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Abstract 

Model checking is an automatic technique for software verification through which all the reachable states are 

generated from an initial state in order to find the errors and desirable patterns. In the model checking approach, 

the behavior and structure of the system should be modeled. The graph transformation system is a graphical 

formal modeling language used to specify and model the system. However, modeling large systems with the 

graph transformation system suffers from the state space explosion problem, which usually requires huge 

amounts of computational resources. 

In this paper, we propose a hybrid meta-heuristic approach in order to deal with this searching problem in the 

graph transformation system because meta-heuristic algorithms are efficient solutions to traverse the graph of 

large systems. Using the artificial bee colony and simulated annealing, our approach replaces a full state space 

generation, only by producing part of it checking the safety, and finding the errors (e.g. deadlock). The 

experimental results obtained show that the proposed approach is more efficient and accurate compared 

with other approaches.  
  

Keywords: Software Verification, Model Checking, State Space Explosion, Meta-heuristic Approaches, 

Graph Transformation System. 

1. Introduction 

Model checking is an automated technique used for 

the verification of concurrent finite state systems, 

through which the behavior of the system is 

analyzed based on the time characteristics by 

searching for a state graph [1-4]. The graph 

transformation system (GTS) is a suitable visual 

modeling language used to formally describe and 

verify the system behavior [2]. GTS describes the 

properties of systems including the behavioral and 

structural properties, and it is widely used for 

system specification and verification. GTS is 

determined as a triple (TG, HG, R), whereby TG is 

the type graph, HG is the host graph, and R is the 

rules set. 

In the model checking-based verification through 

GTS, the temporal logic properties such as safety 

are examined by a comprehensive search of the 

whole state space. Since in a large and complex 

system the size of the state space expands 

exponentially with the number of processes, GTS 

encounters the state space explosion that consumes 

all the memory space that is consumed [5- 7]. When 

the state space explosion occurs, GTS cannot 

traverse through the whole graph. In this situation, 

it has been suggested to use a refutation technique 

to check the violation of a property instead of its 

proof so that there is no need to generate the entire 

state space [8- 10]. In this work, we checked the 

violation of safety property through deadlock 

detection.  

In the recent years, some meta-heuristic approaches 

such as Genetic Algorithm (GA), Ant Colony 

Optimization (ACO), Artificial Bee Colony (ABC), 

Particle Swarm Optimization (PSO), and Simulated 

Annealing (SA) have been widely used to cope with 

state space explosion because these approaches do 

not search for exhaustive states that, in turn, lead to 

a reduction in the state space size. In this 

paper, a hybrid ABC-SA algorithm is proposed to 

cope with the state space explosion problem in the 
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refutation technique. As ABC may get trapped into 

the local optima, SA is an efficient algorithm in 

local search as well as in escaping from the local 

optima. The main contribution of our paper is to 

map the deadlock detection onto a search problem 

in the graph transformation system. Since the state 

space to deadlock detection is large for the complex 

systems, we solved this problem using the ABC-SA 

algorithm. The other contribution of our paper is to 

consider the efficiency and accuracy in the 

refutation technique in GTS.   

The proposed approach is implemented in model 

checker Groove [11], and is verified in terms of 

deadlock-freeness and correctness.   

The rest of this paper is organized as what follows. 

Section 2 provides a brief background. Section 3 

presents some notable related works. Section 4 

presents the proposed approach. Section 5 presents 

our model and the evaluation results. Sections 6 and 

7 provide the running details and Wilcoxon signed-

rank test for evaluating the results, and finally, 

Section 8 concludes the paper. 
 

2. Background 

2.1 Model checking  

In the model checking technique, a model checker 

requires a model of the system and a set of 

properties (such as reachability [9], safety [22-27], 

liveness [22-24, 26-27], and fairness [5, 8]) as 

inputs to systematically examine whether the given 

model meets these characteristics or not. This is 

accomplished by searching for the entire state space 

of the system to determine whether the current 

behavior described by the time property is obtained 

from the system graph state or not [20-21]. The 

main challenge of the model checking technique is 

to cope with the state space explosion problem [28-

29].  

 

2.2 Artificial bee colony algorithm 

ABC algorithm [31] simulates the behavior of real 

honey bees. There are three groups of bees in the 

colony of artificial bees including the employed, 

onlookers, and scouts bees. The population of ABC 

consists of SND-dimensional vectors of decision 

variables [32] as (1): 

 ,1 ,2 , ,  ,  ,  ,       1,2, ,     i i i i DX x x x i SN      (1) 

 

Each Xi, which is defined by the lower and upper 
bounds Xmin and Xmax, is generated by (2): 

  , ,   ,   ,   0,1   i j min j max j min jx x rand x x     (2) 

 

where, i = 1, 2, …, SN, and j = 1, 2, …, D. With 
respect to each individual Xi, a candidate Vi is 

produced by adding the scaling difference of two 
population members to the base individual as (3): 

 , ,   , ,   ,     i j i j i j i j k jv x x x      (3) 

 

where,    1,  2,  ,  k SNò  and    1,  2,  ,  j Dò  are 

randomly selected indices, k has to be different 
from i, and ,i j  is a random number in the range of 

[-1, 1]. Then a greedy selection is performed 
between the old individual iX  and the candidate  

iV

. The employed bees will share the information 
received from their searches with onlooker bees. 
Given the probability value iP  of the corresponding 

solution, each onlooker chooses a solution by (4): 

1

i
SN

j

j

fit
Pi

fit






  (4) 

where,  
ifit is proportional to the nectar amount of 

the food source in the position i, is called the fitness 
value of the ith solution, and defined by (5): 

 

 
i i

i

i i

1 f ,  f 0
fit

1/ 1 f ,  f 0

abs 
 

 

  (5) 

where, if is the objective function value of solution 

i that can be computed by (9). Then each onlooker 
bee generates a new candidate solution by (3), and 
the greedy selection is performed again. The value 
of the pre-defined number of cycles is one of the 
important control parameters for ABC, named limit. 
If iX is an abandoned individual, then the scout 

generates a new solution by (2) to replace 
iX .  

2.3 Simulated annealing algorithm  
The simulated annealing is a meta-heuristic 
algorithm for approximating global optimization in 
large search spaces [30]. In order to escape from the 
local optima during exploration of the solution 
space, the SA algorithm lets the worse neighbor 
solutions in a controlled manner to be accepted 
[33]. In each iteration, for a current solution x, a 
neighbor x’ is selected from the neighborhood of x. 
For each movement, the objective difference ∆ is 
evaluated by (6), where  f x  and  ’f x are the 

objective function values of x and x’; x’ could also 
be accepted with a probability by (7): 

      ’  –  f x f x    (6) 

 

 /Ps exp T    (7) 

 

where, the probability of acceptance is compared 
with a number  0,1rò  generated randomly, and x’ 

is accepted whenever p r  [34]. T is a temperature, 

which is controlled by a cooling scheme. In a 
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typical implementation of SA, decreasing the 
temperature T takes place in each iteration, starting 
from an initial value T0 and using an attenuation 
factor  0,1ò , which is constant, and typically, 

0.75 β 0.95  . In the first iteration, T0 must be high 

enough to let a worse solution to be accepted. In 
each iteration i, the current temperature value is 
evaluated by (8): 

0  i

iT T   (8) 

3. Related works  

To the best of our knowledge, no work has been 

done yet on mapping deadlock detection in the 

large state space to a searching problem in GTS. 

The techniques available for coping with state 

space explosions could be divided into several 

categories according to how they make and search 

for their state space. The classic methods first 

create the entire state space, and then search for all 

the possible states [35], e.g. depth-first search 

(DFS) and breadth-first search (BFS) [36]. Several 

methods have been proposed to reduce the size of 

the state space, e.g. symbolic verification, partial 

order reduction, symmetry checking methods, 

scenario-driven model checking, and abstraction. 

The other kinds of methods are on-the-fly 

techniques, which construct the state space on 

demand dynamically during the model checking 

operation [37-47, 53]. In the recent years, 

intelligent methods have been considered in model 

checking systems. In [10, 48], the use of GA to 

explore very large state spaces in search of error 

states has been examined. 

In [49], a model has been presented for solving the 

Travel Salesman Problem (TSP) using ACO. The 

goal is to guarantee that most of the time the 

shortest paths are probabilistically taken. In [50], 

the use of ACO to reduce the state space explosion 

problem by finding the shortest counter examples 

has been provided. In [60], the use of ACO to refute 

the safety property in the concurrent systems has 

been presented. 

In [51], a comparison has been made between five 

meta-heuristic algorithms for the state space 

explosion problem including SA, ACO, PSO, and 

two types of GA, and five other classic search 

algorithms to solve the problem of finding the 

properties violation in concurrent Java programs. 

Teaching-learning-based optimization (TLBO) is a 

new type of meta-heuristic approach used in this 

scope, which finds better or equal solutions much 

faster than ES, PSO, ABC, etc. [32]. 

By the same token, in [35], a new ACO 

optimization model, called ACO-hg, has been 

presented to violate the safety properties in the 

concurrent systems. In [54], using this algorithm 

has been proposed to investigate the violation of 

the liveness property in the concurrent systems. 

Furthermore, in the recent years, a combination of 

heuristic or meta-heuristic algorithms with one 

another or with other algorithms has been used to 

improve the process of finding errors in the model 

checking technique. In [55], two new algorithms 

have been utilized to find the deadlock in the 

complex software systems specified by GTS. The 

former is a hybrid algorithm that uses PSO and 

BAT (BAPSO), and the latter is a greedy algorithm 

to find deadlocks. 

Besides, in [2], the PSO algorithm has been used to 

find the optimal path for a deadlock state. To 

increase the accuracy, a hybrid algorithm has been 

proposed using PSO and GSA. Similarly, in [56], 

symmetry reductions and heuristic search have 

been combined to detect safety errors in 

asynchronous systems. 

In [61], a data mining-based approach, called 

EMCDM, has been proposed for detecting 

deadlocks in models that are specified by GTS. 

In [62], a new method based on the Bayesian 

Optimization Algorithm (BOA) has been proposed 

to deadlock detection in systems specified through 

GTS. 

In [63], a data mining-based approach has been 

proposed, where after getting the required 

knowledge, only a small portion of the state space 

is explored to refute the desired property. Meta-

heuristic algorithms increase the performance and 

accuracy of search problems[64] and  we use these 

algorithms in our proposed approach.  
 
4. Proposed approach 

We now describe our approach to cope with the 

state space explosion problem in the systems that 

are specified and modeled by GTS in this section. 

We used the refutation technique to check to refuse 

an error or property rather than providing that error 

or property. This goal can be reached by looking 

for a path that contains a property violation (called 

a counter-example).  

In our case, we aimed to detect deadlock as a type 

of safety property. Safety property states that a 

good event must occur in all states or a bad event 

(for example, a deadlock) must not occur in any of 

the states. If we reach a deadlock in the system’s 

state space, we can conclude that the safety 

property has been violated.  

In addition, we used the meta-heuristic algorithms 

in our approach due to the efficiency of these 

algorithms for searching for the problems with very 

large state spaces. 

The objective of this paper is to cope with the state 

space explosion problem in the complex system 
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specified with GTS to find errors (e.g. deadlock). 

To detect a deadlock, a set of paths in graph should 

be traversed. We employed the ABC algorithm to 

find an optimal path to a deadlock state but since 

the ABC algorithm, like many other artificial 

intelligence algorithms, may stick in the local 

optima, we combined it with the SA algorithm, 

which is another intelligent algorithm that is good 

at escaping from the local optima [31]. We present 

our proposed algorithm, namely ABC-SA, in this 

section and apply it to the searching strategy in 

GTS and Groove tool. 

  
 

4.1 Food sources as problem solutions 
In the proposed algorithm, the position of each bee 
in ABC is considered as a candidate solution. This 
position is represented by a sequence of numbers 
that demonstrate a path.  

These numbers are generated randomly with a 
random function, and the values are between 0 and 
the maximum number of outgoing transitions in 
each problem. This maximum number relies on the 
rules of the model that we are checking. In figure 1, 
a path that is a representative of a food source in the 
ABC algorithm in a hypothetical state space is 
shown in a dark blue color. In this example, the 
position of the food source is <0, 2, 0, 1, 0>. 
 

 

Figure 1. A path in a hypothetical state space. 

 

4.2 Applying ABC-SA in model checking 

In the ABC algorithm, by generating new candidate 

solutions, if the algorithm selects a new solution, 

provided that it definitely becomes better, it may be 

trapped into the local optima; therefore, we 

combine ABC with the SA algorithm as is shown 

below. SA selects the neighbor that is worse with a 

specific probability computed by (7). In each 

iteration, at first, the possibility of accepting a 

worse solution is higher but since the temperature 

cooling procedure takes place, it reduces.  

 

 

 

 

 
 

The pseudo-code of the ABC-SA algorithm. 

1. Create the initial population and initialize the SA parameters; T 

(initial temperature) 

2. Iteration = 1  

3. Send the employed bees to their food source 

4. Calculate probabilities of each food source 

5. Send the onlooker bees to the food sources with higher 

nectar amounts 

6. Send the scout bees to the search area to find new food 

sources randomly instead of abandoned food sources 

7. Memorize the best food source up to now 

8. Simulated Annealing search process 

9. Reduce the temperature 

10. Record the global minimum 

11. Calculate the fitness of each food source 

12. Iteration = iteration + 1 

13. If termination criterion (iteration, temperature, deadlock found), met, 

return the result 

14. Else, go to 3 

4.3 Objective function 

Our goal was to verify the model and find 

deadlocks, so we sought for paths through which 

the outgoing transitions of the states were 

decreased. We computed the sum of the outgoing 

transitions in a path as the fitness function. This 

fitness value was calculated by (9), where Sumi is 

the sum of the generated states in a depth of i. 

1

( ) Sumi
DepthOfSearch

i

F x


    
(9) 

5. Modeling and evaluation 

In this section, we present a formal model of our 

approach with GTS, and use the refutation 

technique to formally verify the soundness of the 

ABC-SA algorithm for the deadlock detection.  

The results obtained are displayed as to whether the 

desired characteristic is satisfied or not. We 

considered the number of times that the path was 

generated to the final state (deadlock) as the “Hit 

Rate” and the time consumed for the verification as 

the “Response Time”. 

The control parameters of the ABC-SA algorithm 

are presented in table 1. Each experiment was 

repeated for 30 times, and the average response 

time (in seconds) was recorded. 

In order to test our proposed approach, we used four 

famous problems that could not be verified by the 

existing tools due to the state space explosion 

problem. These problems were dining philosophers 

[57], Pacman game [58], N-queen [59], and 8-

puzzle. We compared the results of the proposed 

approach with the classical strategies such as BFS, 

DFS, and A* in the same machine. We also 

compared our results with the meta-heuristic-based 

strategies such as GA, PSO, ABC,PSO+GSA 

nBOA, and BAPSOS, presented in [10], [2], [61], 

and [55] with the same parameters and the same 

machine. 
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Table 1. Control parameters of the ABC-SA algorithm. 

Control parameters of ABC-SA algorithm 

Iteration 100 

Swarm size It is different in different 

models 
Limit Number of onlooker bees 

*Dim 

Number of onlookers 50% of the swarm 
Number of employed bees 50% of the swarm 

Number of scouts 1 

5.1 GTS model 
In this section, we present the model of the dining 
philosopher problem with GTS completely by 
showing its Type Graph, Host Graph, Graph 
Transformation Rules, and Final State Graphs but 
for the other problems, we will not describe their 
models here so as to avoid additional explanations.  

 

Dining Philosophers 

In this problem, a number of philosophers are 

sitting around a table. At first, each philosopher is 

thinking, and then he gets hungry; each philosopher 

needs two forks to eat. After eating, he starts 

thinking again. This process can be repeated.  
Figure 2 shows the type graph of this problem in 
Groove tool, which is composed of philosopher and 
fork classes. Forks taken by the philosophers are 
modeled using Hold's edges. The philosopher’s 
class has a status attribute, which specifies the 
current status of the philosopher. This attribute is an 
integer, which refers to 0 for thinking, 1 for hungry, 
2 for having a left fork, and 3 for eating. 

 

Figure 2. Type graph of the dining philosopher problem. 

Figure 3 shows the Host Graph (start state) of this 
problem. In the initial state, all forks are on the 
table, so there are no hold edges in the model, and 
the status of all the philosophers is think = 0. 

 
Figure 3. Host graph of the dining philosopher problem 

with 3 philosophers and forks. 

In figure 4, the graph transformation rules are 

shown for the dining philosopher problem. 

 

 
Figure 4. Dining philosopher’s graph transformation 

rules. 
 

If all the three philosophers take their left fork and 

wait for the right fork to start eating, then a deadlock 

occurs. A graph of this deadlock state (final state) is 

shown in figure 5. 

 
Figure 5. The final state graph for the dining 

philosophers problem with 3 philosophers and 3 forks. 

5.2 Evaluation 

The results of the experiments in these 4 problems 

by applying the proposed algorithm and comparing 

with other algorithms are presented in tables 2-5.  

As shown in table 2, the speed of ABC-SA as a 

search strategy is much better than that of the other 

algorithms, and in all cases, in all 30 runs of the 

algorithm, it succeeds to detect the deadlock, so the 

"hit rate" of this algorithm is 100%.   

As shown in table 3, since in the state space of this 

problem the number of deadlock states is high, and 

they can be reached from different paths, the 

response time is low.  

Table 4 shows that the response time of the ABC-

SA algorithms is lower than that of the other 

algorithms. However, it is worth mentioning that 

the hit rate of the ABC algorithm in comparison 

with ABC-SA is lower. For example, in the first 

case, the 8 × 8 dimension, in the 30 runs of these 

algorithms, ABC can find deadlock in 24 runs; this 

means that its hit rate is 80% (that happens because 

of trapping in the local optima problem of the ABC 
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algorithm) but in the same situation, the ABC-SA 

algorithms get response in all 30 runs, so its hit rate 

is 100%. 

As it is shown in table 5, although the nBOA 

response time is lower than that of ABC and ABC-

SA in the first two cases, it cannot find deadlocks in 

the third case; however, ABC and ABC-SA can find 

it in all cases and all runs, so their hit rates are 100% 

in this complicated problem. 

Figures 6-9 show comparison of response time of 

the dining philosopher problem, Pacman problem, 

N-Queen problem, and 8-puzzle problem in our 

proposed approach and in the other approaches. As 

they show, the response time of our approaches is 

lower than that of the other approaches.    

 
Figure 6. Comparison of response time for the dining 

philosophers problem. 

 
Figure 7. Comparison of response time for the pacman 

problem. 

 

Figure 8. Comparison of response time for the N-Queen 

problem. 

 
Figure 9. Comparison of response time for the 8-puzzle 

problem. 

6. Running details 
In tables 6 and 7, we describe the running details of 
different approaches on the dining philosophers’ 
and N-Queen models (we only show the results of 
two models due to the limitation of the page 
numbers but the Pacman and 8-puzzle’s results are 
the same). In these tables, we have the maximum 
and minimum numbers of explored states, and the 
transitions and runtimes in each 30 runs for every 
algorithm on the specific models. As shown in the 
results obtained, in both the maximum and 
minimum columns, the number of explored states 
and transitions in the ABC algorithm is more than 
that of ABC-SA in most cases. This shows that the 
hybrid algorithm can find deadlocks by finding the 
smaller counter-examples and by comparing the 
runtimes, so we see that the ABC-SA algorithm can 
also find deadlocks in a shorter time compared to 
the ABC algorithm. The results obtained indicate 
that the explored states and transitions of the ABC-
SA algorithm in almost all the cases are less than 
those in the other algorithms. They showed that we 
reached our goal because we found deadlocks by 
exploring fewer numbers of states and shorter 
response times. 
 

7. Wilcoxon signed-rank test for evaluating 

results 

The Wilcoxon signed-rank test is a non-parametric 

statistical hypothesis that is used for comparing 

two related samples [65]. It is a test that can affirm 

that the results of our proposed approaches are 

significantly different from those of the others. 

This test was performed by the SPSS toolbox. In 

SPSS, if the output decision criterion (sig.) is less 

than 0.05, it can be concluded that there is a 

significant difference between the two groups of 

data. We performed this test on the results of the 

hybrid ABC-SA approach against the GA, PSO, 

PSO-GSA, BAPSO, and nBOA approaches in 

terms of the response times. The results of the test 

are shown in table 8. As shown in this table, the 

decision criterion (sig.) was less than 0.05 for 

ABC-SA against all the other approaches except 

for nBOA that was 0.23. Thus we can conclude that 

the average response time of our proposed 

approach is significantly different from that of the 

other approaches. As shown in the previous 

section, our proposed algorithm’s hit rate was 

100%, while the hit rate of the other algorithms was 

not 100% in all cases, and this was an important 

parameter in this context.  
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Table 2. Experimental results of different approaches to the dining philosophers problem (average response time (s)). 

Count of 

phils. 

Depth of 

search 

Colony 

size 

BFS 

/DFS/A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA 

10 25 15 O
u

t o
f m

em
o

ry
 

3.16 13.45 38.92 8.34 0.71 1.52 0.8 

20 100 20 10.12 158 170 64.6 1.04 1.53 0.7 

40 120 40 23 - - - 5.03 1.72 0.87 

60 140 60 - - - - 11.35 2.03 0.81 

80 180 80 - - - - 27.3 3.06 1.08 

100 220 100 - - - - 55.53 2.51 0.92 

 

Table 3. Experimental results of different approaches to the Pacman problem (average response time (s)). 

Dimension 

Depth 

of 

search 

Colony 

size 
BFS DFS A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA 

4 × 4 100 40 6 4 18.56 1.034 2.6 1.9 1.3 1.03 1.28 0.97 

4 × 5 100 60 

O
u

t o
f 

m
em

o
ry

 

4.5 

O
u

t o
f 

m
em

o
ry

 

1.123 4.9 4.7 2.8 0.72 1.11 0.91 

5 × 6 100 80 

Out of 

memor
y 

1.321 11.7 14.5 7.9 0.77 1.43 0.98 

 

Table 4. Experimental results of different approaches to the N-Queen problem (average response time (s)). 

Dimension 
Depth of 

search 

Colony 

size 
BFS DFS A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA 

8 × 8 100 20 
Out of memory 

18 13.8 14 19.39 5.12 17.59 3.71 

16 × 16 100 25 28 22.5 17.4 
Not found 

59.82 24.38 6.82 

20 × 20 100 30 -  132 112 125.67 35.1 24.81 

 

Table 5. Experimental results of different approaches to the 8-puzzle problem (average response time (s)). 

Start state 
Depth of 

search 

Colony 

size 
BFS/DFS/A* GA PSO PSO+GSA BAPSO nBOA ABC ABC-SA 

1

1 

2

2 

3

3 

4

4 

5

5 

6

6 

 
7

7 

8

8 
 

100 40 

O
u

t o
f m

em
o

ry
 

4 7.03 13 9.63 0.75 6.8 4.09 

1 
1

1 

3

3 

5

5 

2

2 

6

6 

4

4 

7

7 

8

8 
 

100 50 35.81 94.7 16.7 45.53 1.15 11.39 4.66 

2

2 

3

3 

6

6 

1

1 

4

4 

8

8 

7

7 
 

5

5 
 

100 60 165 165.5 147.7 70.93 
Not 

found 
15.69 6.14 

 

Table 6. Running details of the ABC and ABC-SA approaches in the dining philosophers’ problem. 

Number of 

philosophers 

ABC ABC-SA 

Maximum 

#explored 

states 

/#transitions 

Minimum 

#explored 

states 

/#transitions 

Minimum 

runtime(s) 

Maximum 

runtime(s) 

Maximum 

#explored 

states 

/#transitions 

Minimum 

#explored 

states 

/#transitions 

Minimum 

runtime 

(s) 

Maximum 

runtime 

(s) 

10 22 25 7 6 0.64 3.45 17 19 7 6 0.31 2.82 

20 22 23 7 6 0.68 6.13 17 18 7 6 0.47 2.69 

40 17 20 7 6 0.75 3.87 17 18 7 6 0.4 3.01 

60 22 23 7 6 0.84 5.59 17 20 7 6 0.42 3.78 

80 22 27 7 6 0.92 9.017 22 27 7 6 0.35 4.67 

100 22 26 7 6 1.02 6.34 17 19 7 6 0.41 4.44 
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Table 7. Running details of the ABC and ABC-SA approaches in the N-Queen problem. 

Dimension 

ABC ABC-SA 

Maximum 

#explored states 

/#transitions 

Minimum 

#explored 

states 

/#transitions 

Minimum 

runtime(s) 

Maximum 

runtime(s) 

Maximum 

#explored states 

/#transitions 

Minimum 

#explored 

states 

/#transitions 

Minimum 

runtime(s) 

Maximum 

runtime(s) 

8 × 8 117 133 9 8 4.66 55.51 99 100 11 10 2.02 6.69 

16 × 16 111 121 13 15 5.005 85.48 89 102 11 12 2.06 7.51 

20 × 20 99 112 27 26 8.97 123.55 79 81 15 16 4.60 95.77 

 

Table 8. Results of the Wilcoxon signed-rank test on ABC-SA with other algorithms.  

Ranks 

 

N Mean rank Sum of ranks 

ABCSA-GA Negative ranks 12a 9.25 111.00 

Positive ranks 3b 3.00 9.00 

Ties 0c 
  

Total 15 
  

 

Test statisticsa 

 

ABCSA/GA 

Z -2.897b 

Asymp. Sig. (2-tailed) .004 
 

ABCSA-PSO Negative ranks 16a 8.50 136.00 

Positive ranks 0b .00 .00 

Ties 0c 
  

Total 16 
  

 

 

ABCSA/PSO 

Z -3.516b 

Asymp. Sig. (2-tailed) .000 
 

ABCSA-PSOGSA Negative ranks 16a 8.50 136.00 

Positive ranks 0b .00 .00 

Ties 0c 
  

Total 16 
  

 

 

ABCSA/PSOGSA 

Z -3.516b 

Asymp. Sig. (2-tailed) .000 
 

ABCSA-BAPSO Negative ranks 14a 7.50 105.00 

Positive ranks 0b .00 .00 

Ties 0c 
  

Total 14 
  

 

 

ABCSA/BAPSO 

Z -3.296b 

Asymp. Sig. (2-tailed) .001 
 

ABCSA-nBOA Negative ranks 10a 12.45 124.50 

Positive ranks 9b 7.28 65.50 

Ties 0c 
  

Total 19 
  

 

 

ABCSA/nBOA 

Z -1.187b 

Asymp. Sig. (2-tailed) .235 
 

ABCSA-ABC Negative ranks 20a 10.50 210.00 

Positive ranks 0b .00 .00 

Ties 0c 
  

Total 20 
  

 

 

ABCSA/ABC 

Z -3.920b 

Asymp. Sig. (2-tailed) .000 
 

a. first sample < second sample 

b. first sample > second sample 

c. first sample = second sample 

a. Wilcoxon signed ranks test 

b. Based on positive ranks 
 



Rezaee & Momeni/ Journal of AI and Data Mining, Vol 8, No 2, 2020. 
 

197 

 

8. Conclusion  

In this work, we mapped the deadlock detection 

problem onto a searching problem, and then 

proposed a hybrid meta-heuristic algorithm, namely 

the ABC-SA algorithm, to cope with the state space 

explosion problem in searching the graph that is 

specified and modeled by the graph transformation 

system. We used the refutation techniques to look 

for a path that contained a property violation, called 

a counter-example. We implemented our proposed 

approach in the Groove model checker tool, and 

added the ABC-SA algorithm to the existing 

searching strategies of this tool. The experimental 

results obtained showed a faster detecting deadlock 

under our approach compared to the other 

approaches. In addition, we showed that PSO, GA, 

PSO-GSA, nBOA, ABC, and the other mentioned 

algorithms could not sometimes find the deadlock 

but the hybrid ABC-SA algorithm can find 

deadlocks in all cases. 

In the future research works, other properties in the 
model checking technique such as liveness and 
reachability can be considered. Moreover, another 
line of research work is to focus on developing a 
better objective function to improve the results. 
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 نشریه هوش مصنوعی و داده کاوی
 

 

 

ای برای مقابله با مشکل انفجار فضای حالت در تکنیک وارسی مدل برای آزادی ارایه راهکار فرامکاشفه

 بن بست

 

  *حسین مومنی و ناهید رضایی

  .ایران ،گرگان ،مهندسی کامپیوتر، دانشگاه گلستانگروه 

 01/12/2019 ؛ پذیرش31/05/2019 بازنگری؛ 13/10/2018 ارسال

 چکیده:

ست افزار نرم درستی یابی برایروش خودکار  یک مدل وارسی سیستم دستیابی قابل هایحالت تمامدر آن  که ا  پیدا منظور به ،اولیه حالت یک از یک 

 میرس زبان یک تبدیل گراف سیستمشود. رفتار و ساختار یک سیستم مدل می ،وارسی مدل روشدر  .شوندمی تولید مطلوب الگوهای و خطاها کردن

 به لاًمعموحالت دارد و  فضای انفجار مشکل گراف تبدیل سیستم با بزرگ هایسیستم مدلسازی .است سیستمسازی و مدلسازی برای مشخص گرافیکی

 سیستم رد ی فضای حالت،جستجو مشکل با مقابله برای ،ترکیبی ایفرامکاشفه روش یک ما مقاله، این در .دارد نیاز محاسباتی منابع از عظیمی مقادیر

کمک  بانمایند. های بزرگ ارایه میی برای جسفتجوی گراف در سفیسفتمکارآمد حلراهای فرامکاشففه هایالگوریتمتبدیل گراف ارایه خواهیم نمود زیرا 

سلترکیب روش اجتماع  صنوعی زنبورع ضای یک تولیدبجای  شده سازیشبیه تبرید و م ضای حالت فقط ،کامل حالت ف شی از ف سی تولید و وار ،بخ

 همقایس در ما پیشنهادی روش که دهدمی نشانها آزمایش نتایج. شودبررسی می (بست بن نظیر) خطاهاوجود برخی   و ایمنی شود و طی آن ویژگیمی

  .است تردقیق و کارآمدتر دیگر هایروش با

 .ای، سیستم تبدیل گرافهای فرامکاشفهانفجار فضای حالت، روشوارسی مدل، درستی یابی نرم افزار،  :کلمات کلیدی

 


