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Abstract 

The software defined network is a new computer network architecture that separates the controller and data 

layers in network devices such as switches and routers. By the emergence of software defined networks, a class 

of location problems, called the controller placement problem, has attracted much more research attention. The 

task in the problem is to simultaneously find the optimal number and location of controllers satisfying a set of 

routing and capacity constraints. In this paper, we suggest an effective solution method based on the so-called 

iterated local search strategy. We then, compare our method with the existing standard mathematical 

programming solvers on an extensive set of problem instances. It turns out that our suggested method is 

computationally much more effective and efficient over middle to large instances of the problem. 
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1. Introduction 

The architecture of network communication 

equipment including switches and routers consists 

of the two planes of control and data [1]. The 

control plane provides the necessary information 

for routing in the network. The data plane has the 

task of transferring packets from the input port to 

the output port based on the information entering in 

its routing table. In the recent years, researchers 

have focused their attention on separating the 

control plane from the data plane. In this 

separation, the control plane is located on the 

server or a program named the controller. The data 

plane remains in the switch or router. Separation of 

the control plane from the data plane has many 

benefits, such as more programmability of the 

control plane, possibility of network virtualization, 

reduction of the operating costs, and greater 

independence of the network equipment 

manufacturers. The above idea has led to the 

emergence of software defined networks (SDNs) 

[2]. The emerge of SDN has attracted the attention 

of a large number of universities and industries to 

its implementation in its communication 

infrastructure [3]. On these networks, 

configuration methods are often simpler and more 

precise, and the possibility of using more physical 

infrastructures is provided [4]. A group of network 

operators, network service providers, and network 

equipment manufacturers created an organization 

called ONF [5] to promote SDN networks and 

provide a standard communication protocol of 

network. 

In SDN networks, the controller is often 

responsible for the propagation of each flow in the 

network, and performs this by assigning input 

flows to the switches [6]. This work has given a 

pivotal role to the controller, as with the aim of it, 

complete knowledge of the network can be applied 

in optimizing flow management and support of 

user requirements [7]. 

One of the important problems defined on SDN 

networks is the controller placement problem. In 

this problem, the goal is to determine the location 

of the controllers and their required number in the 

network so that the total cost of installing 

controllers, the cost of connecting switches to 

controllers, and the cost of connecting controllers 

to each other is minimized [8]. In terms of 

computational complexity, the problem is NP-hard 

[9]. 

http://dx.doi.org/10.22044/jadm.2018.6311.1746
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 In work, an algorithm called Iterated Local Search 

(ILS) [10] is used to tackle the problem. This 

algorithm uses concepts such as the neighborhood 

and perturbation mechanism to build an efficient 

topology of the network at an acceptable running 

time. 

Iterated local search works by relying on a clear 

principle that is easy to identify and that usually 

leads to high-performing algorithms. In addition, 

ILS algorithms are relatively intuitive to design, 

and at the same time malleable. Besides, ILS often 

offers an excellent trade-off between simplicity and 

flexibility. Therefore, iterated local search often 

serves as a basis for a larger algorithm engineering 

effort if high-performing heuristics are desired. 

This approach is very successful, as shown by the 

various problems for which ILS algorithms have 

been or still are state of the art [24]. 

The remainder of this paper is organized as what 

follows. Section 2 describes the efforts that have 

been made in the past to solve problems. Section 3 

is focused on describing a standard accurate 

programming formulation of the problem. Section 

4 is dedicated to the introduction of the proposed 

algorithm based on the ILS method and its 

structure. Section 5 provides computational 

analysis of the ILS algorithm, and investiges its 

performance in comparison with standard solvers 

for the programming formulations. Finally, 

conclusions are presented in Section 6.  

 

2. Related works 

In this section, the works done on the controller 

placement problem are reviewed. Heller et al. in [8] 

have used two criteria, namely average latency and 

worst-case latency, to select an appropriate 

controller location. In their method, first, the 

shortest paths between switches are computed, and 

then the average latency and largest length of such 

paths are considered as average and worst-case 

latency, respectively. Xiao et al. in [11] have 

presented a method for controller placement in the 

SDN wide network. In this method, first, the 

spectral clustering algorithm divides the network 

into several domains, and then the best location to 

install the controller is specified in each domain. 

Unlike the two previous works, the research work 

conducted in [12] addresses the reliability of SDN 

networks. In this work, the reliability of receiving 

information from switches in a location will 

increase the priority of choosing it to install a 

controller, while other important parameters in the 

controller placement, such as cost, delay, and load 

balancing are not considered. 

The focus on the properties of network graph has 

caused Zhang et al. [13] to use a graph parsing 

algorithm to choose proper locations for controller 

installation, which minimizes the probability of 

losing the switch-controller connection. Obadia et 

al. in [14] have considered the controller placement 

problem by applying tree topology to connect the 

controllers to each other. The induction of such a 

topology to controllers will reduce their operational 

overhead. Yao et al. in [15] have investigated the 

controller placement problem in the presence of 

controllers with a limited capacity. In [16], Zhang 

and others have considered different topologies for 

connecting controllers. 

Recently, Sallahi et al. in [17], in order to minimize 

the network cost, have described the controller 

placement problem as a sum of several objective 

functions. They reasoned that the controller 

placement should meet certain constraints, 

especially for the control plane. Their idea 

simultaneously determines the optimal number, 

location, and type of controller, as well as the 

communications between the network elements, 

and to limit, the network cost is considered the 

various constraints. The proposed method is based 

on solving a mathematical programming 

formulation that is suitable only for small-scale 

networks. The mathematical programming model 

proposed in [17] and its exact solution based on the 

use of standard solvers of mathematical 

programming problems will be a comparative 

criterion in this work. 

 

3. Mathematical formulation of problem 

In this section, the mathematical formulation of the 

controller placement problem, taken from [17], is 

described. This model includes a set of switches, a 

set of controllers, a set of links, and a set of possible 

locations for installing the controllers represented 

by the symbols S, C, L, and P, respectively. In this 

formulation, the network is assumed to be a graph, 

each node of which may locate a switch or a 

controller. In a special case, a switch and a 

controller can be located together. In a node, each 

switch is connected only to one of the controllers. 

Considering the limit in the number of ports of a 

controller, several switches can be managed by a 

controller. In this graph, each controller must be in 

a direct communication with the other controllers. 

Hence, the topology used between the controllers 

is of full mesh type. For each switch s ϵ S, the 

number of packets sent to the controller is 

represented by the parameter 𝜎𝑠. Each controller c 

ϵ C has the parameters , , ,c c c   and
c which, 

respectively, represent the number of ports, number 

of packets, cost, and number of controllers of type 

c. For each link l ϵ L, the two parameters
l and 

l
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are defined as to express the bandwidth and the 

installation cost. The other (non-negative) 

parameters of the problem are the packet size, 

network latency, and packet processing time in a 

controller, which are represented by the symbols 

, ,  and , respectively. Now, according to the 

definitions of the sets and parameters, the decision 

variables of the problem are as follows: 

 

If controller c is located in position p; 

otherwise 

If there is a link l between switch s and 

the controller located in position p; 

otherwise 

               If link l exists between positions p and q; 

otherwise 

 

The goal is then to minimize the network 

deployment costs. These costs include the cost of 

installing the controller in locations, the costs of 

connecting switches to controllers, and the costs of 

connecting controllers to each other, represented 

by the symbols ( ),cC x ( ),lC v and ( ),tC z  

respectively. Equations (1), (2), and (3) describe 

how each one of these costs is calculated. The 

dist(a,b) function in Equations (2) and (3) obtains 

the Euclidean distance between location a and 

location b. 
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 In the following, the objective function of the 

problem is expressed along with its constraints: 
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The constraints (5) and (6) describe the limitation 

of the number of controllers of type c ϵ C in place p 

and the number of ports of a controller. Constraint 

(7) indicates the limitation of the use of link l 

between a switch s and a controller c. The 

constraints (8) and (9) represent the limit of the 

number of packet processed by controller c and the 

inventory of each controller. Constraint (10) 

indicates the bandwidth limitation of link l. The 

function 𝑔(𝑎, 𝑏) in (10), with two input arguments 

a and b, obtains the number of a packets of length 

b bytes based on bytes per second. F(a) is a 

function that converts a value in megabytes or 

gigabytes (a) to bytes per second. The constraints 

(11) and (12) represent the total network delay, i.e. 

the sum of transmission delay by switch s, 

propagation delay between the controller c and the 

switch s, and processing delay of the controller c 

with the symbols Tran(v), Prop(x,v), Proc(x), 

respectively, should be less than or equal to the 

total network delay. Constraint (12) imposes a full 

mesh topology. Finally, the constraints (13), (14), 

and (15) represent the binary values that the 

decision variables can have. Each binary 

assignment to the problem variables that follow the 

constraints (5) to (12) is called a feasible solution 

of the problem or simply a problem solution, in 

short. 

 

4. Proposed algorithm based on iterated local 

search 

In this section, first, the general structure of the 

iterated local search algorithm is described, and 

then the types of neighborhood structures and 

proposed perturbation mechanisms are expressed 

in the algorithm. In mathematical optimization, the 

local search (LS) is an iterated algorithm, where, 

starting from an initial solution and in each 

iteration, "neighbor" solutions to the current 

solution are searched to find better solutions in 
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terms of the cost. In case of a success in finding 

such a solution, the current solution will be 

updated, and the other iteration will begin to search 

in the neighbor of the new solution; otherwise, the 

local search stops with expressing the best found 

solution. In such an algorithm, the concept of 

neighborhood is derived from the definition of the 

neighborhood structure on each solution of the 

problem. The neighborhood of a given solution is 

usually a set of solutions that are obtained by 

applying one or more moves on the solution. The 

concept of a move will be carefully defined in the 

following discussions. 

A local search algorithm often stops with the 

introduction of a local optimal solution. A simple 

idea to escape the local optima is to cleverly iterate 

the local search process, which will often help 

dispersing the search process in the solution space 

by starting from different initial solutions. Such an 

algorithm is often called an Iterated Local Search 

(ILS). In order to describe it precisely, consider the 

solution obtained from the local search as the 

current solution. In each round of the iterated local 

search algorithm, the current solution is updated 

using methods called the perturbation mechanisms. 

The updated solution is then improved by a local 

search to get a new solution. If the new solution is 

more appropriate than the current solution, the 

local search algorithm continues with the new 

solution; otherwise, the algorithm continues with 

the current solution. Figure 1 shows a stage of the 

ILS algorithm in which the local minimum ŝ is 

perturbed and the solution s’ is obtained, and then 

the local search is applied and a new local (possibly 

better) minimum ŝ’ is found. 

 

 
Figure 1. An iteration of the ILS algorithm 

 

The overall structure of the iterated local search 

algorithm is as follows: 
 

 
 

4.1. Initial solution construction 

The process of finding an initial solution is 

accomplished in three steps. In the first step, based 

upon the instances created, define a threshold 

between 0 and 1. Given the number of feasible 

locations for the controller installation in each 

instance, generate a random number between 0 and 

1 for each location. If the random value generated 

for each location is greater than the threshold, then 

a proper controller is installed in the location. In the 

second step, the switches are assigned to the closest 

location containing a controller in accordance with 

constraint (6). Finally, in the third step, remove any 

controller to which no switch has been assigned. 

 

4.2. Local search in solution space  
The expression of a local search algorithm requires 

the definition of an appropriate neighborhood 

structure and the determination of the mechanism 

of a move from one solution to the neighboring 

solution in the solution space. In the following, the 

types of moves among the solutions are expressed. 

 

Move Type 1. Consider a solution, sol, and a 

switch s. Assume that switch s is assigned to the 

controller located in p. Assigning switch s to a 

different location 
'p defines a move of type 1. In 

this allocation, if there is no controller at the 

location
'p , the new controller c ϵ C is installed in 

location 
'p and switch s is assigned to it. If at the 

time of assigning the switch s to
'p no more 

switches are assigned to p, the controller is 

removed from location p. The solutions generated 

by applying a move of type 1 in sol are called the 

neighbors type 1 of sol. The set of all such 

neighbors is denoted by
1

solF . 

 

Move Type 2. Consider a solution, sol, and two 

switches s and
's . Assume that switch s is assigned 

to the controller located p and switch 
's to

'p . The 

assignment of switch s to
'p and 

's to p defines a 

move of type 2. The solutions generated by 

Step 1. Starting with an initial solution, run the local 

search method to find the current solution. 

Step 2. If the stopping condition is met, stop with the 

introduction of the best solution found; 

otherwise, go to the next step. 

Step 3. Choose the current solution by applying solution 

updates and perturbation mechanisms. 

Step 4. Get a new solution by performing a local search 

on the current solution. If the new solution is 

better than the current solution, update the 

current solution and go to step 2. 
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applying a move of type 2 in sol are called 

neighbors type 2 of sol. The set of all such 

neighbors is denoted by
2

solF . 

 

Move Type 3. Consider a solution, sol, with the 

controller c. Suppose that c is located in p, and 

switch s is assigned to it. In this move, controller c 

will be removed from p and relocated in
'p . Then 

all switches connected to p will be removed and 

reconnected to
'p accordingly. This assignment 

defines a move of type 3. The solutions generated 

by applying a move type 3 in sol are called the 

neighbors type 3 of sol. The set of all such 

neighbors is denoted by
3

solF . 

 

Move Type 4. Consider a solution, sol, with the 

controller c and switch s from it. Assume that 

switch s is assigned to the controller c in the 

location p. The controller c is removed from the 

location p and switch s is assigned to the closest 

location containing a controller. This action defines 

a move of type 4. The solutions generated by 

applying a move type 4 in sol are called neighbors 

type 4 of sol. The set of all such neighbors is 

denoted by
4

solF . 

Any move of the above-mentioned types in the 

current solution is considered as a desired move if 

it reduces the value of the objective function. In this 

case, a neighbor obtained by the move is called a 

desired neighbor. A best possible desired move is 

accordingly called an optimal move. Given 

different methods to move in the structure of a 

solution, the steps of a local search are as follow: 

 

 
 

The above local search process is briefly called, the 

search loop. The runtime behavior of the local 

search algorithm depends on its neighborhood 

structure. For this purpose, the number of moves in 

this algorithm is limited to a certain value, say L. 

 

4.3. Perturbation mechanisms of a solution 
Many iterations of the search loop that are 

predicted in the ILS algorithm have an undesirable 

effect on its execution time. An essential idea in 

such a situation is the concentrated implementation 

of the search loop. If there is a possibility to execute 

a search loop on a specific part of the solution 

space, often a smaller number of moves will be 

required to find the suitable solutions in that part. 

One of the methods available to achieve these goals 

is to use the perturbation mechanisms of the 

problem solution. Perturbation mechanisms are 

divided into two categories: global and non-global. 

In a global perturbation, the solution structure 

changes to a great extent. In contrast, a non-global 

perturbation uses the kind of locking mechanism. 

This method makes it possible to keep fixed parts 

of the current solution during execution of the next 

search loop. The global and non-global 

perturbation mechanisms that apply to a current 

solution are as follow: 

 

4.3.1. Non-global perturbation mechanisms 

Given a solution to the problem: 

 

Type 1. Randomly select a location, say p, to which 

only one switch is connected. Remove the 

controller from p and re-assign the switch to the 

closest controller. In the next run of the search loop, 

location p is locked, i.e. no controller will be 

installed there. 

 

Type 2. Randomly select a location, say p, with no 

controller installed. Install a controller at p. Then 

from the set of all available switches, re-assign 

those that are closer to p than their own controller. 

In the next run of the loop, location p is locked, i.e. 

the controller installed will not be removed. 

 

Type 3. Randomly select a location containing a 

controller and a location without a controller. 

Name them p and
'p  respectively. Then remove the 

controller from p and install a controller at
'p . Re-

assign all switches connected to p to
'p . In the next 

run of the loop, locations p and
'p  are locked. 

 

Type 4. Assume that
s

s S

 


 ,
c

cp

p P
c C

x 



 , 

' { : 1}cpP p P x   and
''

'

P
P

P
 . Choose a 

location with a controller and two locations without 

a controller. Name them k, l1 and l2, respectively. 

If 

min{ : 0,

' '' '', , } 0

c c cf f fh r w r wh

h P r P w P

           

   

 

then remove the controller from location  and 

install the controllers in locations l1 and l2. The 

Step 1. Find an initial solution and consider it as the 

current solution, sol. 

Step 2. If an optimal move is found in
1 2 3 4

sol sol sol solF F F F   , update the 

current solution with an optimal neighbor 

and go to the beginning of step 2; 

otherwise, stop the search by returning to 

the current solution. 
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combination of locations k, l1 and l2 is determined 

as follows: 

1 2( , , ) arg min{ : 0,

' '' '', , }.

c c ck l l f f fh r w r wh

h P r P w P

            

  

Re-assign the switch connected to location K to the 

nearest location between l1 and l2. In the next run 

of the search loop, the locations k, l1 and l2 are 

locked, and the installation of the controller in 

location k and the removal of the controller in 

locations l1 and l2 will not be possible. 

Type 5. Select two locations containing a 

controller and one location without a controller. 

Name them, l1, l2 and k, respectively. 

If 

min{ : 0,

' '' '', , } 0

c c cf f fh r w r wh

h P r P w P

          

   

 

then install the controller in location k and remove 

from locations l1 and l2. The combination of 

locations k, l1 and l2 is determined as follows: 

1 2( , , ) arg min{ : 0,

' '' '', , }.

c c ck l l f f fh r w r wh

h P r P w P

           

  

 

Re-assign the switches connected to the locations 

l1 and l2 to the location k. In the next run of the 

search loop, the locations k, l1 and l2 are locked, and 

there is no possibility to remove the controller from 

the location k and install the controller in locations 

l1 and l2. 

 

4.3.2 Global perturbation mechanisms 

Given a solution to the problem: 

 

Type 1. First, remove the connection between all 

switches and controllers. Then randomly re-assign 

all the switches to locations containing the 

controller. 

 

Type 2. The set 'P contains all locations containing 

a controller; ' { : 1}.P p P xcp    Randomly put 

'

2

P 
  

of members of 'P in a set called O and the 

others in 'O . As a result, '

'

P
O

O

 
  

. Remove the 

controllers from 'O and re-assign the switch in 
'{ : 1 }lk s S v p O l Lsp        to the controllers 

of set O; in other words, the switches s k is re-

assigned to locations O that has number of enough 

port; otherwise, s is re-assigned to the location 

arg min \t fp P O p  and xt =1. In the following, 

the update mechanisms of the current solution are 

expressed based on the local search result. 

Perturbation mechanisms are applied to a solution 

to achieve a search diversification. Usually, 

perturbation is done by randomly applying one of 

the local perturbation operators to a solution. 

However, these operators might not always achieve 

the right diversification effect. Hence, after a 

specified number of consecutive iterations without 

improvement to the best known solution, some 

stronger perturbation operators (i.e. global 

operators) are used to perturb a solution. 

 

4-4 Solution update mechanisms 

The iterated local search algorithm uses 

mechanisms to update the current solution 

immediately before the implementation of 

perturbation mechanisms. A simple mechanism for 

updating the current solution is to select the best 

solution from the previous search loop as a new 

current solution. Another is the replacement of the 

most favorable global solution found instead of the 

current solution. Another mechanism is to use a 

perturbation of one of the previous mechanisms. 

That means that, before replacing a solution in the 

current solution, limited movements will be 

applied to the perturbation. Another mechanism is 

the use of a random combination of the previous 

mechanisms in updating the current solution. 

 

4.5 Termination condition 

The iterated local search algorithm ends after 

repeating steps 3 and 4 a pre-specified number of 

time. 

 

5- Simulation results 

In this section, the experiments and computations 

done to evaluate the problem solving methods of 

controller placement problem are reported. Here, 

the runtime and quality of the solution for each 

problem solving method, CPLEX [18,19,20], SCIP 

[21,22,23], and Iterated Local Search algorithm, on 

a set of standard instances of problem, are 

calculated and compared with each other. CPLEX 

and SCIP are both well-known Branch and Bound 

solvers of mixed integer programming problems. 

CPLEX is a commercial software package, while 

SCIP is a non-commercial one. Indeed, extensive 

studies in mathematical programming literature 

would suggest CPLEX as the most powerful 

commercial, and SCIP as the most powerful non-

commercial one [21]. In the following, we describe 

how to create problem instances: 

For each instance, the network topology is 

randomly extracted from a 20 × 20 grid. That 

means that each node of the grid with probability 

pr is a node of network graph. The value of pr for 

instances of a medium size is set to 0.25 and for 
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instances of a large size is set to 0.5. After selecting 

the nodes, the complete graph will be induced to 

the instance. On this graph, the weight of each edge 

is defined by the Euclidean distance between the 

end nodes of the edge. In the next step, the nodes 

containing the switch on the graph are specified. 

For an instance with i switches, i nodes of the graph 

are randomly selected, and on each one of them a 

switch is installed. 

The parameter i, number of switches installed on 

an instance, is taken from {55+5k | k=0, 1…15}. 

Instances made with i<95 are of medium size and 

instances with i≥95 are of large size. In order to 

verify more precisely, for each i, five instances 

with the same topology and different locations of 

the switches will be generated, and the results of 

the experiments will be reported on them. These 

instances are named i_1 … i_5. 

All computations of this section are performed on 

an Intel core i5 under Windows operating system 

with 4 GB of main memory. The proposed ILS 

algorithm is implemented by MATLAB. For 

CPLEX and SCIP, the time limit is considered 

equal to 3600 seconds. The defined parameters for 

problem solving in CPLEX, SCIP, and the 

proposed ILS algorithm are given in table 1. 

 
Table 1. Problem solving parameters. 

Value Parameter name 
2500 $ Cost per controller(kc) 
32 Number of ports per controller(αc) 
4000 Number of packages of process able by the 

controller(μc) 
15 Number of existing controllers(φc) 
8.25 $ Link cost(Φl) 
100 Mbps Link bandwidth(ωl) 
150 Byte Packet size(β) 
250 ms Maximum network latency(γ) 
0.001 ms Average packet processing time by 

controller(δ) 

 

In these experiments, we set L = 10. The results of 

these experiments are summarized in tables 2 to 5. 

In these tables, for each instance, the following 

items are reported: 

Cost: The best cost on these instances (cost of 

the best solution found) 

Time: The time spent on these instances. 

%imp: Percentage improvement of the ILS 

algorithm over CPLEX or SCIP in terms of the best 

cost on these instances, calculated as: 

 

(16) Cos ( ) Cos ( )
*100

Cos ( )

t tCPLEX or SCIP ILS

tILS

 



  

 

In calculating this quantity, the Cos (.)tILS and 

Cos (.)tCPLEX or SCIP functions give the best 

cost obtained from the implementation of the 

proposed ILS algorithm and the best solution 

returned by CPLEX or SCIP. 

 
Table 2. Results obtained from ILS algorithm and 

CPLEX on instances of medium size. 

CPLEX 

vs. ILS 
ILS CPLEX 

Instance 

Imp (%) Cost ($) Time Cost ($) Time 
Switch 

-4/48 2156934 83/10 2060402 3600< 50_1 

-1/76 2121060 85/01 2083714 3600< 50_2 

-2/71 2032568 82/23 1977563 3600< 50_3 
0/04 2057015 76/15 2057832 3600< 50_4 

1/78 2121134 74/10 2158843 3600< 50_5 

-0/51 2152656 72/70 2141661 3600< 55_1 
0/17 2124522 82/77 2128101 3600< 55_2 

1/05 2138024 70/15 2160467 3600< 55_3 

2/20 2184970 63/67 2232948 3600< 55_4 
2/71 2081748 71/12 2138262 3600< 55_5 

3/91 2279755 80/94 2368942 3600< 60_1 

1/76 2295361 88/19 2335858 3600< 60_2 
1/31 2282079 78/14 2311958 3600< 60_3 

1/31 2282079 78/67 2311958 3600< 60_4 

-0/64 2339523 78/70 2324635 3600< 60_5 
-0/35 2482917 98/88 2474250 3600< 65_1 

-0/80 2556031 36/87 2535529 3600< 65_2 

-1/77 2513834 90/90 2469251 3600< 65_3 
-0/86 2568095 60/114 2546134 3600< 65_4 

-4/11 2494901 64/104 2392448 3600< 65_5 

-1/99 2623449 85/111 2571290 3600< 70_1 
2/31 2616256 85/144 2676821 3600< 70_2 

-2/06 2622997 44/117 2568866 3600< 70-3 

3/32 2633592 64/103 2721114 3600< 70_4 

1/43 2603592 11/99 2640908 3600< 70_5 

0/78 2784083 78/117 2805809 3600< 75_1 

-1/40 2761407 70/108 2722786 3600< 75_2 

-1/58 2850915 04/105 2805857 3600< 75_3 

0/09 2840859 19/93 2843451 3600< 75_4 
3/37 2786828 31/117 2880774 3600< 75_5 

1/97 2912391 76/138 2969892 3600< 80_1 

0/59 3017658 13/112 3035377 3600< 80_2 
1/15 2932684 04/115 2966433 3600< 80_3 

0/58 2940124 41/111 2957112 3600< 80_4 

0/39 2932955 54/111 2944530 3600< 80_5 
-0/21 3047510 42/121 3041014 3600< 85_1 

0/42 3119139 80/121 3132328 3600< 2_85 

0/55 3024267 15/134 3040845 3600< 3_85 
2/21 3061835 66/119 3129574 3600< 4_85 

2/21 3061835 08/120 3129574 3600< 5_85 

4/04 3171293 25/131 3299413 3600< 1_90 
4/53 3251215 76/206 3398409 3600< 2_90 

67/3 3199939 96/129 3343441 3600< 3_90 

03/1 3140596 41/130 3229046 3600< 4_90 

03/1 3145293 37/146 3249320 3600< 5_90 

 

 

 

 

 

 

 

 

 

 

 
Table 3. Results obtained from ILS algorithm and 

CPLEX on instances of large size. 
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CPLEX 
vs. ILS 

ILS CPLEX 
Instance 

Imp (%) Cost ($) Time Cost ($) Time 
Switch 

7/96 3359813 47/139 3627266 3600< 95_1 

7/22 3377347 69/138 3621218 3600< 95_2 
7/32 3300338 27/139 3541875 3600< 95_3 

7/35 3350564 11/141 3596935 3600< 95_4 

8/19 3328449 66/138 3600972 3600< 95_5 
6/93 3465648 83/237 3705810 3600< 100_1 

4/90 3513347 96/291 3685675 3600< 2_100 

-2/11 3851943 83/292 3770711 3600< 3_100 
5/63 3514685 43/285 3712408 3600< 4_100 

3/15 3356697 16/224 3462436 3600< 5_100 

8/50 3734200 65/2081 4051630 3600< 1_105 
7/89 3752400 11/1641 4048558 3600< 2_105 

-4/13 4222601 86/1523 4048087 3600< 3_105 

10/97 3785708 32/2270 4201017 3600< 4_105 
5/87 4057574 67/1799 4295851 3600< 5_105 

8/81 3901900 19/1978 4245739 3600< 1_110 

6/35 4085242 55/1552 4344531 3600< 2_110 
12/06 3882728 84/1729 4350938 3600< 3_110 

3/95 4109212 30/1608 4271414 3600< 4_110 

11/81 3832800 55/1779 4285425 3600< 5_110 
6/37 4190600 27/2369 4457508 3600< 1_115 

10/06 4055076 27/1687 4462837 3600< 2_115 

5/86 4119705 61/1645 4361320 3600< 3_115 
12/40 3974471 65/1838 4467130 3600< 4_115 

12/40 3974471 99/1422 4467130 3600< 5_115 

17/38 4205000 79/1601 4935663 3600< 1_120 

16/24 4263500 49/2006 4955742 3600< 2_120 

11/22 4383961 99/1719 4876055 3600< 3_120 
10/01 4373944 64/1521 4811952 3600< 4_120 

10/21 4306507 93/1280 4746181 3600< 5_120 

-8/78 5605200 23/1755 5113260 3600< 1_125 
5/68 4824409 76/2401 5098265 3600< 2_125 

8/75 4873091 37/2587 5299716 3600< 3_125 

9/86 4682895 53/1378 5144576 3600< 4_125 
8/11 4598856 50/1173 4972032 3600< 5_125 

8/53 5259600 53/3303 5708434 3600< 1_130 

11/00 4983800 87/2406 5532203 3600< 2_130 
10/89 4972800 34/1750 5514490 3600< 3_130 

12/43 4895352 84/1748 5503903 3600< 4_130 

12/25 4891089 54/1253 5490216 3600< 5_130 

 

In tables 2 to 5, the first column gives the names of 

the instances tested. We recall that in this naming, 

the left-hand digit represents the number of 

switches used in the instance and the right-hand 

digits represent the instance number. The second 

column shows the running time of CPLEX and 

SCIP on the instances. The third column represents 

the cost of the best solution found by CPLEX and 

SCIP within a time limit of 3600 seconds. The 

fourth and fifth columns report the runtime and the 

cost of the best solution obtained by the ILS 

algorithm. Finally, the sixth column represents the 

percentage of improvement of the ILS algorithm 

compared to CPLEX and SCIP in terms of the cost 

of the best solution found. 

The results obtained from tables 2 and 4 refer to the 

superiority of the proposed ILS algorithm at the 

runtime for all instances with a medium size and 

the best cost for some of these instances. Tables 3 

and 5 also refer to the superiority of the  
 

Table 4. Results obtained from ILS algorithm and 

SCIP on instances of medium size. 

SCIP vs. 
ILS 

ILS SCIP 
Instance 

Imp (%) Cost ($) Time Cost ($) Time 
Switch 

57/2- 2156934 10/83 2101445 3600< 50_1 

63/1- 2121060 01/85 2086498 3600< 50_2 
73/1- 2032568 23/82 1997456 3600< 50_3 

61/2- 2057015 15/76 2003364 3600< 50_4 

94/3- 2121134 10/74 2037644 3600< 50_5 
68/0- 2152656 70/72 2137956 3600< 55_1 

03/0- 2124522 77/82 2123838 3600< 55_2 

33/1 2138024 15/70 2166462 3600< 55_3 
93/0 2184970 67/63 2205382 3600< 55_4 

15/1 2081748 12/71 2105740 3600< 55_5 

25/0- 2279755 94/80 2274063 3600< 60_1 
93/2 2295361 19/88 2362716 3600< 60_2 

06/0 2282079 14/78 2283537 3600< 60_3 

06/0 2282079 67/78 2283537 3600< 60_4 
11/2- 2339523 70/78 2290199 3600< 60_5 

69/2- 2482917 98/88 2416234 3600< 65_1 

34/3- 2556031 36/87 2470685 3600< 65_2 

76/3- 2513834 90/90 2419417 3600< 65_3 
11/0- 2568095 60/114 2565170 3600< 65_4 

18/3- 2494901 64/104 2405980 3600< 65_5 

58/2- 2623449 85/111 2555790 3600< 70_1 
73/0- 2616256 85/144 2597144 3600< 70_2 

17/2- 2622997 44/117 2566105 3600< 70-3 

92/0- 2633592 64/103 2609453 3600< 70_4 
25/0 2603592 11/99 2610128 3600< 70_5 

10/1- 2784083 78/117 2753493 3600< 75_1 

29/0- 2761407 70/108 2753297 3600< 75_2 
95/1- 2850915 04/105 2795299 3600< 75-3 

19/2- 2840859 19/93 2778696 3600< 75_4 

55/0- 2786828 31/117 2771459 3600< 75_5 
83/0- 2912391 76/138 2888153 3600< 80_1 

92/0- 3017658 13/112 2989984 3600< 80_2 

83/0 2932684 04/115 2956982 3600< 80_3 
54/0 2940124 41/111 2956103 3600< 80_4 

07/1 2932955 54/111 2964306 3600< 80_5 
27/0- 3047510 42/121 3039302 3600< 85_1 

33/0- 3119139 80/121 3108805 3600< 2_85 

36/1 3024267 15/134 3065483 3600< 3_85 
26/4 3061835 66/119 3192355 3600< 4_85 

97/0 3061835 08/120 3091573 3600< 5_85 

72/0 3171293 25/131 3194227 3600< 1_90 
68/0 3251215 76/206 3273411 3600< 2_90 

67/3 3199939 96/129 3317222 3600< 3_90 

03/1 3140596 41/130 3172976 3600< 4_90 
03/1 3145293 37/146 3177639 3600< 5_90 

 

proposed ILS algorithm, both at the runtime and at 

the best cost, in more instances with a large size. 

Figures 2 and 3 show the average percentage 

improvement of the ILS algorithm compared to 

CPLEX and SCIP for different instances where the 

horizontal axis gives the switch size in each 

instance, and the vertical axis gives the average 

percentage improvement optimal. According to 

this chart, the superiority of the ILS algorithm 

gradually increases in finding solutions at a lower 

cost. Back to tables 2 to 5, ILS also achieves a 

much better running time behavior over those 

instances. This causes the proposed algorithm to be 

considered as an important tool for solving a large-

scale problem. 
 

 

 

Table 5. Results obtained from ILS algorithm and 

SCIP on instances of large size. 



Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020. 
 

63 

 

SCIP vs. 

ILS 
ILS SCIP 

Instance 

Imp (%) Cost ($) Time Cost ($) Time 
Switch 

15/4 3359813 47/139 3499238 3600< 95_1 

03/4 3377347 69/138 3513357 3600< 95_2 

23/4 3300338 27/139 3439830 3600< 95_3 
71/4 3350564 11/141 3508290 3600< 95_4 

96/4 3328449 66/138 3493537 3600< 95_5 

28/5 3465648 83/237 3648637 3600< 100_1 
78/4 3513347 96/291 3681437 3600< 2_100 

64/5 3851943 83/292 3783988 3600< 3_100 

10/3 3514685 43/285 3623630 3600< 4_100 
16/4 3356697 16/224 3496197 3600< 5_100 

75/13 3734200 65/2081 4247645 3600< 1_105 
01/13 3752400 11/1641 4240761 3600< 2_105 

31/4 4222601 86/1523 4404533 3600< 3_105 

22/6 3785708 32/2270 4021226 3600< 4_105 
89/7 4057574 67/1799 4377527 3600< 5_105 

40/9 3901900 19/1978 4268660 3600< 1_110 

52/11 4085242 55/1552 4555893 3600< 2_110 

66/18 3882728 84/1729 4607072 3600< 3_110 

54/8 4109212 30/1608 4460211 3600< 4_110 

05/13 3832800 55/1779 4332976 3600< 5_110 
81/13 4190600 27/2369 4769452 3600< 1_115 

33/14 4055076 27/1687 4636152 3600< 2_115 

63/13 4119705 61/1645 4681238 3600< 3_115 
14/20 3974471 65/1838 4774883 3600< 4_115 

14/20 3974471 99/1422 4774883 3600< 5_115 

03/24 4205000 79/1601 5215515 3600< 1_120 
87/13 4263500 49/2006 4854909 3600< 2_120 

04/18 4383961 99/1719 5174666 3600< 3_120 

02/16 4373944 64/1521 5074645 3600< 4_120 
36/16 4306507 93/1280 5011034 3600< 5_120 

01/0 5605200 23/1755 5606027 3600< 1_125 

04/13 4824409 76/2401 5453273 3600< 2_125 
11/18 4873091 37/2587 5755598 3600< 3_125 

92/17 4682895 53/1378 5522270 3600< 4_125 

05/14 4598856 50/1173 5244840 3600< 5_125 

78/9 5259600 53/3303 5774233 3600< 1_130 

30/20 4983800 87/2406 5995312 3600< 2_130 

67/12 4972800 34/1750 5602644 3600< 3_130 
81/18 4895352 84/1748 5816147 3600< 4_130 

78/14 4891089 54/1253 5614192 3600< 5_130 

 

 

 
Figure 2. Average percentage of improvement of the 

ILS algorithm compared to CPLEX. 

 

 

 
Figure 3. Average percentage of improvement of the 

ILS algorithm compared to SCIP. 

 

Figures 4 and 5 show the average runtime of the 

ILS algorithm compared to CPLEX and SCIP. The 

horizontal axis in these figures shows the size of 

instances based on the number of installed switches 

and the vertical axis shows the average runtime on 

the instances. The results obtained clearly show 

that the proposed algorithm is able to find better 

solutions in a shorter time. This feature will express 

the proposed method as an effective method for 

solving the controller placement problem in real-

world applications. 

 

 
Figure 4. Average runtime of the ILS algorithm on the 

instances of the same size compared to CPLEX. 

 

 
Figure 5. Average runtime of the ILS algorithm on the 

instances of the same size compared to SCIP. 
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6. Conclusion 

In this work, the controller placement problem in 

the SDN networks has been studied. In order to 

solve this problem, an algorithm based on the 

iterated local search method was proposed. The 

proposed algorithm uses the concepts such as the 

neighborhood and perturbation mechanism to 

achieve an efficient topology at an acceptable 

running time. In order to evaluate the performance 

of the proposed algorithm, experiments were 

conducted on several instances of networks with 

medium to large sizes. The results obtained from 

the proposed ILS algorithm were compared with 

the results of CPLEX and SCIP performed on 

similar instances. The results obtained indicate the 

superiority of the proposed ILS algorithm at the 

runtime for all instances and at the best solution 

found in some instances of medium size. Also, in 

instances of a large size, the proposed ILS 

algorithm is superior both in the runtime and in the 

best cost found. 
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 .ایران، مشهد، دانشگاه فردوسی مشهد، مهندسی کامپیوتر، دانشکده مهندسیگروه 2
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 چکیده:

شبکهشبکه نرم افزار محور معماری جدیدی ا ست که لایهز  سوئیچیتجههای کنترل و داده را در های کامپوتری ا شبکه همچون  سیریاب هازات  ها و م

شبکهمجزا می سی از سازد. با ظهور  سائل مکانهای نرم افزار محور، کلا سئله مکانم شگران را به خود جلب یابی، به نام م شتر پژوه یابی کنترلر توجه بی

سئله یافتن همزمان تعداد و مکان بهینه کنترلره ست. هدف در این م ست به طوکرده ا سیریابی و ظرفیت را برآورده ری که مجموعه محدودیتا ا های م

با  پیشاانهادی . سااپر روشگردددر این مقاله، یک روش موثر حل مساائله براسااات اسااتراتژی جسااتجوی محل تکرار شااونده پیشاانهاد می سااازد.

ز ا روش پیشنهادیدهد که می سازی نشاننتایج شبیه.ت خواهد گرفمقایسه قرار  موردهای مسئله ای از نمونهاستاندارد بر روی مجموعههای کنندهحل

 های متوسط و بزرگ بسیار موثرتر و کارآمد است.نظر محاسباتی برای نمونه

 یابی کنترلر، جستجوی محلی تکرار شونده.شبکه نرم افزار محور، مکان:کلمات کلیدی

 


