks by
exploring fewer numbers of states and shorter
response times.

7. Wilcoxon signed-rank test for evaluating

results

The Wilcoxon signed-rank test is a non-parametric

statistical hypothesis that is used for comparing

two related samples [65]. It is a test that can affirm

that the results of our proposed approaches are

significantly different from those of the others.

This test was performed by the SPSS toolbox. In

SPSS, if the output decision criterion (sig.) is less

than 0.05, it can be concluded that there is a

significant difference between the two groups of

data. We performed this test on the results of the

hybrid ABC-SA approach against the GA, PSO,

PSO-GSA, BAPSO, and nBOA approaches in

terms of the response times. The results of the test

are shown in table 8. As shown in this table, the

decision criterion (sig.) was less than 0.05 for

ABC-SA against all the other approaches except

for nBOA that was 0.23. Thus we can conclude that

the average response time of our proposed

approach is significantly different from that of the

other approaches. As shown in the previous

section, our proposed algorithm’s hit rate was

100%, while the hit rate of the other algorithms was

not 100% in all cases, and this was an important

parameter in this context.

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

195

Table 2. Experimental results of different approaches to the dining philosophers problem (average response time (s)).

Count of

phils.

Depth of

search

Colony

size

BFS

/DFS/A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA

10 25 15 O
u

t o
f m

em
o

ry

3.16 13.45 38.92 8.34 0.71 1.52 0.8

20 100 20 10.12 158 170 64.6 1.04 1.53 0.7

40 120 40 23 - - - 5.03 1.72 0.87

60 140 60 - - - - 11.35 2.03 0.81

80 180 80 - - - - 27.3 3.06 1.08

100 220 100 - - - - 55.53 2.51 0.92

Table 3. Experimental results of different approaches to the Pacman problem (average response time (s)).

Dimension

Depth

of

search

Colony

size
BFS DFS A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA

4 × 4 100 40 6 4 18.56 1.034 2.6 1.9 1.3 1.03 1.28 0.97

4 × 5 100 60

O
u

t o
f

m
em

o
ry

4.5

O
u

t o
f

m
em

o
ry

1.123 4.9 4.7 2.8 0.72 1.11 0.91

5 × 6 100 80

Out of

memor
y

1.321 11.7 14.5 7.9 0.77 1.43 0.98

Table 4. Experimental results of different approaches to the N-Queen problem (average response time (s)).

Dimension
Depth of

search

Colony

size
BFS DFS A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA

8 × 8 100 20
Out of memory

18 13.8 14 19.39 5.12 17.59 3.71

16 × 16 100 25 28 22.5 17.4
Not found

59.82 24.38 6.82

20 × 20 100 30 - 132 112 125.67 35.1 24.81

Table 5. Experimental results of different approaches to the 8-puzzle problem (average response time (s)).

Start state
Depth of

search

Colony

size
BFS/DFS/A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

100 40

O
u

t o
f m

em
o

ry

4 7.03 13 9.63 0.75 6.8 4.09

1
1

1

3

3

5

5

2

2

6

6

4

4

7

7

8

8

100 50 35.81 94.7 16.7 45.53 1.15 11.39 4.66

2

2

3

3

6

6

1

1

4

4

8

8

7

7

5

5

100 60 165 165.5 147.7 70.93
Not

found
15.69 6.14

Table 6. Running details of the ABC and ABC-SA approaches in the dining philosophers’ problem.

Number of

philosophers

ABC ABC-SA

Maximum

#explored

states

/#transitions

Minimum

#explored

states

/#transitions

Minimum

runtime(s)

Maximum

runtime(s)

Maximum

#explored

states

/#transitions

Minimum

#explored

states

/#transitions

Minimum

runtime

(s)

Maximum

runtime

(s)

10 22 25 7 6 0.64 3.45 17 19 7 6 0.31 2.82

20 22 23 7 6 0.68 6.13 17 18 7 6 0.47 2.69

40 17 20 7 6 0.75 3.87 17 18 7 6 0.4 3.01

60 22 23 7 6 0.84 5.59 17 20 7 6 0.42 3.78

80 22 27 7 6 0.92 9.017 22 27 7 6 0.35 4.67

100 22 26 7 6 1.02 6.34 17 19 7 6 0.41 4.44

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

196

Table 7. Running details of the ABC and ABC-SA approaches in the N-Queen problem.

Dimension

ABC ABC-SA

Maximum

#explored states

/#transitions

Minimum

#explored

states

/#transitions

Minimum

runtime(s)

Maximum

runtime(s)

Maximum

#explored states

/#transitions

Minimum

#explored

states

/#transitions

Minimum

runtime(s)

Maximum

runtime(s)

8 × 8 117 133 9 8 4.66 55.51 99 100 11 10 2.02 6.69

16 × 16 111 121 13 15 5.005 85.48 89 102 11 12 2.06 7.51

20 × 20 99 112 27 26 8.97 123.55 79 81 15 16 4.60 95.77

Table 8. Results of the Wilcoxon signed-rank test on ABC-SA with other algorithms.

Ranks

N Mean rank Sum of ranks

ABCSA-GA Negative ranks 12a 9.25 111.00

Positive ranks 3b 3.00 9.00

Ties 0c

Total 15

Test statisticsa

ABCSA/GA

Z -2.897b

Asymp. Sig. (2-tailed) .004

ABCSA-PSO Negative ranks 16a 8.50 136.00

Positive ranks 0b .00 .00

Ties 0c

Total 16

ABCSA/PSO

Z -3.516b

Asymp. Sig. (2-tailed) .000

ABCSA-PSOGSA Negative ranks 16a 8.50 136.00

Positive ranks 0b .00 .00

Ties 0c

Total 16

ABCSA/PSOGSA

Z -3.516b

Asymp. Sig. (2-tailed) .000

ABCSA-BAPSO Negative ranks 14a 7.50 105.00

Positive ranks 0b .00 .00

Ties 0c

Total 14

ABCSA/BAPSO

Z -3.296b

Asymp. Sig. (2-tailed) .001

ABCSA-nBOA Negative ranks 10a 12.45 124.50

Positive ranks 9b 7.28 65.50

Ties 0c

Total 19

ABCSA/nBOA

Z -1.187b

Asymp. Sig. (2-tailed) .235

ABCSA-ABC Negative ranks 20a 10.50 210.00

Positive ranks 0b .00 .00

Ties 0c

Total 20

ABCSA/ABC

Z -3.920b

Asymp. Sig. (2-tailed) .000

a. first sample < second sample

b. first sample > second sample

c. first sample = second sample

a. Wilcoxon signed ranks test

b. Based on positive ranks

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

197

8. Conclusion

In this work, we mapped the deadlock detection

problem onto a searching problem, and then

proposed a hybrid meta-heuristic algorithm, namely

the ABC-SA algorithm, to cope with the state space

explosion problem in searching the graph that is

specified and modeled by the graph transformation

system. We used the refutation techniques to look

for a path that contained a property violation, called

a counter-example. We implemented our proposed

approach in the Groove model checker tool, and

added the ABC-SA algorithm to the existing

searching strategies of this tool. The experimental

results obtained showed a faster detecting deadlock

under our approach compared to the other

approaches. In addition, we showed that PSO, GA,

PSO-GSA, nBOA, ABC, and the other mentioned

algorithms could not sometimes find the deadlock

but the hybrid ABC-SA algorithm can find

deadlocks in all cases.

In the future research works, other properties in the
model checking technique such as liveness and
reachability can be considered. Moreover, another
line of research work is to focus on developing a
better objective function to improve the results.

References
[1] Clarke, E., Grumberg, O., Jha, S., Lu, Y., & Veith,

H. (2001). Progress on the state explosion problem in

model checking. Informatics, pp. 176-194.

[2] Rafe, V., Moradi, M., Yousefian, R., & Nikanjam,

A. (2015). A meta-heuristic solution for automated

refutation of complex software systems specified

through graph transformations. Applied Soft

Computing, vol. 33, pp. 136-149.

[3] Han, T., Katoen, J.-P., & Berteun, D. (2009).

Counterexample generation in probabilistic model

checking. IEEE Transactions on Software Engineering,

vol. 35, no.2, pp. 241-257.

[4] Baier, C., Katoen, J.P., & Larsen, K. G. (2008).

Principles of model checking. MIT press.

[5] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D.

L., & Hwang, L.J. (1992). Symbolic model checking:

1020 states and beyond. Information and computation,

vol. 98 no.2, pp. 142-170.

[6] Groote, J. F., Kouters, T. W., & Osaiweran, A.

(2015). Specification guidelines to avoid the state space

explosion problem. Software Testing. Verification and

Reliability, vol.25, no.1, pp. 4-33.

[7] Pelánek, R. (2008). Fighting state space explosion:

Review and evaluation. International Workshop on

Formal Methods for Industrial Critical Systems,

L'Aquila, Italy.

[8] Alur, R., Courcoubetis, C., & Dill, D. (1990). Model-

checking for real-time systems. Fifth Annual IEEE

Symposium on Logic in Computer Science,

Philadelphia, USA.

[9] Emerson, E. A. (2008). The beginning of model

checking: a personal perspective, 25 Years of Model

Checking. Springer, Berlin, Heidelberg, pp. 27-45.

[10] Yousefian, R., Rafe, V., & Rahmani, M. (2014). A

heuristic solution for model checking graph

transformation systems. Applied Soft Computing, vol.

24, pp. 169-180.

[11] Rensink, A. (2003). The GROOVE simulator: A

tool for state space generation. International Workshop

on Applications of Graph Transformations with

Industrial Relevance, Springer, Berlin, Heidelberg, pp.

479-485.

[12] Kastenberg, H. & Rensink, A. (2006). Model

checking dynamic states in GROOVE. International

SPIN Workshop on Model Checking of Software,

Springer, Berlin, Heidelberg, pp. 299-305.

[13] Engels, G., Soltenborn, C., & Wehrheim, H.

(2007). Analysis of UML activities using dynamic meta

modeling. International Conference on Formal Methods

for Open Object-Based Distributed Systems, Springer,

Berlin, Heidelberg, pp. 76-90.

[14] Bozga, M., Daws, C., Maler, O., Olivero, A.,

Tripakis, S., & Yovine, S. (1998). Kronos: A model-

checking tool for real-time systems. International

Symposium on Formal Techniques in Real-Time and

Fault-Tolerant Systems, Springer, Berlin, Heidelberg,

pp. 298-302.

[15] Bouali, A. (1998). XEVE: an ESTEREL

verification environment. International Conference on

Computer Aided Verification, Springer, Berlin,

Heidelberg, pp. 500-504.

[16] Song, D. X. (1999). Athena: a new efficient

automatic checker for security protocol analysis. In

Proceedings of the 12th IEEE Computer Security

Foundations Workshop, pp. 192-202.

[17] Cimatti, A., Clarke, E., Giunchiglia, E.,

Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R.,

& Tacchella, A. (2002). Nusmv2: An opensource tool

for symbolic model checking. In International

Conference on Computer Aided Verification, Springer,

Berlin, Heidelberg, pp. 359-364.

[18] Holzmann, G. J. (2004). The SPIN model checker:

Primer and reference manual. Addison-Wesley

Reading.

[19] Barnat, J., Brim, L., Ceska, M., & Rockai, P.

(2010). Divine: Parallel distributed model checker.

Parallel and Distributed Methods in Verification, In

Ninth International Workshop on Parallel and

Distributed Methods in Verification, and Second

International Workshop on High Performance

Computational Systems Biology, IEEE, pp. 4-7.

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

198

[20] D'silva, V., Kroening, D., & Weissenbacher, G.

(2008). A survey of automated techniques for formal

software verification. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol.

27, no. 7, pp. 1165-1178.

[21] Merz, S. (2001). Model checking: A tutorial

overview, Modeling and verification of parallel

processes. Springer, pp. 3-38.

[22] Rozier, K. Y. (2011). Linear temporal logic

symbolic model checking. Computer Science Review,

vol. 5, no. 2, pp.163-203.

[23] Jhala, R. & Majumdar, R. (2009). Software model

checking. ACM Computing Surveys, vol. 41, no. 4, 21.

[24] Lamport, L. (1977). Proving the correctness of

multiprocess programs. IEEE Transactions on Software

Engineering, vol. 2, pp.125-143.

[25] Khurshid, S., Păsăreanu, C. S., & Visser, W.

(2003). Generalized symbolic execution for model

checking and testing. In International Conference on

Tools and Algorithms for the Construction and Analysis

of Systems, Springer, Berlin, Heidelberg. pp. 553-568.

[26] Beneš, N., Černá, I., & Křetínský, J. (2011). Modal

transition systems: Composition and LTL model

checking. International Symposium on Automated

Technology for Verification and Analysis, pp.228-242.

[27] Emerson, E. A. & Namjoshi, K. S. (1998). On

model checking for non-deterministic infinite-state

systems. Thirteenth Annual IEEE Symposium on Logic

in Computer Science, pp. 70-80.

[28] Clarke, E. M., Grumberg, O., & Peled, D. (1999).

Model checking: MIT press.

[29] Larsen, K. G., Pettersson, P., & Yi, W. (1995).

Model-checking for real-time systems. International

Symposium on Fundamentals of Computation Theory,

pp. 62-88.

[30] Boussaï D, I., Lepagnot, J., & Siarry, P. (2013). A

survey on optimization metaheuristics. Information

Sciences, vol. 237, pp. 82-117.

[31] Karaboga, D. (2005). An idea based on honey bee

swarm for numerical optimization. Technical report-

tr06, Erciyes university, engineering faculty, computer

engineering department.

[32] Gao, W. f., Huang, L.-l., Liu, S.y., Chan, F. T., Dai,

C., & Shan, X. (2015). Artificial bee colony algorithm

with multiple search strategies. Applied Mathematics

and Computation, vol. 271, pp. 269-287.

[33] Abbasi, B., Niaki, S. T. A., Khalife, M. A., & Faize,

Y. (2011). A hybrid variable neighborhood search and

simulated annealing algorithm to estimate the three

parameters of the Weibull distribution. Expert Systems

with Applications, vol. 38, no. 1, pp. 700-708.

[34] Chen, S.M., Sarosh, A., & Dong, Y.F. (2012).

Simulated annealing based artificial bee colony

algorithm for global numerical optimization. Applied

mathematics and computation, vol. 219, no. 8, pp. 3575-

3589.

[35] Alba, E. & Chicano, F. (2007). Finding safety

errors with ACO. In Proceedings of the 9th annual

conference on Genetic and evolutionary computation,

pp. 1066-1073.

[36] Sivaraj, H., & Gopalakrishnan, G. (2003). Random

walk based heuristic algorithms for distributed memory

model checking. Electronic Notes in Theoretical

Computer Science, vol. 89, no.1, pp. 51-67.

[37] Clarke, E. M., Grumberg, O., Minea, M., & Peled,

D. (1999). State space reduction using partial order

techniques. International Journal on Software Tools for

Technology Transfer, vol. 2, no. 3, pp. 279-287.

[38] Brim, L., Cerma, I., Moravec, P., & Simsa, J.

(2005). Distributed partial order reduction of state

spaces. Electronic Notes in Theoretical Computer

Science, vol. 128, no.3, pp. 63-74.

[39] Alur, R., Brayton, R. K., Henzinger, T. A., Qadeer,

S., & Rajamani, S. K. (2001). Partial-order reduction in

symbolic state-space exploration. Formal Methods in

System Design, vol. 18, no. 2, pp. 97-116.

[40] P Godefroid, P., van Leeuwen, J., Hartmanis, J.,

Goos, G., & Wolper, P. (1996). Partial-order methods

for the verification of concurrent systems: an approach

to the state-explosion problem, Springer Heidelberg,

vol. 1032.

[41] Barnat, J., Brim, L., & Ročkai, P. (2012). On-the-

fly parallel model checking algorithm that is optimal for

verification of weak LTL properties. Science of

Computer Programming, vol. 77, no. 12, pp. 1272-1288.

[42] Bouajjani, A., Tripakis, S., & Yovine, S. (1997).

On-the-fly symbolic model checking for real-time

systems. In proceedings of the 18th IEEE Conference on

Real-Time Systems Symposium, pp. 25-34.

[43] Rafe, V., Rahmani, M., & Rashidi, K. (2013). A

Survey on Coping with the State Space Explosion

Problem in Model Checking. International Research

Journal of Applied and Basic Sciences, vol. 4, no. 6, pp.

1379-1384.

[44] Gyuris, V. & Sistla, A. P. (1997). On-the-fly model

checking under fairness that exploits symmetry.

International Conference on Computer Aided

Verification, pp. 232-243.

[45] Edelkamp, S., Jabbar, S., & Lafuente, A. L. (2006).

Heuristic search for the analysis of graph transition

systems. In International Conference on Graph

Transformation. Springer, Berlin, Heidelberg, pp. 414-

429.

[46] Behjati, R., Sirjani, M., & Ahmadabadi, M. N.

(2009). Bounded rational search for on-the-fly model

checking of LTL properties. In International Conference

on Fundamentals of Software Engineering, Springer,

Berlin, Heidelberg, pp. 292-307.

Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020.

199

[47] Clarke, E. M., Enders, R., Filkorn, T., & Jha, S.

(1996). Exploiting symmetry in temporal logic model

checking. Formal Methods in System Design, vol.9, no.

1-2, pp. 77-104.

[48] Godefroid, P. & Khurshid, S. (2002). Exploring

very large state spaces using genetic algorithms. In

International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, Springer,

Berlin, Heidelberg, pp. 266-280.

[49] Duarte, L. M., Foss, L., Wagner, F. R., &

Heimfarth, T. (2010). Model checking the ant colony

optimisation, Distributed, parallel and biologically

inspired systems. Springer, Berlin, Heidelberg, pp. 221-

232.

[50] Francesca, G., Santone, A., Vaglini, G., & Villani,

M. L. (2011). Ant colony optimization for deadlock

detection in concurrent systems. In 2011 IEEE 35th

Annual Computer Software and Applications

Conference, pp. 108-117.

[51] Chicano, F., Ferreira, M., & Alba, E. (2011).

Comparing metaheuristic algorithms for error detection

in java programs. International Symposium on Search

Based Software Engineering, pp. 82-96.

[52] CrepinSek, M., Liu, S.-H., & Mernik, L. (2012). A

note on teaching–learning-based optimization

algorithm. Information Sciences, vol. 212, pp. 79-93.

[53] Daws, C., and Tripakis, S. (1998). Model checking

of real-time reachability properties using abstractions.

International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pp. 313-329.

[54] Alba, E. & Chicano, F. (2008). Searching for

liveness property violations in concurrent systems with

ACO. In Proceedings of the 10th annual conference on

Genetic and evolutionary computation, pp. 1727-1734.

[55] Yousefian, R., Aboutorabi, S., & Rafe, V. (2016).

A greedy algorithm versus metaheuristic solutions to

deadlock detection in Graph Transformation Systems.

Journal of Intelligent & Fuzzy Systems, vol. 31, no.1,

pp. 137-149.

[56] Lluch-Lafuente, A. (2003). Symmetry reduction

and heuristic search for error detection in model

checking.

[57] Schmidt, A. (2004). Model checking of visual

modeling languages. Budapest University of

Technology, Hungary.

[58] Heckel, R. (2006). Graph transformation in a

nutshell. Electronic notes in theoretical computer

science, vol. 148, no. 1, pp. 187-198.

[59] Zambon, E. & Rensink, A. (2014). Solving the N-

Queens problem with GROOVE-towards a

compendium of best practices. Electronic

Communications of the EASST, vol. 67.

 [60] Alba, E. & Chicano, F. (2007). Ant colony

optimization for model checking. In Processdings of

International Conference on Computer Aided Systems

Theory, pp. 523-530.

[61] Pira, E., Rafe, V., & Nikanjam, A. (2016).

EMCDM: Efficient model checking by data mining for

verification of complex software systems specified

through architectural styles. Applied Soft Computing,

vol. 49, pp. 1185-1201.

[62] Pira, E., Rafe, V., & Nikanjam, A. (2017).

Deadlock Detection in Complex Software Systems

Specified through Graph Transformation Using

Bayesian Optimization Algorithm. Journal of Systems

and Software, vol. 131, pp. 181-200.

[63] Pira, E., Rafe, V., & Nikanjam, A. (2018).

Searching for violation of safety and liveness properties

using knowledge discovery in complex systems

specified through graph transformations. Information

and Software Technology, vol. 97, pp. 110-134.

[64] Roustaei, R.& Yousefi Fakhr, F.(2018). A Hybrid

Meta-Heuristic Algorithm based on Imperialist

Competition Algorithm. Journal of AI and Data Mining,

vol. 6, no. 1, pp. 59-67.

[65] Wilcoxon, F. (1945). Individual comparisons by

ranking methods. Biometrics Bulletin, vol. 1, no. 6, pp.

80-83.

 نشریه هوش مصنوعی و داده کاوی

ای برای مقابله با مشکل انفجار فضای حالت در تکنیک وارسی مدل برای آزادی ارایه راهکار فرامکاشفه

 بن بست

 *حسین مومنی و ناهید رضایی

 .ایران ،گرگان ،مهندسی کامپیوتر، دانشگاه گلستانگروه

 01/12/2019 ؛ پذیرش31/05/2019 بازنگری؛ 13/10/2018 ارسال

 چکیده:

ست افزار نرم درستی یابی برایروش خودکار یک مدل وارسی سیستم دستیابی قابل هایحالت تمامدر آن که ا پیدا منظور به ،اولیه حالت یک از یک

 میرس زبان یک تبدیل گراف سیستمشود. رفتار و ساختار یک سیستم مدل می ،وارسی مدل روشدر .شوندمی تولید مطلوب الگوهای و خطاها کردن

 به لاًمعموحالت دارد و فضای انفجار مشکل گراف تبدیل سیستم با بزرگ هایسیستم مدلسازی .است سیستمسازی و مدلسازی برای مشخص گرافیکی

 سیستم رد ی فضای حالت،جستجو مشکل با مقابله برای ،ترکیبی ایفرامکاشفه روش یک ما مقاله، این در .دارد نیاز محاسباتی منابع از عظیمی مقادیر

کمک بانمایند. های بزرگ ارایه میی برای جسفتجوی گراف در سفیسفتمکارآمد حلراهای فرامکاشففه هایالگوریتمتبدیل گراف ارایه خواهیم نمود زیرا

سلترکیب روش اجتماع صنوعی زنبورع ضای یک تولیدبجای شده سازیشبیه تبرید و م ضای حالت فقط ،کامل حالت ف شی از ف سی تولید و وار ،بخ

 همقایس در ما پیشنهادی روش که دهدمی نشانها آزمایش نتایج. شودبررسی می (بست بن نظیر) خطاهاوجود برخی و ایمنی شود و طی آن ویژگیمی

 .است تردقیق و کارآمدتر دیگر هایروش با

 .ای، سیستم تبدیل گرافهای فرامکاشفهانفجار فضای حالت، روشوارسی مدل، درستی یابی نرم افزار، :کلمات کلیدی

