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Abstract 

Learning models and the related results depend on the quality of the input data. If the raw data is not properly 

cleaned and structured, the results obtained tend to be incorrect. Therefore, discretization, as one of the pre-

processing techniques, plays an important role in learning processes. The most important challenge in the 

discretization process is to reduce the number of features’ values. This operation should be applied in a way 

that the relationships between the features are maintained, and the accuracy of the classification algorithms 

would increase. In this paper, a new evolutionary multi-objective algorithm is presented. The proposed 

algorithm uses three objective functions in order to achieve a high-quality discretization. The first and second 

objectives minimize the number of the selected cut points and classification error, respectively. The third 

objective introduces a new criterion called the normalized cut, which uses the relationships between their 

features’ values to maintain the nature of the data. The performance of the proposed algorithm is tested using 

20 benchmark datasets. According to the comparisons and the results of the non-parametric statistical tests, 

the proposed algorithm has been found to have a better performance than the other major existing methods.  
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1. Introduction and literature review 

In knowledge discovery, data pre-processing is 

known as one of the most important steps. Since 

almost all the data mining processes require high-

quality and structured data, pre-processing of the 

raw data is an essential step in most analytical 

problems [1, 2]. In this regard, data reduction is one 

of the major tasks accomplished in pre-processing. 

The data reduction techniques are often used to 

reduce the size of the original data and to clean 

some of the errors that could be present in the 

data [3].  

Data discretization is a data reduction technique 

that converts complex continuous features into a 

finite set of discrete intervals. Lately, the data 

science community has paid a great amount of 

attention to data  discretization [4]. 

In practice, some of the data mining algorithms 

only work with discrete features, while in the real 

world, most problems deal with continuous values. 

Also some data mining algorithms may produce 

low-quality results when they directly deal with the 

continuous data. 

In these cases, feature discretization approaches 

play an important role in converting the continuous 

features to the discrete ones. In addition, it 

eliminates the noise and the missing values as well 

as the unusable and meaningless values. 

Discretization can also reduce and simplify the 

data; this usually leads to a faster learning and more 

accurate, more compact, and shorter results [5-7].  

There are various features available to categorize 

discretization methods including supervised versus 

unsupervised, splitting versus merging, univariate 

versus multivariate, etc. [6]. Supervised methods 

such as MDLP [8], EMD [2], MEMOD [6], and 

EMDID [7] consider class information, while 

unsupervised methods do not consider class 

information and emphasize on the nature of the 

data. Splitting methods start with one interval and 

select the best cut point in each step, while merging 
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methods start with all the candidate cut points, and 

in each step, the closest intervals merge. Univariate 

methods discrete each feature individually, while 

multivariate methods consider the relationship 

between the features. Most of the previous methods 

such as CAIM [9], MDLP [8], and Modified-Chi2 

[10] are univariate. Since these methods do not 

consider communication between features, 

important information is lost and cannot obtain 

global optima. As a result, multivariate methods 

such as EMD [5], MEMOD [6], EMDID [7], and 

GraphS/GraphM [11] have been proposed.  

Besides, there are various techniques available for 

discretization including binning, statistical, 

information, evolutionary, and hybrid. 

Evolutionary algorithms (EAs) are one of the most 

important and successful techniques that can be 

useful for solving the discretization problem [5]. 

Data discretization can be solved as an 

optimization problem so that problem solutions can 

be coded through the binary presentation. The 

categorization of some of the evolutionary 

discretization algorithms is shown in table 1.  

Table 1. A categorization of evolutionary discretization 

algorithms in the literature. 

Objectives 

No. of 

objective

s 

EAs 
Discretizatio

n Algorithm 

Minimize the classification 

error 

Single 

objective 
GA GAFD [12] 

Minimize the classification 

error, minimize the number 

of cut points 

Single 

objective 
PSO 

ISCADABPS

O [13] 

Minimize the data 

consistency, minimize the 

number of cut points 

Single 

objective 
GA ECPSD [14] 

Minimize the classification 

error, minimize the number 

of cut points 

Single 

objective 
GA EMD [5] 

Minimize the classification 

error, minimize the loss of 

class-attribute 

interdependency 

Multi-

Objective 

NSGA

-II 

MultiCAIM 

[15] 

Minimize the classification 

error, minimize the number 

of cut points,  

minimize the total 

frequency of selected cut 

points 

Multi-

Objective 

NSGA

-II 
MEMOD [6] 

Minimize the area under 

ROC curve, minimize the 

number of cut points, 

minimize the total 

frequency of selected cut 

points 

Multi-

Objective 

NSGA

-II 
EMDID [7] 

 

One of the best-known evolutionary discretization 

methods is EMD [5]. The fitness function of EMD 

is based on the minimization of the classification 

error and the number of cut points, while the 

selected cut points may damage the nature of the 

data [11]. Also EAs look for global optimization 

but standard implementation often converges to a 

local optimum. In addition, it is not possible to 

consider several conflicting objectives 

simultaneously [16]. These approaches can, on 

average, produce satisfactory results but each one 

of the objectives might be unacceptable separately 

[17-19]. Thus multi-objective evolutionary 

discretization algorithms such as MEMOD [6] and 

EMDID [7] have been introduced to solve this 

problem. These algorithms solve the discretization 

problem with the multi-objective method, and they 

introduce a novel criterion, namely the total 

frequency of the selected cut points. Using low-

frequency values as the cut points, the information 

loss can be avoided. Regardless of the search 

algorithm used for discretization, these algorithms 

evaluate the potential solutions only in terms of the 

prediction accuracy, and do not focus on the nature 

of the data. In these algorithms, the objective 

functions are based on the minimization of the 

classification error and the number of selected cut 

points. While the cut points may be caused, the 

nature of the data and hidden patterns between the 

data will inevitably be lost [20]. Recently, a 

discretization algorithm based on the graph 

clustering has been presented, which uses the 

similarity measures and the class of instances to 

examine the similarity between the data values 

[20]. It mainly focuses on the relationship between 

the features and the nature of the data but ignores 

the relationship between the features and classes. 

In this paper, an evolutionary multi-objective 

algorithm based on non-dominated sorting genetic 

algorithm-III (NSGA-III) is proposed, which uses 

three objective functions including the number of 

selected cut points, classification error, and 

normalized cut. The proposed algorithm uses the 

normalized cut as an active limit to determine the 

cut points. This objective function selects every cut 

point between the intervals by preserving 

information about the hidden patterns between the 

data when the data has a high similarity, which 

helps to increase the purity of the intervals.  

The structure of the rest of the paper is as what 

follows. In the second section, the proposed 

algorithm is described. The results and evaluation 

of the tests are presented in the third section. 

Conclusions and the future works are expressed in 

the last section. 

 

2. Proposed algorithm 

In this section, we introduce an evolutionary multi-

objective method for the discretization problem. In 

the proposed algorithm, a new criterion called a 
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normalized cut is considered in order to evaluate 

the quality of discretization. This new criterion 

helps maintain the structure and nature of the data. 

This approach is such that the set of data points is 

considered as the chromosome genes of the 

evolutionary algorithm. Then the cut points are 

obtained using NSGA-III based on three objective 

functions including the number of selected cut 

points, the classification accuracy, and the 

similarity between the features’ values. This 

algorithm contains several solutions that the user 

can choose from the obtained solutions based on 

his/her needs. The steps involved in the proposed 

algorithm are as follow: 

1) Determination of the initial cut points; 

2) Creation of the affinity matrix (AF); 

3) Application of the NSGA-III algorithm with 

three objectives: (1) number of selected cut 

points (2) classification error (3) normalized 

cut; 

4) Creation of the discretization scheme; 

5) Conversion of the continuous data to the 

discrete forms. 

These main steps are elaborated in the following. 

2.1. Determination of initial cut points 

In order to get the initial cut points, the continuous 

feature 𝐴 is first arranged in an ascending order. 

Suppose that 𝐷𝑜𝑚(𝐴) represents the domain of the 

feature 𝐴 and 𝑉𝑎𝑙𝐴(𝑠) indicates the value of the 

feature in the instance s ∈ S. If there is a pair of 

instances 𝑢,  𝑣 ∈ 𝑆 that have different classes so 

that 𝑉𝑎𝑙𝐴(𝑢) < 𝑉𝑎𝑙𝐴(𝑣) and there is no other 

instance 𝑤 ∈ 𝑆 so that 𝑉𝑎𝑙𝐴(𝑢) < 𝑉𝑎𝑙𝐴(𝑤) <
𝑉𝑎𝑙𝐴(𝑣), the mean of the values 𝑢  and  𝑣 is 

considered in the initial set of cut points. 

 

2.2. Creation of affinity matrix 

Affinity matrix is a matrix 𝑛 × 𝑛 that shows the 

similarity between the pairs of data points. The 

values for this matrix are between 0 and 1, which 

represents the similarity between the pairs. Before 

calculating the values of the matrix, the values of 

the data are rescaled (normalized) between 0 and 1 

using the min-max method in order to give all 

features the same treatment [11, 20].  
The similarity is calculated by (1), which is the 

weighted sum of the similarity between the data 

values and similarity between class labels of data 

pairs. The value in this equation is between zero 

and one, where zero means that only the similarity 

between the data values is considered and one 

means that only the similarity between the class 

labels is considered. 

( , ) ( ) ( , ) (1 ) ( , )sim u v simC u v simP u v     (1) 

In order to calculate 𝑆𝑖𝑚𝑃(𝑢, 𝑣), 𝑡ℎ𝑒 cosine 

similarity criterion is used. This criterion calculates 

the cosine between the angles between two vertices 

or instances. The cosine similarity between the 

instances is obtained using (2). 

1

2 2
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d

i i

i
C

d d

i i

i i
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simP u v
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 (2) 

2.3. Application of NSGA-III algorithm 

The non-dominated sorting genetic algorithm-III is 

a genetic algorithm that simultaneously optimizes 

several objectives using the non-dominated sorting 

technique [21]. This algorithm uses a selective 

operator based on the reference points to explore 

the solution space and maintain diversity. The steps 

of the NSGA-III algorithm are as follow: 

1) Encoding the chromosome; 

2) Initialization of the population (randomly); 

3) Calculation of all the reference points; 

4) Application of non-dominated sorting; 

5) Application of cross-over and selection 

operators; 

6) Re-application of non-dominated sorting; 

7) Normalization of members of the population; 

8) Assigning points to the reference points; 

9) niche preservation; 

10) Maintenance of the elite solutions for the next 

step; 

11) Repeating the algorithm until the end condition 

is satisfied. 

In the following, the main steps are discussed in 

further details. 

 

2.3.1. Encode chromosome 

In the evolutionary algorithm, it is first necessary 

to encode the problem as a chromosome. In the 

proposed algorithm, the length of the chromosome 

was considered as the number of the initial cut 

points. Each chromosome contains the values of 

zero and one. One means that a cut point is 

selected, and zero otherwise. At first, the initial 

chromosomes are randomly assigned. 

 
2.3.2. Objective functions 
The objective functions used in the proposed 

algorithm include the number of selected cut 

points, classification error, and normalized cut. The 

algorithm tries to minimize the number of cut 

points, classification error, and normalized cut 
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criteria. Each one of the objective functions is 

explained further in the following. 

 Number of selected cut points 

This objective function attempts to reduce the 

number of cut points. As the number of cut points 

in the discretization is reduced, the discretized 

dataset will be simpler and more compact, and it 

will be easier for the user to understand it. In this 

algorithm, the total number of chromosome genes 

that is equal to one is considered as the objective 

function. This is shown by (3). 

1( )f S Number of  selected cut point
 (3) 

 Classification error 

One of the benefits of discretization is to improve 

the classification accuracy. The second objective 

considered in the proposed algorithm is to reduce 

the classification error. Two classifiers were used 

to measure the classification accuracy including 

C4.5 and Naïve Bayes (NB). The average errors 

obtained for these two classes is considered as the 

total classification error; this is shown by (4). The 

use of the average error of the two classifiers 

ensures that the proposed algorithm is not fit on a 

particular classifier. With this design, we can 

obtain more effective discretization schemes.  

4.5
2 ( )

2

C NBerror error
f S




 (4) 

 Normalized cut 

In order to maintain the nature of the data in this 

algorithm, a new criterion called a normalized cut 

is used. To increase the quality of the 

discretization, the values in each interval should be 

as close as possible to each other, and the values at 

different intervals vary as much as possible. 
For this purpose, the idea of the graph clustering is 

used. This algorithm initially creates an affinity 

matrix, and by constructing this matrix, the 

problem is actually converted to a graph, whose 

interconnected components in the graph form a 

cluster (values in one interval). In fact, in this 

graph, the edges whose elements are in a cluster are 

weighted more; conversely, the edges whose 

elements are not in a cluster are weighed less. 

Therefore, in order to calculate the third objective 

function in the proposed algorithm, we must use 

the graph clustering quality evaluation techniques. 

One of these techniques is the normalized cut that 

has been used to solve the graph clustering 

problems (Equation 3). In (3), 𝐶𝑖 is cluster 𝑖, and, 

respectively, 𝜔(𝐶𝑖, 𝐶𝑖) and 𝜔(𝐶𝑖, 𝐶�̅�) are the sum of 

weighted edges of the intra-cluster and inter-cluster 

edges. 
 

1

( , )
( )

( , ) ( , )

k
i i

k

i i i i i

C C
NCut

C C C C




 




  (5) 

In order to calculate the third objective function, 

first, AF for each feature is arranged ascending. All 

rows and columns are reordered according to one 

feature. Since ordering is difficult in terms of 

programming, an identification number (ID) is 

allocated to each instance, which associates with a 

row/column number of AF. Then the reorder is 

only featured with its ID. Finally, we consider the 

total normalized cut obtained for each feature as the 

final value of the third objective function. This is 

represented as (6). 

3

1

( ) ( )
Number of  attributes

i k

i

f S NCut 


              (6) 

2.4. Creation of discretization scheme 

The discretization intervals are determined based 

on the set of selected cut points, and the datasets 

are discretized based on the discretization scheme. 

2.5. Conversion of continuous data to discrete 

forms 

Any continuous value of the feature is converted 

into a discrete value based on the discretization 

scheme obtained from the previous step. In this 

way, for each interval obtained, the values in which 

the interval that is replaced with the name is 

assigned to that interval. 

3. Experimental results and discussion  

The proposed algorithm was implemented in 

Python 3.7. All experiments were conducted on an 

Intel(R) Core(TM) CPU@2.20 GHz and 8 GB 

RAM. In this section, the performance evaluation 

of the proposed algorithm was performed using a 

variety of datasets. In order to evaluate the 

performance of the proposed algorithm, 20 

benchmark datasets were used. Table 2 shows a 

summary of the datasets used in the experiments. 

For each dataset, the number of instances, number 

of features, and number of classes are shown. The 

datasets were partitioned using the 10-fold cross-

validation method. All datasets are available in the 

UCI Machine Learning Database [22]. 

The performance of the proposed algorithm was 

compared with the well-known algorithms such as 

CAIM [9], MDLP [8], Mod-Chi2 [10], EMD [5], 

MEMOD [6], GraphS [11], and GraphM [11]. 

MDLP, EMD, and MEMOD achieved a good 
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trade-off between the accuracy and the number of 

selected cut points. Considering the trade-off 

accuracy and simplicity, one of these methods is a 

good option. The supervised and unsupervised, 

direct and incremental, and statistical/information 

evaluation are characteristics of the best algorithms 

in terms of the performance. Besides, CAIM, 

modified-Chi2, EMD, and MEMOD obtained high 

performances among all types of classifiers [7]. 

The proposed algorithm was also compared with 

GraphS and GraphM since these were the new 

discretizers that were shown to work well on 

different datasets. The values assigned to the 

parameters of algorithms were effective in the 

process of accessing an algorithm to the 

appropriate and desirable responses. Table 3 shows 

the parameters used in different algorithms. The 

parameters are based on the cases the authors of 

each algorithm have suggested in the article. 

Table 2. Properties of datasets. 

 

3.1. Comparison of performance in terms of 

classification accuracy and number of cut points 
In order to compare the performance of the 

algorithms, the accuracy of the classification and 

the number of cut points for the discretization 

schemes derived from the eight algorithms were 

compared with 20 datasets in the following. The 

mean classification accuracy derived from the C4.5 

and Naïve Bayes and SVM classifiers was 

considered as the classification accuracy of the 

algorithms for comparison.  

Table 3. Parameters of discretizers. 
Algorithm Parameters 

EMD 

Population size = 50 

Iterations = 10000  

Weight factor (α) = 0.7 

Reduction percentage = 0.5 
Reduction rate = 0.1 

MEMOD 

Population size = 50, Iterations = 100  

Reduction percentage = 0.5 
Reduction rate = 0.1 

Selection = binary tournament 
Cross-over = uniform crossover 
Cross-over probability = 0.6 

Mutation probability = 0.4 

GraphS/ 

GraphM 

Weight-determination (α) = 0.2, 

significant improvement percentage (β) = 1.01 

Proposed 

Algorithm 

Population size = 50, Iterations = 10000, 
Cross-over = binary cross-over, Simulated, 

mutation = Polynomial, Mutation,  
Weight-determination (α) = 0.2 

 

Figures 1, 2, and 3 show the Pareto front obtained 

from the proposed algorithm based on the only two 

objectives of the classification error (sum of 

classification error of NB and C4.5 classifier) and 

the number of selected cut points. Since the 

objective based on the normalized cut is hidden in 

other objectives, except for some datasets such as 

penbased, phoneme, sonar, tae, and vehicle, the 

proposed algorithm has been able to overcome 

other algorithms in the literature. For these 

datasets, the proposed algorithm has been able to 

overcome most of the algorithms. As shown in 

figures 1, 2, and 3, the proposed multi-objective 

algorithm has the capability to find several 

solutions that a user can choose from one solution 

based on the fact that the number of cut points is 

more important to him/her or the classification 

accuracy.  

Among the solutions obtained by the algorithm, a 

solution was chosen; the results obtained can be 

seen in tables 4, 5, 6, and 7. The results were used 

for the non-parametric statistical test. According to 

the results in table 4, the proposed algorithm was 

able to obtain a relatively small number of cut 

points. The mean number of cut points by the 

proposed algorithm is more than MEMOD. This is 

due to the nature of the proposed algorithm. To 

preserve the nature of data, the proposed algorithm 

in some datasets such as pima, saheart, vehicle, and 

wine chooses more cut points. Tables 5, 6, and 7 

show the results of the classification accuracy of 

the algorithms on NB, C4.5, and SVM classifier, 

respectively. Table 5 shows that the proposed 

No. of 

classe

s 

No. of 

feature

s 

No. of 

instance

s 
Datasets 

 

28 8 4,174 abalone 1 
2 7 106 appendicitis 2 
3 4 625 balance 3 
2 6 345 bupa 4 
3 9 1,473 contraceptiv

e 
5 

7 9 214 glass  6 

2 3 306 haberman 7 

3 4 150 iris 8 
10 16 10,992 penbased 9 
2 5 5,472 phoneme 1

0 

2 8 768 pima 1
1 

2 9 462 saheart 1

2 
7 36 6,435 satimage 1

3 

2 60 208 sonar 1

4 

3 5 151 tae 1
5 

2 5 748 transfusion 1

6 

4 18 846 vehicle 1
7 

11 13 990 vowel 1

8 

3 13 178 wine 1

9 

10 8 1,484 yeast 2

0 
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algorithm was able to obtain a better classification 

accuracy in the twelve datasets for the NB 

classifier. Tables 6 and 7 show that the best mean 

classification accuracies for the C4.5 and SVM 

classifiers belong to the proposed algorithm.

 
 

 

 

Figure 1. Projection of non-dominated solutions obtained by the proposed algorithm for the considered datasets (Part-1). 



Tahan & Ghasemzadeh/ Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

31 

 

 

Figure 2. Projection of non-dominated solutions obtained by the proposed algorithm for the considered datasets (Part-2). 
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Figure 3. Projection of non-dominated solutions obtained by the proposed algorithm for the considered datasets (Part-3). 
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Table 4. The number of cut points obtained by algorithms. 
 

CAIM MDLP Modified-Chi2 EMD MEMOD GraphM GraphS Proposed algorithm 

abalone 216 41 3265 102 22 17 16 17 

appendicits 7 6 40 3 2 7 18 4 

balance 8 4 12 9 9 8 8 9 

bupa 6 1 130 11 11 6 7 9 

contraceptive 15 10 44 26 8 9 9 6 

glass 13 12 53 54 15 15 14 14 

haberman 3 1 48 3 3 4 4 10 

iris 8 8 23 3 3 7 7 3 

penbased 145 149 148 42 42 35 37 37 

phoneme 5 27 596 22 22 7 8 5 

pima 8 9 118 13 7 8 7 11 

saheart 60 21 18 10 6 10 9 12 

satimage 216 412 341 37 36 84 82 36 

sonar 60 21 18 10 10 60 60 10 

tae 7 0 74 10 9 5 5 10 

transfusion 4 3 93 5 5 7 8 12 

vehicle 54 55 197 19 18 40 38 20 

vowel 112 33 56 43 43 19 18 58 

wine 26 24 13 3 3 12 13 12 

yeast 57 13 179 33 24 8 8 17 

mean 51.5 42.5 273.3 22.9 14.9 18.4 18.8 15.05 

 

 

 

Table 5. The Classification accuracy obtained by NB. 
 

CAIM MDLP Modified-Chi2 EMD MEMOD GraphM GraphS Proposed method 

Acc std Acc std Acc std Acc std Acc Std Acc std Acc std Acc std 

abalone 0.2511 0.0189 0.233 0.0164 0.1928 0.0196 0.2436 0.0195 0.2654 0.0199 0.2176 0.0202 0.2123 0.0296 0.2176 0.0126 

appendicitis 0.8023 0.0194 0.8023 0.0194 0.7633 0.0579 0.8023 0.0194 0.8023 0.0194 0.8023 0.0091 0.8023 0.0091 0.8117 0.0348 

balance 0.8017 0.0379 0.7232 0.0419 0.8315 0.0274 0.5762 0.0597 0.8248 0.0388 0.6781 0.0664 0.5273 0.0498 0.8288 0.0323 

bupa 0.6186 0.029 0.5798 0.0084 0.6364 0.0719 0.6346 0.0466 0.7011 0.056 0.6764 0.0748 0.6626 0.0756 0.7111 0.0125 

contraceptive 0.4661 0.0366 0.4833 0.0362 0.5075 0.0426 0.4812 0.0373 0.5268 0.0332 0.4966 0.0345 0.4984 0.0314 0.5268 0.0309 

glass 0.6745 0.079 0.6319 0.0815 0.6663 0.0945 0.6333 0.0929 0.6564 0.1016 0.6617 0.0817 0.6599 0.0861 0.6754 0.0953 

haberman 0.7359 0.0262 0.7353 0.0069 0.7379 0.0702 0.7223 0.023 0.7353 0.0069 0.7272 0.0344 0.7374 0.0447 0.7415 0.0537 

iris 0.6433 0.0911 0.7347 0.1115 0.88 0.0736 0.7933 0.0808 0.9533 0.0512 0.91 0.0669 0.748 0.1044 0.9533 0.0494 

penbased 0.7838 0.0113 0.7757 0.0096 0.7805 0.0095 0.8082 0.011 0.8401 0.0103 0.7341 0.0114 0.6647 0.0108 0.6647 0.0113 

phoneme 0.7885 0.0159 0.7611 0.0162 0.7118 0.0185 0.7355 0.0173 0.7754 0.0172 0.7379 0.0153 0.7065 0.0005 0.7883 0.0456 

pima 0.6635 0.0266 0.6663 0.029 0.6776 0.0523 0.6988 0.0319 0.7511 0.0367 0.7069 0.0436 0.7133 0.036 0.7567 0.0326 

saheart 0.669 0.0393 0.6537 0.003 0.7067 0.0601 0.6775 0.035 0.6993 0.0483 0.6553 0.0124 0.6549 0.0054 0.7117 0.0489 

satimage 0.7729 0.0108 0.7711 0.0122 0.7686 0.0119 0.7688 0.0139 0.8053 0.0117 0.5416 0.017 0.6215 0.0147 0.7953 0.0182 

sonar 0.7824 0.0895 0.8297 0.0697 0.7545 0.082 0.7038 0.0818 0.7932 0.0778 0.8009 0.088 0.7822 0.0949 0.7207 0.0806 

tae 0.4262 0.1361 0.344 0.017 0.4202 0.0102 0.5415 0.042 0.8082 0.017 0.4496 0.0128 0.4647 0.117 0.4402 0.1038 

transfusion 0.7687 0.0182 0.7621 0.0041 0.7337 0.0424 0.7636 0.0082 0.7621 0.0041 0.7631 0.047 0.7631 0.0047 0.7847 0.0125 

vehicle 0.5774 0.0502 0.5701 0.0526 0.5119 0.0489 0.6055 0.0441 0.6681 0.0422 0.5914 0.0466 0.5583 0.0438 0.6692 0.0362 

vowel 0.4594 0.0495 0.5438 0.0504 0.5498 0.0483 0.4898 0.0537 0.551 0.0396 0.4255 0.0493 0.3689 0.0413 0.6161 0.0393 

wine 0.9214 0.0576 0.9237 0.0173 0.9276 0.0564 0.9045 0.0554 0.9138 0.0629 0.4681 0.0331 0.4901 0.0314 0.9471 0.0513 

yeast 0.5428 0.0378 0.491 0.0403 0.5315 0.0383 0.5028 0.0399 0.5809 0.0323 0.4531 0.0393 0.4662 0.672 0.4378 0.0362 

mean 0.6575 0.0440 0.6508 0.0322 0.6645 0.0468 0.6544 0.0407 0.7207 0.0364 0.6249 0.0402 0.6051 0.0752 0.6894 0.0419 
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Table 6. The classification accuracy obtained by C4.5. 
 

CAIM MDLP Modified-Chi2 EMD MEMOD GraphM GraphS Proposed method 

Acc std Acc std Acc std Acc Std Acc Std Acc std Acc std Acc std 

abalone 0.2333 0.0209 0.239 0.0190 0.2039 0.0200 0.2294 0.0191 0.2627 0.0203 0.2260 0.0203 0.2082 0.0307 0.2450 0.0295 

appendicitis 0.8669 0.0720 0.8738 0.0715 0.872 0.0863 0.8838 0.0890 0.8961 0.0812 0.8687 0.0896 0.8832 0.0823 0.9153 0.0818 

balance 0.7519 0.0412 0.7003 0.0347 0.7969 0.0482 0.6017 0.0507 0.8001 0.0447 0.7945 0.0365 0.7537 0.0467 0.8415 0.0327 

bupa 0.7036 0.0590 0.6319 0.0734 0.6335 0.0837 0.7113 0.0861 0.6862 0.0779 0.6216 0.0752 0.6084 0.0740 0.7069 0.0369 

contraceptive 0.4869 0.0370 0.5488 0.0371 0.4978 0.0382 0.5292 0.0404 0.5580 0.0414 0.4911 0.0344 0.5076 0.0365 0.5361 0.0311 

glass 0.7009 0.0922 0.7616 0.0730 0.7457 0.0936 0.7415 0.0870 0.7126 0.0955 0.6793 0.0950 0.6829 0.0943 0.7534 0.0859 

haberman 0.7494 0.0495 0.7141 0.0476 0.6982 0.0603 0.7813 0.0509 0.7620 0.0497 0.7594 0.0424 0.7466 0.0498 0.7866 0.0548 

iris 0.9533 0.0487 0.9447 0.0604 0.9427 0.055 0.8113 0.0929 0.9467 0.0573 0.9433 0.0493 0.9460 0.0469 0.9533 0.0521 

penbased 0.9597 0.0053 0.9634 0.0056 0.9611 0.0065 0.9584 0.0059 0.9469 0.0063 0.9465 0.0070 0.9462 0.0070 0.9486 0.037 

phoneme 0.7970 0.0171 0.826 0.0157 0.8700 0.013 0.8568 0.0122 0.8288 0.0149 0.7949 0.0170 0.7972 0.0152 0.7890 0.0587 

pima 0.7351 0.0394 0.7737 0.0442 0.7292 0.0463 0.7836 0.0432 0.7573 0.0478 0.7428 0.0429 0.7356 0.0400 0.7868 0.0384 

saheart 0.7039 0.0537 0.7078 0.0508 0.6779 0.0533 0.7303 0.0597 0.7188 0.0576 0.6965 0.051 0.6643 0.0576 0.7490 0.0485 

satimage 0.8496 0.0126 0.8561 0.0128 0.8548 0.0125 0.8561 0.0127 0.8238 0.0127 0.6985 0.0158 0.6987 0.0152 0.8561 0.0197 

sonar 0.8013 0.0876 0.7710 0.0737 0.7828 0.0832 0.8336 0.0776 0.8500 0.0771 0.7772 0.0841 0.7860 0.0920 0.7909 0.0887 

tae 0.5512 0.1065 0.3440 0.0170 0.5728 0.1147 0.7133 0.0450 0.8430 0.0700 0.4855 0.1421 0.5208 0.1236 0.6791 0.1108 

transfusion 0.7741 0.0161 0.7590 0.0173 0.7557 0.0388 0.8032 0.0395 0.8038 0.0307 0.7778 0.0222 0.7771 0.0205 0.8145 0.0148 

vehicle 0.6793 0.040 0.7076 0.0432 0.7031 0.0406 0.7172 0.037 0.7191 0.0430 0.6717 0.0476 0.6502 0.0418 0.6923 0.0474 

vowel 0.8033 0.0411 0.7586 0.0410 0.8033 0.0367 0.7607 0.0443 0.7110 0.0421 0.6826 0.0426 0.6849 0.038 0.8033 0.0334 

wine 0.9144 0.0684 0.9416 0.0644 0.9599 0.0535 0.9621 0.0474 0.9195 0.0587 0.4295 0.0394 0.452 0.0384 0.9748 0.0649 

yeast 0.5507 0.0378 0.5961 0.0382 0.5089 0.0415 0.5133 0.0383 0.5538 0.0361 0.5454 0.0423 0.5494 0.0635 0.5229 0.0394 

mean 0.7283 0.0473 0.7210 0.0420 0.7285 0.0513 0.7389 0.0489 0.7550 0.0483 0.6816 0.0498 0.6800 0.0507 0.7573 0.0505 

 

Table 7. The classification accuracy obtained by SVM. 
 

CAIM MDLP Modified-Chi2 EMD MEMOD GraphM GraphS Proposed method 

Acc std Acc std Acc std Acc Std Acc Std Acc std Acc std Acc std 

abalone 0.2333 0.0209 0.239 0.0190 0.2039 0.0200 0.2294 0.0191 0.2627 0.0203 0.2260 0.0203 0.2082 0.0307 0.2450 0.0295 

appendicitis 0.8669 0.0720 0.8738 0.0715 0.872 0.0863 0.8838 0.0890 0.8961 0.0812 0.8687 0.0896 0.8832 0.0823 0.9153 0.0818 

balance 0.7519 0.0412 0.7003 0.0347 0.7969 0.0482 0.6017 0.0507 0.8001 0.0447 0.7945 0.0365 0.7537 0.0467 0.8415 0.0327 

bupa 0.7036 0.0590 0.6319 0.0734 0.6335 0.0837 0.7113 0.0861 0.6862 0.0779 0.6216 0.0752 0.6084 0.0740 0.7069 0.0369 

contraceptive 0.4869 0.0370 0.5488 0.0371 0.4978 0.0382 0.5292 0.0404 0.5580 0.0414 0.4911 0.0344 0.5076 0.0365 0.5361 0.0311 

glass 0.7009 0.0922 0.7616 0.0730 0.7457 0.0936 0.7415 0.0870 0.7126 0.0955 0.6793 0.0950 0.6829 0.0943 0.7534 0.0859 

haberman 0.7494 0.0495 0.7141 0.0476 0.6982 0.0603 0.7813 0.0509 0.7620 0.0497 0.7594 0.0424 0.7466 0.0498 0.7866 0.0548 

iris 0.9533 0.0487 0.9447 0.0604 0.9427 0.055 0.8113 0.0929 0.9467 0.0573 0.9433 0.0493 0.9460 0.0469 0.9533 0.0521 

penbased 0.9597 0.0053 0.9634 0.0056 0.9611 0.0065 0.9584 0.0059 0.9469 0.0063 0.9465 0.0070 0.9462 0.0070 0.9486 0.037 

phoneme 0.7970 0.0171 0.826 0.0157 0.8700 0.013 0.8568 0.0122 0.8288 0.0149 0.7949 0.0170 0.7972 0.0152 0.7890 0.0587 

pima 0.7351 0.0394 0.7737 0.0442 0.7292 0.0463 0.7836 0.0432 0.7573 0.0478 0.7428 0.0429 0.7356 0.0400 0.7868 0.0384 

saheart 0.7039 0.0537 0.7078 0.0508 0.6779 0.0533 0.7303 0.0597 0.7188 0.0576 0.6965 0.051 0.6643 0.0576 0.7490 0.0485 

satimage 0.8496 0.0126 0.8561 0.0128 0.8548 0.0125 0.8561 0.0127 0.8238 0.0127 0.6985 0.0158 0.6987 0.0152 0.8561 0.0197 

sonar 0.8013 0.0876 0.7710 0.0737 0.7828 0.0832 0.8336 0.0776 0.8500 0.0771 0.7772 0.0841 0.7860 0.0920 0.7909 0.0887 

tae 0.5512 0.1065 0.3440 0.0170 0.5728 0.1147 0.7133 0.0450 0.8430 0.0700 0.4855 0.1421 0.5208 0.1236 0.6791 0.1108 

transfusion 0.7741 0.0161 0.7590 0.0173 0.7557 0.0388 0.8032 0.0395 0.8038 0.0307 0.7778 0.0222 0.7771 0.0205 0.8145 0.0148 

vehicle 0.6793 0.040 0.7076 0.0432 0.7031 0.0406 0.7172 0.037 0.7191 0.0430 0.6717 0.0476 0.6502 0.0418 0.6923 0.0474 

vowel 0.8033 0.0411 0.7586 0.0410 0.8033 0.0367 0.7607 0.0443 0.7110 0.0421 0.6826 0.0426 0.6849 0.038 0.8033 0.0334 

wine 0.9144 0.0684 0.9416 0.0644 0.9599 0.0535 0.9621 0.0474 0.9195 0.0587 0.4295 0.0394 0.452 0.0384 0.9748 0.0649 

yeast 0.5507 0.0378 0.5961 0.0382 0.5089 0.0415 0.5133 0.0383 0.5538 0.0361 0.5454 0.0423 0.5494 0.0635 0.5229 0.0394 

mean 0.7283 0.0473 0.7210 0.0420 0.7285 0.0513 0.7389 0.0489 0.7550 0.0483 0.6816 0.0498 0.6800 0.0507 0.7573 0.0505 
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3.2. Non-parametric statistical tests 

The non-parametric statistical tests were used to 

confirm the statistical significance and to analyze 

the difference between the discretizers. For this 

purpose, a two-step procedure was used. In the first 

step, a non-parametric statistical test such as the 

Friedman's test was performed to rank the 

algorithms based on their performance [23]. 

According to the null hypothesis in this test, the 

algorithms are equivalent. Thus by rejecting the 

null hypothesis, one can conclude the statistically 

significant differences. In the second step, in order 

to examine the existence of a pairwise difference, 

an algorithm with the best rank was selected as the 

control algorithm for comparison with other 

algorithms, and then the post-hoc non-parametric 

statistical tests were performed to compare the 

statistical difference between the control algorithm 

(the best algorithm) with the other algorithms [24]. 

The post-hoc statistical tests used in this work 

included Holm [25], Hochberg [26], Hommel [27], 

Holland [28], Rom [29], and Finner [30]. 

In this work, there were eight discretizers for 

comparing. The experiments were designed in such 

a way that the statistical significance of the 

accuracy of discretizers and the number of cut 

points obtained from them were tested. In order to 

achieve this goal, the tests were performed on the 

classification accuracy and the number of cut 

points obtained from the discretizer on 20 datasets. 

In figure 4, the results of the Friedman test are 

shown. This test was applied with a level of 

confidence α =  0.05. According to the results 

shown in the figures, the proposed algorithm 

ranked first in all the three classifiers, and 

therefore, it was chosen as the control algorithm.  

 

 

Figure 4. Average ranks obtained by each algorithm in the Friedman test. 

 

Tables 8, 9, and 10 show the values obtained from 

applying the post-hoc tests on the results of the 

Friedman test. The tables show that there is a 

statistically significant difference between the 

proposed algorithm and the other algorithms. 

Therefore, the proposed algorithm has a higher 

accuracy than the other algorithms, and can be 

considered as an appropriate algorithm for 

discretization. 
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Table 8. Post Hoc comparison Table for 𝜶 = 𝟎. 𝟎𝟓 

(Friedman for NB classfier). 

Algorithm Holm/ 

Hochberg/ 

Hommel 

Holland Rom Finner 

GraphS 0.007143 0.007301 0.007513 0.007301 

MDLP 0.008333 0.008512 0.008764 0.014548 

GraphM 0.010000 0.010206 0.010515 0.021743 

EMD 0.012500 0.012741 0.013109 0.028885 

Modified-

Chi2 
0.016667 0.016952 0.016667 0.035975 

CAIM 0.025000 0.025321 0.025000 0.043013 

MEMOD 0.050000 0.050000 0.050000 0.050000 

 

Table 9. Post Hoc comparison Table for 𝜶 = 𝟎. 𝟎𝟓 

(Friedman for C4.5 classfier). 

Algorithm 

Holm/ 

Hochberg/ 

Hommel 

Holland Rom Finner 

GraphM 0.007143 0.007301 0.007513 0.007301 

GraphS 0.008333 0.008512 0.008764 0.014548 

Modified-

Chi2 
0.010000 0.010206 0.010515 0.021743 

CAIM 0.012500 0.012741 0.013109 0.028885 

MDLP 0.016667 0.016952 0.016667 0.035975 

EMD 0.025000 0.025321 0.02500 0.043013 

MEMOD 0.050000 0.050000 0.050000 0.050000 

 

Table 10. Post Hoc comparison Table for 𝜶 = 𝟎. 𝟎𝟓 

(Friedman for SVM classfier). 

Algorithm 

Holm/ 

Hochberg/ 

Hommel 

Holland Rom Finner 

GraphS 0.007143 0.007301 0.007513 0.007301 

GraphM 0.008333 0.008512 0.008764 0.014548 

MDLP 0.010000 0.010206 0.010515 0.021743 

MEMOD 0.012500 0.012741 0.013109 0.028885 

CAIM 0.016667 0.016952 0.016667 0.035975 

Modified-

Chi2 
0.025000 0.025321 0.02500 0.043013 

MEMOD 0.050000 0.050000 0.050000 0.050000 

 

4. Conclusions and future works 

In this paper, a new evolutionary multi-objective 

algorithm has been proposed using the NSGA-III 

algorithm for multivariate discretization. This 

algorithm utilizes the normalized cut criterion. The 

proposed algorithm optimizes three objective 

functions simultaneously. This algorithm not only 

reduces the number of selected cut points and 

classification errors but also the relationships 

between the features’ values and the nature of the 

data is maintained. The performance of the 

proposed algorithm was compared with other 

algorithms in the literature. The results obtained 

indicate that the proposed algorithm is better than 

the other algorithms in the classification accuracy. 

On the other hand, since the proposed algorithm is 

trying to maintain the nature of the data, it obtains 

the second rank in terms of the number of selected 

cut points. Our algorithm is capable of solving 

several solutions (the Pareto front), which allows 

the user to choose solutions to their problem from 

solutions in the Pareto front. 

The two-step non-parametric statistical tests were 

used to show better results. Based on the non-

parametric statistical tests, the proposed algorithm 

ranked first among the other algorithms. Achieving 

the first rank means that the proposed algorithm 

performs better than the other algorithms. Then the 

algorithms were compared in pairwise, which 

showed that the proposed algorithm was 

significantly better than the other algorithms.  

The future research works can provide 

unsupervised discretization based on evolutionary 

multi-objective algorithms, taking into account the 

objectives of the number of selected cut points, 

inter cluster and intra cluster. Also EAs with high-

dimensional data may require a lot of running time. 

Using the parallelization techniques can greatly 

improve the runtime. 
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 چکیده:

 جنتای نشتتوند یافتهستتاخت و ستتازیپاک درستتت  به خام هایداده اگر. هستتت د وابستتته ورودی داده کیفیت به آن به مربوط نتایج و یادگیری هایمدل 

 ایفا یادگیری فرآی دهای در را مهم  نقش پردازشپیش هایتک یک از یک  ع وان به ستتازیگستتستتته رو این از. داشتتت خواه د همراه به را اشتتتهاه 

 تمالگوری دقت و شتتود حفظ هاویژگ  بین ارتهاطات ها،ویژگ  مقادیر تعداد کاهش با که استتت این ستتازیگستتستتته فرآی د در چالش ترینمهم. ک دم 

 به یاب دستتت برای هدف تابع ستته از پیشتت هادی الگوریتم. استتت شتتده ارائه جدید تکامل  چ دهدفه الگوریتم یک مقاله این در. یابد افزایش ب دیطهقه

 یک ومس هدف. دهدم  کاهش را ب دیکلاس خطای و انتخاب  برش نقاط تعداد ترتیب به دوم و اول هدف. ک دم  استفاده بالا کیفیت با سازیگستستته

 .گرددم  حفظ هاداده طهیعت نتیجه در و هاآن مقادیر و هاویژگ  بین ارتهاطات آن از استتتفاده با که ک دم  معرف  نرمال برش نام به جدید معیار

 لگوریتما ناپارامتری، آماری هایآزمون نتایج و هامقایسه ب ابر. گرفت قرار آزمایش مورد الگو دادهمجموعه بیست از استفاده با پیش هادی الگوریتم عملکرد

 ریتمالگو پیشتت هادی الگوریتم که استتت این نویدبخش نتایج ب ابراین. اردد ادبیات در موجود هایروش ستتایر به نستتهت بهتری عملکرد پیشتت هادی

 .است ب دیطهقه مسائل در م اسه  سازیگسسته

 .گسسته سازی، چ دهدفه، تکامل ، برش نرمال، چ دمتغیره :کلمات کلیدی

 


