

Journal of AI and Data Mining

Vol 8, No 1, 2020, 55-65. DOI: 10.22044/JADM.2019.7934.1931

 Controller Placement in Software Defined Network using Iterated Local

Search

A. Moradi 1*, A. Abdi Seyedkolaei 2, S. A. Hosseini Seno 2

1. Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

2. Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Received 18 January 2019; Revised 03 September 2019; Accepted 30 November 2019

*Corresponding author: A.moradi@umz.ac.ir (A. Moradi).

Abstract

The software defined network is a new computer network architecture that separates the controller and data

layers in network devices such as switches and routers. By the emergence of software defined networks, a class

of location problems, called the controller placement problem, has attracted much more research attention. The

task in the problem is to simultaneously find the optimal number and location of controllers satisfying a set of

routing and capacity constraints. In this paper, we suggest an effective solution method based on the so-called

iterated local search strategy. We then, compare our method with the existing standard mathematical

programming solvers on an extensive set of problem instances. It turns out that our suggested method is

computationally much more effective and efficient over middle to large instances of the problem.

Keywords: Software Defined Network, Controller Placement, Iterated Local Search.

1. Introduction

The architecture of network communication

equipment including switches and routers consists

of the two planes of control and data [1]. The

control plane provides the necessary information

for routing in the network. The data plane has the

task of transferring packets from the input port to

the output port based on the information entering in

its routing table. In the recent years, researchers

have focused their attention on separating the

control plane from the data plane. In this

separation, the control plane is located on the

server or a program named the controller. The data

plane remains in the switch or router. Separation of

the control plane from the data plane has many

benefits, such as more programmability of the

control plane, possibility of network virtualization,

reduction of the operating costs, and greater

independence of the network equipment

manufacturers. The above idea has led to the

emergence of software defined networks (SDNs)

[2]. The emerge of SDN has attracted the attention

of a large number of universities and industries to

its implementation in its communication

infrastructure [3]. On these networks,

configuration methods are often simpler and more

precise, and the possibility of using more physical

infrastructures is provided [4]. A group of network

operators, network service providers, and network

equipment manufacturers created an organization

called ONF [5] to promote SDN networks and

provide a standard communication protocol of

network.

In SDN networks, the controller is often

responsible for the propagation of each flow in the

network, and performs this by assigning input

flows to the switches [6]. This work has given a

pivotal role to the controller, as with the aim of it,

complete knowledge of the network can be applied

in optimizing flow management and support of

user requirements [7].

One of the important problems defined on SDN

networks is the controller placement problem. In

this problem, the goal is to determine the location

of the controllers and their required number in the

network so that the total cost of installing

controllers, the cost of connecting switches to

controllers, and the cost of connecting controllers

to each other is minimized [8]. In terms of

computational complexity, the problem is NP-hard

[9].

http://dx.doi.org/10.22044/jadm.2018.6311.1746

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

56

 In work, an algorithm called Iterated Local Search

(ILS) [10] is used to tackle the problem. This

algorithm uses concepts such as the neighborhood

and perturbation mechanism to build an efficient

topology of the network at an acceptable running

time.

Iterated local search works by relying on a clear

principle that is easy to identify and that usually

leads to high-performing algorithms. In addition,

ILS algorithms are relatively intuitive to design,

and at the same time malleable. Besides, ILS often

offers an excellent trade-off between simplicity and

flexibility. Therefore, iterated local search often

serves as a basis for a larger algorithm engineering

effort if high-performing heuristics are desired.

This approach is very successful, as shown by the

various problems for which ILS algorithms have

been or still are state of the art [24].

The remainder of this paper is organized as what

follows. Section 2 describes the efforts that have

been made in the past to solve problems. Section 3

is focused on describing a standard accurate

programming formulation of the problem. Section

4 is dedicated to the introduction of the proposed

algorithm based on the ILS method and its

structure. Section 5 provides computational

analysis of the ILS algorithm, and investiges its

performance in comparison with standard solvers

for the programming formulations. Finally,

conclusions are presented in Section 6.

2. Related works

In this section, the works done on the controller

placement problem are reviewed. Heller et al. in [8]

have used two criteria, namely average latency and

worst-case latency, to select an appropriate

controller location. In their method, first, the

shortest paths between switches are computed, and

then the average latency and largest length of such

paths are considered as average and worst-case

latency, respectively. Xiao et al. in [11] have

presented a method for controller placement in the

SDN wide network. In this method, first, the

spectral clustering algorithm divides the network

into several domains, and then the best location to

install the controller is specified in each domain.

Unlike the two previous works, the research work

conducted in [12] addresses the reliability of SDN

networks. In this work, the reliability of receiving

information from switches in a location will

increase the priority of choosing it to install a

controller, while other important parameters in the

controller placement, such as cost, delay, and load

balancing are not considered.

The focus on the properties of network graph has

caused Zhang et al. [13] to use a graph parsing

algorithm to choose proper locations for controller

installation, which minimizes the probability of

losing the switch-controller connection. Obadia et

al. in [14] have considered the controller placement

problem by applying tree topology to connect the

controllers to each other. The induction of such a

topology to controllers will reduce their operational

overhead. Yao et al. in [15] have investigated the

controller placement problem in the presence of

controllers with a limited capacity. In [16], Zhang

and others have considered different topologies for

connecting controllers.

Recently, Sallahi et al. in [17], in order to minimize

the network cost, have described the controller

placement problem as a sum of several objective

functions. They reasoned that the controller

placement should meet certain constraints,

especially for the control plane. Their idea

simultaneously determines the optimal number,

location, and type of controller, as well as the

communications between the network elements,

and to limit, the network cost is considered the

various constraints. The proposed method is based

on solving a mathematical programming

formulation that is suitable only for small-scale

networks. The mathematical programming model

proposed in [17] and its exact solution based on the

use of standard solvers of mathematical

programming problems will be a comparative

criterion in this work.

3. Mathematical formulation of problem

In this section, the mathematical formulation of the

controller placement problem, taken from [17], is

described. This model includes a set of switches, a

set of controllers, a set of links, and a set of possible

locations for installing the controllers represented

by the symbols S, C, L, and P, respectively. In this

formulation, the network is assumed to be a graph,

each node of which may locate a switch or a

controller. In a special case, a switch and a

controller can be located together. In a node, each

switch is connected only to one of the controllers.

Considering the limit in the number of ports of a

controller, several switches can be managed by a

controller. In this graph, each controller must be in

a direct communication with the other controllers.

Hence, the topology used between the controllers

is of full mesh type. For each switch s ϵ S, the

number of packets sent to the controller is

represented by the parameter 𝜎𝑠. Each controller c

ϵ C has the parameters , , ,c c c   and
c which,

respectively, represent the number of ports, number

of packets, cost, and number of controllers of type

c. For each link l ϵ L, the two parameters
l and

l

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

57

1

0
cpx


 







0

1l
pqz

1

0

l

spv




 



are defined as to express the bandwidth and the

installation cost. The other (non-negative)

parameters of the problem are the packet size,

network latency, and packet processing time in a

controller, which are represented by the symbols

, ,  and , respectively. Now, according to the

definitions of the sets and parameters, the decision

variables of the problem are as follows:

If controller c is located in position p;

otherwise

If there is a link l between switch s and

the controller located in position p;

otherwise

 If link l exists between positions p and q;

otherwise

The goal is then to minimize the network

deployment costs. These costs include the cost of

installing the controller in locations, the costs of

connecting switches to controllers, and the costs of

connecting controllers to each other, represented

by the symbols (),cC x (),lC v and (),tC z

respectively. Equations (1), (2), and (3) describe

how each one of these costs is calculated. The

dist(a,b) function in Equations (2) and (3) obtains

the Euclidean distance between location a and

location b.

(1)








Cc Pp
cpxcKxcC)(

(2)











Ll Ss Pp

l
spvpsdistlvlC),()(

(3)













Ll
pq
Ss Pp

l
pqzqpdistlztC),()(

 In the following, the objective function of the

problem is expressed along with its constraints:

(4) (() () ())c l tMinimize C x C v C z 

(5) Pp

Cc
cpx 



,1

(6) Pp

Ss Ll Cc
cpxcl

spv

Pq Ll

l
qpzl

pqz 














 ,)(

(7)
Ss

Ll Pp

l
spv 





,1

(8)







 Cc

Ppcpxc

Ll Ss
spvs ,1 

(9)





Pp

Ccc
cpx ,

(10

)
PpSs

Ll

l
spvlwfsg 



 ,)(),(

(11

)
)(Pr2),(Pr2)(2 xocvxopvTran

(12

)

),,(

,1

PpPqpq

Cc Ll

l
pqz

Cc
cpxcqx














(13

)
PpCccpx  ,}1,0{

(14

) PpSsLll
spv  ,,}1,0{

(15

)
PqPpLll

pqz  ,,}1,0{

The constraints (5) and (6) describe the limitation

of the number of controllers of type c ϵ C in place p

and the number of ports of a controller. Constraint

(7) indicates the limitation of the use of link l

between a switch s and a controller c. The

constraints (8) and (9) represent the limit of the

number of packet processed by controller c and the

inventory of each controller. Constraint (10)

indicates the bandwidth limitation of link l. The

function 𝑔(𝑎, 𝑏) in (10), with two input arguments

a and b, obtains the number of a packets of length

b bytes based on bytes per second. F(a) is a

function that converts a value in megabytes or

gigabytes (a) to bytes per second. The constraints

(11) and (12) represent the total network delay, i.e.

the sum of transmission delay by switch s,

propagation delay between the controller c and the

switch s, and processing delay of the controller c

with the symbols Tran(v), Prop(x,v), Proc(x),

respectively, should be less than or equal to the

total network delay. Constraint (12) imposes a full

mesh topology. Finally, the constraints (13), (14),

and (15) represent the binary values that the

decision variables can have. Each binary

assignment to the problem variables that follow the

constraints (5) to (12) is called a feasible solution

of the problem or simply a problem solution, in

short.

4. Proposed algorithm based on iterated local

search

In this section, first, the general structure of the

iterated local search algorithm is described, and

then the types of neighborhood structures and

proposed perturbation mechanisms are expressed

in the algorithm. In mathematical optimization, the

local search (LS) is an iterated algorithm, where,

starting from an initial solution and in each

iteration, "neighbor" solutions to the current

solution are searched to find better solutions in

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

58

terms of the cost. In case of a success in finding

such a solution, the current solution will be

updated, and the other iteration will begin to search

in the neighbor of the new solution; otherwise, the

local search stops with expressing the best found

solution. In such an algorithm, the concept of

neighborhood is derived from the definition of the

neighborhood structure on each solution of the

problem. The neighborhood of a given solution is

usually a set of solutions that are obtained by

applying one or more moves on the solution. The

concept of a move will be carefully defined in the

following discussions.

A local search algorithm often stops with the

introduction of a local optimal solution. A simple

idea to escape the local optima is to cleverly iterate

the local search process, which will often help

dispersing the search process in the solution space

by starting from different initial solutions. Such an

algorithm is often called an Iterated Local Search

(ILS). In order to describe it precisely, consider the

solution obtained from the local search as the

current solution. In each round of the iterated local

search algorithm, the current solution is updated

using methods called the perturbation mechanisms.

The updated solution is then improved by a local

search to get a new solution. If the new solution is

more appropriate than the current solution, the

local search algorithm continues with the new

solution; otherwise, the algorithm continues with

the current solution. Figure 1 shows a stage of the

ILS algorithm in which the local minimum ŝ is

perturbed and the solution s’ is obtained, and then

the local search is applied and a new local (possibly

better) minimum ŝ’ is found.

Figure 1. An iteration of the ILS algorithm

The overall structure of the iterated local search

algorithm is as follows:

4.1. Initial solution construction

The process of finding an initial solution is

accomplished in three steps. In the first step, based

upon the instances created, define a threshold

between 0 and 1. Given the number of feasible

locations for the controller installation in each

instance, generate a random number between 0 and

1 for each location. If the random value generated

for each location is greater than the threshold, then

a proper controller is installed in the location. In the

second step, the switches are assigned to the closest

location containing a controller in accordance with

constraint (6). Finally, in the third step, remove any

controller to which no switch has been assigned.

4.2. Local search in solution space
The expression of a local search algorithm requires

the definition of an appropriate neighborhood

structure and the determination of the mechanism

of a move from one solution to the neighboring

solution in the solution space. In the following, the

types of moves among the solutions are expressed.

Move Type 1. Consider a solution, sol, and a

switch s. Assume that switch s is assigned to the

controller located in p. Assigning switch s to a

different location
'p defines a move of type 1. In

this allocation, if there is no controller at the

location
'p , the new controller c ϵ C is installed in

location
'p and switch s is assigned to it. If at the

time of assigning the switch s to
'p no more

switches are assigned to p, the controller is

removed from location p. The solutions generated

by applying a move of type 1 in sol are called the

neighbors type 1 of sol. The set of all such

neighbors is denoted by
1

solF .

Move Type 2. Consider a solution, sol, and two

switches s and
's . Assume that switch s is assigned

to the controller located p and switch
's to

'p . The

assignment of switch s to
'p and

's to p defines a

move of type 2. The solutions generated by

Step 1. Starting with an initial solution, run the local

search method to find the current solution.

Step 2. If the stopping condition is met, stop with the

introduction of the best solution found;

otherwise, go to the next step.

Step 3. Choose the current solution by applying solution

updates and perturbation mechanisms.

Step 4. Get a new solution by performing a local search

on the current solution. If the new solution is

better than the current solution, update the

current solution and go to step 2.

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

59

applying a move of type 2 in sol are called

neighbors type 2 of sol. The set of all such

neighbors is denoted by
2

solF .

Move Type 3. Consider a solution, sol, with the

controller c. Suppose that c is located in p, and

switch s is assigned to it. In this move, controller c

will be removed from p and relocated in
'p . Then

all switches connected to p will be removed and

reconnected to
'p accordingly. This assignment

defines a move of type 3. The solutions generated

by applying a move type 3 in sol are called the

neighbors type 3 of sol. The set of all such

neighbors is denoted by
3

solF .

Move Type 4. Consider a solution, sol, with the

controller c and switch s from it. Assume that

switch s is assigned to the controller c in the

location p. The controller c is removed from the

location p and switch s is assigned to the closest

location containing a controller. This action defines

a move of type 4. The solutions generated by

applying a move type 4 in sol are called neighbors

type 4 of sol. The set of all such neighbors is

denoted by
4

solF .

Any move of the above-mentioned types in the

current solution is considered as a desired move if

it reduces the value of the objective function. In this

case, a neighbor obtained by the move is called a

desired neighbor. A best possible desired move is

accordingly called an optimal move. Given

different methods to move in the structure of a

solution, the steps of a local search are as follow:

The above local search process is briefly called, the

search loop. The runtime behavior of the local

search algorithm depends on its neighborhood

structure. For this purpose, the number of moves in

this algorithm is limited to a certain value, say L.

4.3. Perturbation mechanisms of a solution
Many iterations of the search loop that are

predicted in the ILS algorithm have an undesirable

effect on its execution time. An essential idea in

such a situation is the concentrated implementation

of the search loop. If there is a possibility to execute

a search loop on a specific part of the solution

space, often a smaller number of moves will be

required to find the suitable solutions in that part.

One of the methods available to achieve these goals

is to use the perturbation mechanisms of the

problem solution. Perturbation mechanisms are

divided into two categories: global and non-global.

In a global perturbation, the solution structure

changes to a great extent. In contrast, a non-global

perturbation uses the kind of locking mechanism.

This method makes it possible to keep fixed parts

of the current solution during execution of the next

search loop. The global and non-global

perturbation mechanisms that apply to a current

solution are as follow:

4.3.1. Non-global perturbation mechanisms

Given a solution to the problem:

Type 1. Randomly select a location, say p, to which

only one switch is connected. Remove the

controller from p and re-assign the switch to the

closest controller. In the next run of the search loop,

location p is locked, i.e. no controller will be

installed there.

Type 2. Randomly select a location, say p, with no

controller installed. Install a controller at p. Then

from the set of all available switches, re-assign

those that are closer to p than their own controller.

In the next run of the loop, location p is locked, i.e.

the controller installed will not be removed.

Type 3. Randomly select a location containing a

controller and a location without a controller.

Name them p and
'p respectively. Then remove the

controller from p and install a controller at
'p . Re-

assign all switches connected to p to
'p . In the next

run of the loop, locations p and
'p are locked.

Type 4. Assume that
s

s S

 


 ,
c

cp

p P
c C

x 



 ,

' { : 1}cpP p P x   and
''

'

P
P

P
 . Choose a

location with a controller and two locations without

a controller. Name them k, l1 and l2, respectively.

If

min{ : 0,

' '' '', , } 0

c c cf f fh r w r wh

h P r P w P

           

   

then remove the controller from location and

install the controllers in locations l1 and l2. The

Step 1. Find an initial solution and consider it as the

current solution, sol.

Step 2. If an optimal move is found in
1 2 3 4

sol sol sol solF F F F   , update the

current solution with an optimal neighbor

and go to the beginning of step 2;

otherwise, stop the search by returning to

the current solution.

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

60

combination of locations k, l1 and l2 is determined

as follows:

1 2(, ,) arg min{ : 0,

' '' '', , }.

c c ck l l f f fh r w r wh

h P r P w P

            

  

Re-assign the switch connected to location K to the

nearest location between l1 and l2. In the next run

of the search loop, the locations k, l1 and l2 are

locked, and the installation of the controller in

location k and the removal of the controller in

locations l1 and l2 will not be possible.

Type 5. Select two locations containing a

controller and one location without a controller.

Name them, l1, l2 and k, respectively.

If

min{ : 0,

' '' '', , } 0

c c cf f fh r w r wh

h P r P w P

          

   

then install the controller in location k and remove

from locations l1 and l2. The combination of

locations k, l1 and l2 is determined as follows:

1 2(, ,) arg min{ : 0,

' '' '', , }.

c c ck l l f f fh r w r wh

h P r P w P

           

  

Re-assign the switches connected to the locations

l1 and l2 to the location k. In the next run of the

search loop, the locations k, l1 and l2 are locked, and

there is no possibility to remove the controller from

the location k and install the controller in locations

l1 and l2.

4.3.2 Global perturbation mechanisms

Given a solution to the problem:

Type 1. First, remove the connection between all

switches and controllers. Then randomly re-assign

all the switches to locations containing the

controller.

Type 2. The set 'P contains all locations containing

a controller; ' { : 1}.P p P xcp   Randomly put

'

2

P 
  

of members of 'P in a set called O and the

others in 'O . As a result, '

'

P
O

O

 
  

. Remove the

controllers from 'O and re-assign the switch in
'{ : 1 }lk s S v p O l Lsp       to the controllers

of set O; in other words, the switches s k is re-

assigned to locations O that has number of enough

port; otherwise, s is re-assigned to the location

arg min \t fp P O p  and xt =1. In the following,

the update mechanisms of the current solution are

expressed based on the local search result.

Perturbation mechanisms are applied to a solution

to achieve a search diversification. Usually,

perturbation is done by randomly applying one of

the local perturbation operators to a solution.

However, these operators might not always achieve

the right diversification effect. Hence, after a

specified number of consecutive iterations without

improvement to the best known solution, some

stronger perturbation operators (i.e. global

operators) are used to perturb a solution.

4-4 Solution update mechanisms

The iterated local search algorithm uses

mechanisms to update the current solution

immediately before the implementation of

perturbation mechanisms. A simple mechanism for

updating the current solution is to select the best

solution from the previous search loop as a new

current solution. Another is the replacement of the

most favorable global solution found instead of the

current solution. Another mechanism is to use a

perturbation of one of the previous mechanisms.

That means that, before replacing a solution in the

current solution, limited movements will be

applied to the perturbation. Another mechanism is

the use of a random combination of the previous

mechanisms in updating the current solution.

4.5 Termination condition

The iterated local search algorithm ends after

repeating steps 3 and 4 a pre-specified number of

time.

5- Simulation results

In this section, the experiments and computations

done to evaluate the problem solving methods of

controller placement problem are reported. Here,

the runtime and quality of the solution for each

problem solving method, CPLEX [18,19,20], SCIP

[21,22,23], and Iterated Local Search algorithm, on

a set of standard instances of problem, are

calculated and compared with each other. CPLEX

and SCIP are both well-known Branch and Bound

solvers of mixed integer programming problems.

CPLEX is a commercial software package, while

SCIP is a non-commercial one. Indeed, extensive

studies in mathematical programming literature

would suggest CPLEX as the most powerful

commercial, and SCIP as the most powerful non-

commercial one [21]. In the following, we describe

how to create problem instances:

For each instance, the network topology is

randomly extracted from a 20 × 20 grid. That

means that each node of the grid with probability

pr is a node of network graph. The value of pr for

instances of a medium size is set to 0.25 and for

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

61

instances of a large size is set to 0.5. After selecting

the nodes, the complete graph will be induced to

the instance. On this graph, the weight of each edge

is defined by the Euclidean distance between the

end nodes of the edge. In the next step, the nodes

containing the switch on the graph are specified.

For an instance with i switches, i nodes of the graph

are randomly selected, and on each one of them a

switch is installed.

The parameter i, number of switches installed on

an instance, is taken from {55+5k | k=0, 1…15}.

Instances made with i<95 are of medium size and

instances with i≥95 are of large size. In order to

verify more precisely, for each i, five instances

with the same topology and different locations of

the switches will be generated, and the results of

the experiments will be reported on them. These

instances are named i_1 … i_5.

All computations of this section are performed on

an Intel core i5 under Windows operating system

with 4 GB of main memory. The proposed ILS

algorithm is implemented by MATLAB. For

CPLEX and SCIP, the time limit is considered

equal to 3600 seconds. The defined parameters for

problem solving in CPLEX, SCIP, and the

proposed ILS algorithm are given in table 1.

Table 1. Problem solving parameters.

Value Parameter name
2500 $ Cost per controller(kc)
32 Number of ports per controller(αc)
4000 Number of packages of process able by the

controller(μc)
15 Number of existing controllers(φc)
8.25 $ Link cost(Φl)
100 Mbps Link bandwidth(ωl)
150 Byte Packet size(β)
250 ms Maximum network latency(γ)
0.001 ms Average packet processing time by

controller(δ)

In these experiments, we set L = 10. The results of

these experiments are summarized in tables 2 to 5.

In these tables, for each instance, the following

items are reported:

Cost: The best cost on these instances (cost of

the best solution found)

Time: The time spent on these instances.

%imp: Percentage improvement of the ILS

algorithm over CPLEX or SCIP in terms of the best

cost on these instances, calculated as:

(16) Cos () Cos ()
*100

Cos ()

t tCPLEX or SCIP ILS

tILS

 





In calculating this quantity, the Cos (.)tILS and

Cos (.)tCPLEX or SCIP functions give the best

cost obtained from the implementation of the

proposed ILS algorithm and the best solution

returned by CPLEX or SCIP.

Table 2. Results obtained from ILS algorithm and

CPLEX on instances of medium size.

CPLEX

vs. ILS
ILS CPLEX

Instance

Imp (%) Cost ($) Time Cost ($) Time
Switch

-4/48 2156934 83/10 2060402 3600< 50_1

-1/76 2121060 85/01 2083714 3600< 50_2

-2/71 2032568 82/23 1977563 3600< 50_3
0/04 2057015 76/15 2057832 3600< 50_4

1/78 2121134 74/10 2158843 3600< 50_5

-0/51 2152656 72/70 2141661 3600< 55_1
0/17 2124522 82/77 2128101 3600< 55_2

1/05 2138024 70/15 2160467 3600< 55_3

2/20 2184970 63/67 2232948 3600< 55_4
2/71 2081748 71/12 2138262 3600< 55_5

3/91 2279755 80/94 2368942 3600< 60_1

1/76 2295361 88/19 2335858 3600< 60_2
1/31 2282079 78/14 2311958 3600< 60_3

1/31 2282079 78/67 2311958 3600< 60_4

-0/64 2339523 78/70 2324635 3600< 60_5
-0/35 2482917 98/88 2474250 3600< 65_1

-0/80 2556031 36/87 2535529 3600< 65_2

-1/77 2513834 90/90 2469251 3600< 65_3
-0/86 2568095 60/114 2546134 3600< 65_4

-4/11 2494901 64/104 2392448 3600< 65_5

-1/99 2623449 85/111 2571290 3600< 70_1
2/31 2616256 85/144 2676821 3600< 70_2

-2/06 2622997 44/117 2568866 3600< 70-3

3/32 2633592 64/103 2721114 3600< 70_4

1/43 2603592 11/99 2640908 3600< 70_5

0/78 2784083 78/117 2805809 3600< 75_1

-1/40 2761407 70/108 2722786 3600< 75_2

-1/58 2850915 04/105 2805857 3600< 75_3

0/09 2840859 19/93 2843451 3600< 75_4
3/37 2786828 31/117 2880774 3600< 75_5

1/97 2912391 76/138 2969892 3600< 80_1

0/59 3017658 13/112 3035377 3600< 80_2
1/15 2932684 04/115 2966433 3600< 80_3

0/58 2940124 41/111 2957112 3600< 80_4

0/39 2932955 54/111 2944530 3600< 80_5
-0/21 3047510 42/121 3041014 3600< 85_1

0/42 3119139 80/121 3132328 3600< 2_85

0/55 3024267 15/134 3040845 3600< 3_85
2/21 3061835 66/119 3129574 3600< 4_85

2/21 3061835 08/120 3129574 3600< 5_85

4/04 3171293 25/131 3299413 3600< 1_90
4/53 3251215 76/206 3398409 3600< 2_90

67/3 3199939 96/129 3343441 3600< 3_90

03/1 3140596 41/130 3229046 3600< 4_90

03/1 3145293 37/146 3249320 3600< 5_90

Table 3. Results obtained from ILS algorithm and

CPLEX on instances of large size.

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

62

CPLEX
vs. ILS

ILS CPLEX
Instance

Imp (%) Cost ($) Time Cost ($) Time
Switch

7/96 3359813 47/139 3627266 3600< 95_1

7/22 3377347 69/138 3621218 3600< 95_2
7/32 3300338 27/139 3541875 3600< 95_3

7/35 3350564 11/141 3596935 3600< 95_4

8/19 3328449 66/138 3600972 3600< 95_5
6/93 3465648 83/237 3705810 3600< 100_1

4/90 3513347 96/291 3685675 3600< 2_100

-2/11 3851943 83/292 3770711 3600< 3_100
5/63 3514685 43/285 3712408 3600< 4_100

3/15 3356697 16/224 3462436 3600< 5_100

8/50 3734200 65/2081 4051630 3600< 1_105
7/89 3752400 11/1641 4048558 3600< 2_105

-4/13 4222601 86/1523 4048087 3600< 3_105

10/97 3785708 32/2270 4201017 3600< 4_105
5/87 4057574 67/1799 4295851 3600< 5_105

8/81 3901900 19/1978 4245739 3600< 1_110

6/35 4085242 55/1552 4344531 3600< 2_110
12/06 3882728 84/1729 4350938 3600< 3_110

3/95 4109212 30/1608 4271414 3600< 4_110

11/81 3832800 55/1779 4285425 3600< 5_110
6/37 4190600 27/2369 4457508 3600< 1_115

10/06 4055076 27/1687 4462837 3600< 2_115

5/86 4119705 61/1645 4361320 3600< 3_115
12/40 3974471 65/1838 4467130 3600< 4_115

12/40 3974471 99/1422 4467130 3600< 5_115

17/38 4205000 79/1601 4935663 3600< 1_120

16/24 4263500 49/2006 4955742 3600< 2_120

11/22 4383961 99/1719 4876055 3600< 3_120
10/01 4373944 64/1521 4811952 3600< 4_120

10/21 4306507 93/1280 4746181 3600< 5_120

-8/78 5605200 23/1755 5113260 3600< 1_125
5/68 4824409 76/2401 5098265 3600< 2_125

8/75 4873091 37/2587 5299716 3600< 3_125

9/86 4682895 53/1378 5144576 3600< 4_125
8/11 4598856 50/1173 4972032 3600< 5_125

8/53 5259600 53/3303 5708434 3600< 1_130

11/00 4983800 87/2406 5532203 3600< 2_130
10/89 4972800 34/1750 5514490 3600< 3_130

12/43 4895352 84/1748 5503903 3600< 4_130

12/25 4891089 54/1253 5490216 3600< 5_130

In tables 2 to 5, the first column gives the names of

the instances tested. We recall that in this naming,

the left-hand digit represents the number of

switches used in the instance and the right-hand

digits represent the instance number. The second

column shows the running time of CPLEX and

SCIP on the instances. The third column represents

the cost of the best solution found by CPLEX and

SCIP within a time limit of 3600 seconds. The

fourth and fifth columns report the runtime and the

cost of the best solution obtained by the ILS

algorithm. Finally, the sixth column represents the

percentage of improvement of the ILS algorithm

compared to CPLEX and SCIP in terms of the cost

of the best solution found.

The results obtained from tables 2 and 4 refer to the

superiority of the proposed ILS algorithm at the

runtime for all instances with a medium size and

the best cost for some of these instances. Tables 3

and 5 also refer to the superiority of the

Table 4. Results obtained from ILS algorithm and

SCIP on instances of medium size.

SCIP vs.
ILS

ILS SCIP
Instance

Imp (%) Cost ($) Time Cost ($) Time
Switch

57/2- 2156934 10/83 2101445 3600< 50_1

63/1- 2121060 01/85 2086498 3600< 50_2
73/1- 2032568 23/82 1997456 3600< 50_3

61/2- 2057015 15/76 2003364 3600< 50_4

94/3- 2121134 10/74 2037644 3600< 50_5
68/0- 2152656 70/72 2137956 3600< 55_1

03/0- 2124522 77/82 2123838 3600< 55_2

33/1 2138024 15/70 2166462 3600< 55_3
93/0 2184970 67/63 2205382 3600< 55_4

15/1 2081748 12/71 2105740 3600< 55_5

25/0- 2279755 94/80 2274063 3600< 60_1
93/2 2295361 19/88 2362716 3600< 60_2

06/0 2282079 14/78 2283537 3600< 60_3

06/0 2282079 67/78 2283537 3600< 60_4
11/2- 2339523 70/78 2290199 3600< 60_5

69/2- 2482917 98/88 2416234 3600< 65_1

34/3- 2556031 36/87 2470685 3600< 65_2

76/3- 2513834 90/90 2419417 3600< 65_3
11/0- 2568095 60/114 2565170 3600< 65_4

18/3- 2494901 64/104 2405980 3600< 65_5

58/2- 2623449 85/111 2555790 3600< 70_1
73/0- 2616256 85/144 2597144 3600< 70_2

17/2- 2622997 44/117 2566105 3600< 70-3

92/0- 2633592 64/103 2609453 3600< 70_4
25/0 2603592 11/99 2610128 3600< 70_5

10/1- 2784083 78/117 2753493 3600< 75_1

29/0- 2761407 70/108 2753297 3600< 75_2
95/1- 2850915 04/105 2795299 3600< 75-3

19/2- 2840859 19/93 2778696 3600< 75_4

55/0- 2786828 31/117 2771459 3600< 75_5
83/0- 2912391 76/138 2888153 3600< 80_1

92/0- 3017658 13/112 2989984 3600< 80_2

83/0 2932684 04/115 2956982 3600< 80_3
54/0 2940124 41/111 2956103 3600< 80_4

07/1 2932955 54/111 2964306 3600< 80_5
27/0- 3047510 42/121 3039302 3600< 85_1

33/0- 3119139 80/121 3108805 3600< 2_85

36/1 3024267 15/134 3065483 3600< 3_85
26/4 3061835 66/119 3192355 3600< 4_85

97/0 3061835 08/120 3091573 3600< 5_85

72/0 3171293 25/131 3194227 3600< 1_90
68/0 3251215 76/206 3273411 3600< 2_90

67/3 3199939 96/129 3317222 3600< 3_90

03/1 3140596 41/130 3172976 3600< 4_90
03/1 3145293 37/146 3177639 3600< 5_90

proposed ILS algorithm, both at the runtime and at

the best cost, in more instances with a large size.

Figures 2 and 3 show the average percentage

improvement of the ILS algorithm compared to

CPLEX and SCIP for different instances where the

horizontal axis gives the switch size in each

instance, and the vertical axis gives the average

percentage improvement optimal. According to

this chart, the superiority of the ILS algorithm

gradually increases in finding solutions at a lower

cost. Back to tables 2 to 5, ILS also achieves a

much better running time behavior over those

instances. This causes the proposed algorithm to be

considered as an important tool for solving a large-

scale problem.

Table 5. Results obtained from ILS algorithm and

SCIP on instances of large size.

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

63

SCIP vs.

ILS
ILS SCIP

Instance

Imp (%) Cost ($) Time Cost ($) Time
Switch

15/4 3359813 47/139 3499238 3600< 95_1

03/4 3377347 69/138 3513357 3600< 95_2

23/4 3300338 27/139 3439830 3600< 95_3
71/4 3350564 11/141 3508290 3600< 95_4

96/4 3328449 66/138 3493537 3600< 95_5

28/5 3465648 83/237 3648637 3600< 100_1
78/4 3513347 96/291 3681437 3600< 2_100

64/5 3851943 83/292 3783988 3600< 3_100

10/3 3514685 43/285 3623630 3600< 4_100
16/4 3356697 16/224 3496197 3600< 5_100

75/13 3734200 65/2081 4247645 3600< 1_105
01/13 3752400 11/1641 4240761 3600< 2_105

31/4 4222601 86/1523 4404533 3600< 3_105

22/6 3785708 32/2270 4021226 3600< 4_105
89/7 4057574 67/1799 4377527 3600< 5_105

40/9 3901900 19/1978 4268660 3600< 1_110

52/11 4085242 55/1552 4555893 3600< 2_110

66/18 3882728 84/1729 4607072 3600< 3_110

54/8 4109212 30/1608 4460211 3600< 4_110

05/13 3832800 55/1779 4332976 3600< 5_110
81/13 4190600 27/2369 4769452 3600< 1_115

33/14 4055076 27/1687 4636152 3600< 2_115

63/13 4119705 61/1645 4681238 3600< 3_115
14/20 3974471 65/1838 4774883 3600< 4_115

14/20 3974471 99/1422 4774883 3600< 5_115

03/24 4205000 79/1601 5215515 3600< 1_120
87/13 4263500 49/2006 4854909 3600< 2_120

04/18 4383961 99/1719 5174666 3600< 3_120

02/16 4373944 64/1521 5074645 3600< 4_120
36/16 4306507 93/1280 5011034 3600< 5_120

01/0 5605200 23/1755 5606027 3600< 1_125

04/13 4824409 76/2401 5453273 3600< 2_125
11/18 4873091 37/2587 5755598 3600< 3_125

92/17 4682895 53/1378 5522270 3600< 4_125

05/14 4598856 50/1173 5244840 3600< 5_125

78/9 5259600 53/3303 5774233 3600< 1_130

30/20 4983800 87/2406 5995312 3600< 2_130

67/12 4972800 34/1750 5602644 3600< 3_130
81/18 4895352 84/1748 5816147 3600< 4_130

78/14 4891089 54/1253 5614192 3600< 5_130

Figure 2. Average percentage of improvement of the

ILS algorithm compared to CPLEX.

Figure 3. Average percentage of improvement of the

ILS algorithm compared to SCIP.

Figures 4 and 5 show the average runtime of the

ILS algorithm compared to CPLEX and SCIP. The

horizontal axis in these figures shows the size of

instances based on the number of installed switches

and the vertical axis shows the average runtime on

the instances. The results obtained clearly show

that the proposed algorithm is able to find better

solutions in a shorter time. This feature will express

the proposed method as an effective method for

solving the controller placement problem in real-

world applications.

Figure 4. Average runtime of the ILS algorithm on the

instances of the same size compared to CPLEX.

Figure 5. Average runtime of the ILS algorithm on the

instances of the same size compared to SCIP.

-4

-2

0

2

4

6

8

10

12

14

50 60 70 80 90 100 110 120 130

A
v
er

ag
e

p
er

ce
n

ta
g
e

im
p

ro
v
em

en
t

Switch Size

Average percentage improvement

-5

0

5

10

15

20

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

A
v
er

ag
e

er
ce

n
ta

g
e

im
p

ro
v
em

en
t

Switch Size

average percentage improvement

0

500

1000

1500

2000

2500

3000

3500

4000

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

A
v
er

ag
e

R
u

n
ti

m
e

Switch Size

avg. time CPLEX avg. time ILS

0

500

1000

1500

2000

2500

3000

3500

4000

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

A
v
er

ag
e

R
u

n
ti

m
e

Switch size

avg. time SCIP avg. time ILS

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

64

6. Conclusion

In this work, the controller placement problem in

the SDN networks has been studied. In order to

solve this problem, an algorithm based on the

iterated local search method was proposed. The

proposed algorithm uses the concepts such as the

neighborhood and perturbation mechanism to

achieve an efficient topology at an acceptable

running time. In order to evaluate the performance

of the proposed algorithm, experiments were

conducted on several instances of networks with

medium to large sizes. The results obtained from

the proposed ILS algorithm were compared with

the results of CPLEX and SCIP performed on

similar instances. The results obtained indicate the

superiority of the proposed ILS algorithm at the

runtime for all instances and at the best solution

found in some instances of medium size. Also, in

instances of a large size, the proposed ILS

algorithm is superior both in the runtime and in the

best cost found.

Reference
[1] Blial, O., Ben Mamoun, M., & Benaini, R. (2016).

An overview on SDN architectures with multiple

controllers, Journal of Computer Networks and

Communications, vol. 2016.

[2] Selvi, H., Güner, S., Gür, G., & Alagöz, F. (2015).

The controller placement problem in software defined

mobile networks (SDMN), Software Defined Mobile

Networks (SDMN): Beyond LTE Network

Architecture, pp. 129-147.

[3] Nunes, B. A. A., Mendonca, M., Nguyen, X. N.,

Obraczka, K., & Turletti, T. (2014). A survey of

software-defined networking: Past, present, and future

of programmable networks, IEEE Communications

Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634.

[4] Xia, W., Wen, Y., Foh, C. H., Niyato, D., & Xie, H.

(2014). A survey on software-defined networking. IEEE

Communications Surveys & Tutorials, vol. 17, no. 1, pp.

27-51.

[5] Open networking foundation.

 https://www.opennetworking.org/about.

[6] Jarraya, Y., Madi, T., & Debbabi, M. (2014). A

survey and a layered taxonomy of software-defined

networking, IEEE communications surveys &

tutorials, vol. 16, no. 4, pp. 1955-1980.

[7] Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser,

B., Lake, D., Finnegan, J. & Rao, N. (2013). Are we

ready for SDN? Implementation challenges for

software-defined networks, IEEE Communications

Magazine, vol. 51, no. 7, pp. 36-43.

[8] Heller, B., Sherwood, R., & McKeown, N. (2012).

The controller placement problem, In Proceedings of the

first workshop on Hot topics in software defined

networks, ACM, pp. 7-12.

[9] Yao, G., Bi, J., Li, Y., & Guo, L. (2014). On the

capacitated controller placement problem in software

defined networks, IEEE Communications Letters, vol.

18, no. 8, pp. 1339-1342.

[10] Lourenço, H. R., Martin, O. C., & Stützle, T.

(2019). Iterated local search: Framework and

applications, In Handbook of metaheuristics, Springer,

pp. 129-168.

[11] Xiao, P., Qu, W., Qi, H., Li, Z., & Xu, Y. (2014).

The SDN controller placement problem for WAN,

In 2014 IEEE/CIC International Conference on

Communications in China (ICCC), IEEE, pp. 220-224.

[12] Hu, Y. N., Wang, W. D., Gong, X. Y., Que, X. R.,

& Cheng, S. D. (2012). On the placement of controllers

in software-defined networks, The Journal of China

Universities of Posts and Telecommunications, vol. 19,

pp. 92-171.

[13] Zhang, Y., Beheshti, N., & Tatipamula, M. (2011).

On resilience of split-architecture networks, In 2011

IEEE Global Telecommunications Conference-

GLOBECOM 2011, IEEE, pp. 1-6.

[14] Obadia, M., Bouet, M., Rougier, J. L., & Iannone,

L. (2015). A greedy approach for minimizing SDN

control overhead, In Proceedings of the 2015 1st IEEE

Conference on Network Softwarization (NetSoft),

IEEE, pp. 1-5.

[15] Yao, G., Bi, J., Li, Y., & Guo, L. (2014). On the

capacitated controller placement problem in software

defined networks, IEEE Communications Letters, vol.

18, no. 8, pp. 1339-1342.

[16] Zhang, T., Bianco, A., & Giaccone, P. (2016). The

role of inter-controller traffic in SDN controllers

placement, In 2016 IEEE Conference on Network

Function Virtualization and Software Defined Networks

(NFV-SDN), IEEE, pp. 87-92.

[17] Sallahi, A., & St-Hilaire, M. (2014). Optimal model

for the controller placement problem in software defined

networks, IEEE communications letters, vol. 19, no. 1,

pp. 30-33.

[18] IBM Inc. IBM ILOG CPLEX optimization studio

getting started with CPLEX (version 12 release 6). IBM

Corporation; (2014). Available:

https://www.ibm.com/analytics/cplex-optimizer

[19] Dowlatshahi, M. B., & Derhami, V. (2017). Winner

Determination in Combinatorial Auctions using Hybrid

Ant Colony Optimization and Multi-Neighborhood

Local Search, Journal of AI and Data Mining, vol. 5, no.

2, pp. 169-181.

[20] Ashrafi, M., Correia, N., & Faroq, A. T. (2018). A

Scalable and Reliable Model for the Placement of

Controllers in SDN Networks, In International

Conference on Broadband Communications, Networks

and Systems, Springer, pp. 72-82.

https://www.opennetworking.org/about
https://www.ibm.com/analytics/cplex-optimizer

Moradi et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020.

65

[21] Solving constraint integer programs.

http://scip.zib.de/

[22] Mueller, J., Wierz, A., & Magedanz, T. (2013).

Scalable On-Demand Network Management Module for

Software Defined Telecommunication Networks,

In SDN4FNS, pp. 1-6.

[23] Herbaut, N., Negru, D., Magoni, D., & Frangoudis,

P. A. (2016). Deploying a content delivery service

function chain on an SDN-NFV operator infrastructure,

In 2016 International Conference on

Telecommunications and Multimedia (TEMU), IEEE,

pp. 1-7.

[24] Stützle, T., & Ruiz, R. (2017). Iterated local

search. Handbook of Heuristics, pp. 1-27.

http://scip.zib.de/

 نشریه هوش مصنوعی و داده کاوی

 های نرم افزار محور با استفاده از الگوریتم جستجوی تکرار شوندهیابی کنترلر در شبکهمکان

 2سید امین حسینی سنو و 2علی عبدی سیدکلایی، ،*1احمد مرادی

 .ایران، بابلسر، دانشگاه مازندران، گروه علوم ریاضی، دانشکده علوم ریاضی1

 .ایران، مشهد، دانشگاه فردوسی مشهد، مهندسی کامپیوتر، دانشکده مهندسیگروه 2

 30/11/2019پذیرش؛ 03/09/2019بازنگری ؛ 18/01/2019ارسال

 چکیده:

شبکهشبکه نرم افزار محور معماری جدیدی ا ست که لایهز سوئیچیتجههای کنترل و داده را در های کامپوتری ا شبکه همچون سیریاب هازات ها و م

شبکهمجزا می سی از سازد. با ظهور سائل مکانهای نرم افزار محور، کلا سئله مکانم شگران را به خود جلب یابی، به نام م شتر پژوه یابی کنترلر توجه بی

سئله یافتن همزمان تعداد و مکان بهینه کنترلره ست. هدف در این م ست به طوکرده ا سیریابی و ظرفیت را برآورده ری که مجموعه محدودیتا ا های م

با پیشاانهادی . سااپر روشگردددر این مقاله، یک روش موثر حل مساائله براسااات اسااتراتژی جسااتجوی محل تکرار شااونده پیشاانهاد می سااازد.

ز ا روش پیشنهادیدهد که می سازی نشاننتایج شبیه.ت خواهد گرفمقایسه قرار موردهای مسئله ای از نمونهاستاندارد بر روی مجموعههای کنندهحل

 های متوسط و بزرگ بسیار موثرتر و کارآمد است.نظر محاسباتی برای نمونه

 یابی کنترلر، جستجوی محلی تکرار شونده.شبکه نرم افزار محور، مکان:کلمات کلیدی

