
 
Journal of AI and Data Mining  

Vol 8, No 2, 2020, 177-188.                                                                                                                                    DOI: 10.22044/JADM.2019.7903.1929 
 

 Hand Gesture Recognition from RGB-D Data using 2D and 3D 

Convolutional Neural Networks: a comparative study 

 
M. Kurmanji and F. Ghaderi* 

 
Human Computer Interaction Lab., Electrical and Computer Engineering Department, Tarbiat Modares University, Tehran, Iran. 

Received 26 December 2018; Revised 09 April 2019; Accepted 16 June 2019 

*Corresponding author: fghaderi@modares.ac.ir (F. Ghaderi). 

 

Abstract 

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in 

the classification of hand gestures in videos. The latter comes with more challenges including higher computational 

complexity and arduous task of representing temporal features. Hand movement dynamics, represented by 

temporal features, have to be extracted by analyzing the total frames of a video. So far, both the 2D and 3D 

convolutional neural networks (CNNs) have been used to manipulate the temporal dynamics of the video frames. 

3D CNNs can extract the changes in the consecutive frames and tend to be more suitable for the video classification 

task; however, they usually need more time. On the other hand, using techniques like tiling, it is possible to 

aggregate all the frames in a single matrix and preserve the temporal and spatial features. This way, using 2D 

CNNs, which are inherently simpler than 3D CNNs, can be used to classify the video instances. In this paper, we 

compare the application of 2D and 3D CNNs for representing temporal features and classifying hand gesture 

sequences. Additionally, providing a two-stage two-stream architecture, we efficiently combined color and depth 

modalities and 2D and 3D CNN predictions. The effects of different types of augmentation techniques are also 

investigated. The results obtained confirm that an appropriate usage of 2D CNNs outperforms a 3D CNN 

implementation in this task. 
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1. Introduction 

As a new approach to design human computer 

interfaces, hand gesture recognition (HGR) has 

attracted the attention of many researchers in the recent 

years. Some potential applications include touch-less 

control for TVs and computers, robot control, 

augmented and virtual reality systems, and sign 

language translation [1]. In general, hand gestures are 

categorized into static and dynamic poses of human 

hand. Dynamic gestures are those that run continuously 

over time [2]. Recognition of hand gestures, especially 

dynamic gestures, can be a challenging task due to the 

followings reasons: cluttered background, tiny finger 

movements, fast hand movements, different hand 

shapes and skin colors,  different illumination settings, 

and high number of gestures [3-5]. The last challenge 

would dramatically increase the training time and 

decrease the recognition accuracy in a learning system 

[6,7]. 
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Many efforts have been made in the last two decades to 

overcome these challenges and improve HGR systems. 

These efforts can be divided into two general 

categories. Methods in the first group use wearable 

devices to track hand parts, while the methods in the 

second group only use the computer vision techniques 

[7]. Wearable devices can improve segmentation of 

hand in pictures and also help to better recognize 

dynamics of hands. This will lead to an absolute and 

fast feature extraction. However, due to the lack of 

convenience, these class of methods are not popular [8]. 

In the recent years, many vision-based methods have 

been proposed. In [9], a number of descriptors for joints 

are defined that represent hand state, and the aim is to 

learn these descriptors. Different feature vectors are 

used in these methods. In [10], a specific gesture is 

defined through a set of special-temporal descriptors. 

Elmezian et al. [11] extracted a feature vector, which 

was composed of geometric and physical 

characteristics of hand motions. Hosseini and 

Hassanian in [12] used a motion detection approach 

together with a mean shift method to track hand and 

recognize gestures in sign language. The SIFT and 

SUFT algorithms are also widely used for extracting 

the key points of frames. Dandu et al. [13] have used 

Local Histogram Features Descriptor, being also 

popular in other fields of image processing. To learn 

these feature vectors, many machine learning 

algorithms have been used, from which HMM [14], 

artificial neural networks [15], and SVM [16] are the 

most popular ones. Nachiket et al. [17] explored Hidden 

Markov models as an approach for modeling and 

recognizing dynamic hand gestures. They used two 

types of features, HOG and CNN, to train Markov 

modelsو and resulted that CNN features better 

represented hand shape features than HOG features. 

In the last few years, deep learning algorithms, and in 

particular, Convolutional Neural Networks (CNNs), 

have revolutionized the signal processing field. Their 

most significant usage was in image processing 

problems. CNNs extract valuable features through 

consecutive convolution and max-pooling layers. 

These features can better represent images compared to 

the hand-crafted features in traditional methods, and are 

very useful in various tasks. Mahmoudi et al. [18] 

perfectly used CNN-based features in a multi-target 

tracking problem for pedestrian tracking. A successful 

example is GoogleNet, a very deep multi-column 

architecture [19], which yielded unprecedented results 

in  ImageNet challenge. 

In order to reduce the training time, the researchers 

suggested shallow CNNs, e.g. AlexNet [20]. Despite 

the achieved saving in time, this shallow networks yield 

reasonable results in classifications tasks. 

Convolutional  neural  networks are also useful for 

video classification tasks and the most popular 

architecture for this application is 3D CNN [21]. Zhi et 

al. investigated 3D sequences to learn spatio-temporal 

features of human actions from depth sequences [22]. 

They used features from joint descriptions together 

with features from 3D CNN to do a classification of 

human actions using a SVM classifier. Necati et al. [23] 

used a multi-stream 3D CNN fused with a majority 

voting approach to predict human gestures from raw 

video data.  

On the other hand, using depth modality together with 

color data, one can improve the performance of the 

HGR systems. Many efforts to fuse these modalities 

and take advantage of the information contents of both 

data channels have been reported [24] [25] [26]. Moeini 

et al. [27], after a process of extracting features, fused 

texture and depth feature vectors to train an SVM. Saba 

et al. [28] provided rich features by segmenting hand 

shape in images to learning algorithms. The authors in 

[29] have effectively joined depth and color data 

through a deep convolutional neural network to detect 

 
Figure 1. Block diagram of the proposed method. Input is the RGB and depth modalities of hand gesture videos, and the 

output is the predicted label. The following modules are used in the framework. NNI: Nearest Neighbor Interpolation, to fix 

video lengths; Aug: Data Augmentation. Binarize layer generates a binary image from depth data. Grad. Layer calculates 

Gradient from intensity channel of color data using Canny operator, Tiling, generates a 2D pattern from sequence of video 

frames. 
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20 gestures of Italian sign language. In [30], the authors 

detected body gestures by learning joint representations 

through a multi-stream multi-scale CNN. Malchanov et 

al. [26] ranked first in the VIVA hand gesture 

recognition challenge using a two-stream 3D CNN. 

Each stream had a different resolution. Multi-stream 

architectures have shown promising outcomes, 

especially in video classifications. This class of 

architectures helps to find more features in videos and 

create more stable models. In [31], different types of 

feature fusion in multi-stream architectures have been 

investigated. The most used fusion types are late fusion, 

early fusion, and slow fusion. 

 Dynamic hand gesture recognition is a special case of 

video classification. An important issue to be 

considered when analyzing dynamic gestures is the 

inclusion of temporal evolution of the gestures. 

Temporal features represent hand dynamics, and are 

substantial to recognize hand movements in video. It 

seems that 3D convolutional filters are suitable for 

extracting these features [26] by doing convolution 

along time axis. However, these filters may not perform 

well on videos with tiny movements of objects, e.g. 

hand gesture videos. Furthermore, 3D convolutions are 

time-consuming. Given a 2D filter of size m n , the 

complexity of applying this filter to an image of size 

W H is of order ( )O W H m n   . For a 3D input 

image of size m n t  and 3D filter of size W H L 

, convolution operation is of order 

( )O W H L m n t     .Researchers also exploited 

Deep Recurrent Neural Networks to deal with temporal 

features in hand gesture recognition tasks [32] [33]. Ce 

Li et al. [34] integrated a bidirectional LSTM network 

and a bidirectional Gated Recurrent network with 

Fisher criterion to create discriminative models to 

detect hand gestures. Vijay et al. [35] used a 

decovolutional neural network to select representative 

frames from multi-frames of a hand gesture video and 

then trained a long-term recurrent network using these 

representative frames. Malchanov et al. [36] created a 

recurrent neural network with 3D CNNs to classify 

hand gestures. They used a connectionist temporal 

classification to train their model and fuse multiple 

RRNs.  

In this paper, we compared the effectiveness of learning 

temporal representation of hand gestures using 2D and 

3D CNNs. To this end, a pipeline for processing depth 

and color data was processed. This processing includes 

several steps to overcome overfitting and illumination 

condition. The color and depth stream are then 

combined into a new data frame carrying information 

from both modalities. 2D CNNs that performed well in 

image classification problem are also used in our 

proposed method for classification task. The results 

obtained show that this method improves recognition 

accuracy and also decreases train and recognition times 

compared to the 3D models. To keep advantages of 

both sides, we included another step of fusion by which 

we combined results of 2D and 3D models in parallel 

to provide final predictions.  

The proposed pipeline includes preprocessing steps 

such as large scale data augmentation. Moreover, 

Canny operator and normalization techniques are 

applied to enhance the prediction quality. 

The contributions of this work are as follow: 

a. We showed that 2D CNNs could perform better than 

3D CNNs for video classification of hand gestures in 

terms of classification performance and time 

complexity. 

b. We introduced a new video representation by fusing 

color and depth modalities and making it suitable for 

training regular 2D CNNs. 

The structure of this paper is as what follows. In 

Section 0 we describe the classification framework and 

the details of the proposed framework for video 

classification. In Sections 2 and 3 the proposed 

structure is validated and the results are reported. The 

concluding discussions are presented in Section 0. 

 

2. Proposed method 

The block diagram of Figure 1 illustrates the process 

flow of the proposed framework. The inputs are color 

and depth modalities of hand movement videos, and the 

objective is to assign a label to each input sample 

specifying the hand gesture class. The learning 

framework has two fusion stages, i.e. early fusion and 

late fusion. The details of the stages are as what 

follows: 

A. Early fusion stage:  

The purpose of the early fusion stage is to combine 

depth and color modalities. This stage has two separate 

flows for each data modality. The input to the upper 

flow in Figure 1 is n frames of depth data relating to 

video sample 𝑠𝑖. These frames could be gray scale 

images, as in the case of VIVA dataset or depth maps. 

The input to the lower flow is n frames of color data 

relating to sample 𝑠𝑖. 
For the sake of increasing performance, some pre-

processing steps were applied to the images before 

merging them. The pre-processing steps includes a: 

normalization of the video length, b: data 

augmentation, c: calculating gradient of color images, 

and d: binarizing depth images. For datasets that lack 
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the depth modality, we simply ignore depth processing 

flow and early fusion. The details of the steps are as 

follows: 

a: Since we used well-known CNNs with pre-defined 

structures, the lengths of all videos were fixed to 32 

frames for VIVA dataset and 16 frames for Cambridge 

HGD. We fixed video lengths using the Nearest 

Neighbors Interpolation. 

b: In this research work, several data augmentation 

techniques are used, i.e. 1) reversing video frames, 2) 

translation, 3) rotation, 4) random crop, 5) fixed-pattern 

drop [26], 6) random-pattern drop [26]. For translation 

augmentation, we translated all frames of video ±8 

pixels horizontally and ±6 pixels vertically. For rotation 

augmentation, we rotated videos by ±10 degrees around 

the central point. For random crop, we used two random 

windows of different sizes to crop videos. The drop 

augmentation (5 and 6 above) is such that 𝑝 = 50% of 

pixels of each frame is randomly dropped to zero. In 

fixed-pattern drop, the pixels are randomly selected 

first and their values are dropped to zero for all frames 

of the video, while in random-pattern drop 

augmentation, the dropped pixels are randomly selected 

for each individual frame. Figure 2 illustrates 

augmentation of one single frame in a video. For the 

sake of more convenient evaluation and considering the 

effects of different augmentation methods on the 

results, we divided the augmentation methods into two 

groups, namely 1 to 3 (of the above augmentation 

methods) into one group and the rest into the second 

group. We call the first group Aug1 and the second one 

Aug2. 

c: we used gradient of image sequences. We computed 

contours of hand shape from intensity channel using 

Canny operator of size 3 3  pixel with 0.33  . 

Afterwards, for each frame i, we subtracted ith frame 

from  frame, where ( )i d L  , and L is the length of 

the video. These two will make the model more robust 

against different illumination conditions and also 

cluttered background. It is worth mentioning that we 

did not perform any normalization on image channels. 

d: In the case of depth modality presence, we mapped 

the depth information to a binary image by applying a 

threshold to the depth images. 

We use the RGB data format to merge the depth and 

color images into a single structure by placing intensity 

channel of the color image and the binarized image of 

depth in the first and second channels, respectively. The 

third channel is filled with the indices of the frames in 

the frame sequence. As far as we know, it is the first 

time that depth and color modalities are merged in this 

way.  

If we define an input as W H n C   , where W, H, n 

and C are width, height, number of frames, and number 

of channels respectively, in the case of VIVA dataset, 

the input to the depth and color flows are of size 

57 125 1n   , where n varies for different video 

samples, and the inputs to early fusion layer are of size 

32 32 32 1    and the output of this layer is of size 

32 32 32 3   . In the case of Cambridge dataset, the 

input to color flow is of size 20 20 20 3    and the 

output after preprocessing is of size 20 20 16 3   . As 

the CNN models we used in these paper expect 3 

channels for input images, for Cambridge dataset that 

lacks depth information, we used the gradient value of 

each pixel of the frame in the 2nd channel of the RGB 

data structure. 

B. Late fusion stage: 

The purpose of the late fusion stage is to exploit the 

extracted features from both the 2D and 3D CNNs. In 

the case of dynamic hand gestures, which sometimes 

include small finger movements, retaining the precise 

ordering of these movements is necessary to achieve a 

correct prediction. 3D networks learn temporal features 

by performing convolution and max-pooling operations 

in the direction of the time axis. Figure 3 shows the 

difference between 2D and 3D convolutional filters. As 

it can be seen in this figure, applying a 2D filter to a 

single frame (Figure 3.a) or a 3D filter with the depth 

equal to the number of stacked frames on all the frames 

(Figure 3.b.), would result in a  2D output.  

  
a b 

  

c d 

  

e f 
Figure 2. Data augmentation, a) original image, b) 

translation, c) rotation, d) random crop, e) fixed-pattern 

drop, and f) random-pattern drop. 
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That means 2D filters discard the temporal information 

at the first layer [21]. In this type of networks, the 

output value corresponding to the point ( , )x y  in the 

jth feature map at the ith layer of network can be 

calculated as follows [37]: 

 
11

( , ) ( )( )
( , ) ( 1)

0 0

( )

ji
QP

x y pq x p y q
ij ijmi j i m

m p q

v tanh b w v


 


 

       (1) 

 

where, 𝑡𝑎𝑛ℎ(∙) is the hyperbolic tangent used as the 

activation function and bij is the bias corresponding to 

the jth feature map at ith layer. m indicates the feature 

map in the previous layer ( ( 1)i th layer), which is 

connected to the current (jth) feature map. Convolution 

Filter at the ith layer is of size 
i i

P Q , and 
pq

ijm
W is the 

weight of the filter maps at layer 𝑖 connected to the 

point ( , )p q . In 3D networks, however, given an input 

of shape H W C L   , where W, H, C and L are 

width, height, number of channels, and length of the 

video (in terms of frames), respectively, by applying a 

3D convolution filter with depth of l, where l L , the 

output will be a 3D volume conveying temporal 

features on 3rd dimension, as shown in Figure 3.c. 

Therefore, applying 3D max-pooling and 3D 

convolutional filters will retain temporal information at 

the subsequent layers. In this case, the output volume at 

ith layer and jth feature map corresponding to the point 

( , , )x y z  will be as follows [37]: 

1 1 1
( , , ) ( )( )( )

( . ) ( 1)

1 0 0

( )
i i iP Q R

x y z pqr x p y q z r

i j ij ijm i m

m p q r

v tanh b w v

  
  



  

     (2) 

 

where, Ri is the depth of convolution filter at the ith 

layer. However, temporal features obtained by 3D 

convolutional filters may not be appropriate for 

representing a displacement. Displacement in video 

appears as special differences in consecutive frames. In 

videos with shorter lengths, just like hand gestures, 

there are very tiny displacements in the subsequent 

frames, and this makes it difficult to detect 

displacements for temporal filters. 

Considering the pros and cons of 2D and 3D 

convolution networks for our application, two different 

approaches were used in the final classification stage. 

3D CNN: as discussed and can be seen in Figure 3.c, 

3D networks can extract temporal features by sliding 

convolution filter, across the time axis. In the case of 

hand gesture videos, this feature would be useful 

especially for those gestures with simple hand 

movement.  

2D CNN: Considering the high computational cost of 

3D CNN from one hand and the promising performance 

of the 2D CNN architectures, we also used the latter in 

our framework. In order to use these networks, we had 

to change the structure of the input data and tile the 

frames to make a single 2D frame. In the next sub-

section, we describe the details of the proposed method 

to use 2D CNNs for classification of hand gesture 

videos. 

Video classification using 2D CNNs: 

In our proposed method, representation of videos that 

include temporal data is learned using famous 2D 

CNNs like GoogleNet [19] and AlexNet [20]. We use a 

2D pattern to represent a video. This pattern is so that 

all frames of video keep together in a tiled, ordered, and 

non-overlapping pattern to form a single image. To 

create such a tiled pattern, for every video of size L 

frames with each frame of size m n , frames are 

arranged in a row-major manner to form a matrix of size 

L
w m n

w
   , where, every w L   frames make one 

row. The mentioned parameters should be set in a way 

that satisfies restrictions of the used 2D CNN. In the 

constructed matrix, the element (frame) at location 

( , )i j is the [( 1) ]i w m j th     frame in the video. 

An important issue to be considered when 

concatenating the frames is the effect of discontinuity 

of boundary pixels in the adjacent frames on the 

convolved images. This phenomenon causes two 

   
a b c 

Figure 3. Graphical illustration of the effects of 2D and 3D convolutions on 2D (images) and 3D (videos) input data. a) 

2D input and 2D convolution b) 3D input and 2D convolution c) 3D input and 3D convolution [21]. W, H, and L are width, 

height and length (number of frames) of the input data, respectively. Size of the 2D Convolutional filter is k×k and the 3D 

filter is of size k×k×d, where d corresponds to the depth of the filter. 
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problems. firstly, areas near the common border of any 

two adjacent frames in the tiled pattern may have 

different colors or intensities. These differences are 

mis-leading for convolutional filters and make them 

learn the differences as a new edge or pattern while 

these regions are not logically relevant. Moreover, in 

some cases, two adjacent frames are not consecutive in 

time (for example, the jth frame in the ith row and the 

jth frame in the ( 1)i th  row). To avoid these two 

problems, we simply added a padding area around any 

frame before putting it in the tiled pattern. The size of 

the padding must be greater or equal to the half size of 

the largest filter in the first layer of CNN. Figure 4 

shows a tiled pattern for a video of hand gesture. The 

constructing frames of this image have been generated 

by the Binarized depth frames. 

In 3D cases, convolution filters first move in the time 

axis direction and then move horizontally or vertically. 

Thus a filter looks at a 2D sub-space of video and traces 

its changes in time and repeats this to cover the whole 

video, while in the 2D cases, convolution filters move 

on the images in a row-wise manner. On the other hand, 

when we do tile mapping on video frames, every 

gesture is turned to /L w sub-gestures (every w gesture 

in one row). Thus the convolutional filters see sub-

gestures that are temporally ordered.  In this method, 

temporal data appears as ordered patterns in frames. In 

fact, time component is mapped into a 2D space. 

C. Classification 

We used the predictions of both 3D and 2D networks to 

improve the accuracy. For this, we trained two CNNs 

in parallel and separately. We optimized a separate loss 

function for each one of these networks, and while 

predicting labels of one video, we used element-wise 

product of the predictions as the final prediction. Given 

2 ( | )dP C x
ur

 and 3 ( | )dP C x
ur

 as output predictions of 2D 

CNN and 3D CNN, respectively. Equations (3) to (6) 

show how we fused them. This fusion happens in the 

Late Fusion Layer as in Figure 1. This is the last layer 

of model that outputs predictions. ( | )newP C x
ur

is the 

new prediction vector: 
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3 2
1

( | )
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r
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    (5) 

argmax ( | , , ) 1 , ,  predict iC P C i for ki   Kx w b      (6) 
 

where,   is the element-wise product, k is the number 

of labels. x is the input video, and C represents different 

possible k classes. W and b are weights and biases of 

the last layer, respectively. The probability that the 

input video is classified as class i is returned by 𝑝[𝑖]. 
In order to use the full advantages of 2D networks, we 

used two well-known CNNs, AlexNet and GoogleNet. 

These two networks are trained with the same 

configuration, summarized in Table 1. It is worth 

mentioning that here, the 2nd version of GoogleNet, i.e. 

inception_v2, is used. The optimization procedure 

consists of updating network weights W through 

minimizing a cost function over a dataset D. To this 

end, CrossEntropy cost function is used. 

1

1
log( | , )

D

n n

n

E p l
D




  w                (7) 

 

where, nl  is the true label of sample n. Optimization is 

done through stochastic gradient descent on mini-

batches of size 30.  Here, we used Nesterov accelerated 

gradients (NAGs) to update network weights W at 

each iteration using (8). 

1 1
, ,

1
i i i i i i i

i batch

v v w w w w

w


  


 

     



L

     (8) 

where,   is the learning rate,   is the momentum, 

i
w  is the average gradient of cost function over all 

samples in a batch, and 
i

v is the new weight. All the 

convolutional layers of CNNs are initialized with 

Xavier with a variance of 0.001. For each layer, Xavier 

 
Figure 4. A sample tiled pattern. Each row presents 

a sub-gesture. There is a zero padding between each 

two adjacent rows. 
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selects values from a zero-mean Gaussian distribution 

with a fixed variance. For 3D models, C3D and Low 

Resolution Network (LRN) [26] models were used. 

Again, these two networks are trained under the same 

configuration, as in Table 2. In order to avoid 

overfitting, we exploited two techniques in all models: 

drop-out for the last fully connected layers of CNNs 

and data augmentation. 

 

2. Experiments 

D. Datasets 

For evaluating the proposed method, we used two 

different datasets: VIVA HGD [6] and Cambridge 

HGD [38]. These datasets have two challenging 

attributes in common. First, gestures are performed by 

different people. Secondly, the sample videos are 

recorded under different illumination conditions. This 

enables us to evaluate the robustness of the trained 

method against subject and illumination variations.  

VIVA HGD is a video dataset of hand gestures. This 

dataset is designed and captured in order to facilitate 

research work for automatic interpretation of manual 

control commands issued by people inside Vehicles. 

This dataset consists of 32 different gestures, among 

which 19 gestures are considered for this challenge. 

Gestures are performed by 8 different subjects while 

sitting on the driver or the front passenger seats. Each 

one of the subjects performed their gestures under 

different illumination conditions. Videos of hand 

gestures are grayscale, and there is a depth video 

corresponding to each gesture. This dataset consists of 

885 samples of hand gestures including color and depth 

measurements for each.  

Cambridge HGD consists of 900 videos of 9 different 

gestures performed by 2 different subjects. These 

gestures are a combination of 3 primitive hand 

movements and 3 basic postures. Movements are 

labeled rightward, leftward, and contract and postures 

are labeled flat, spread, and V-shape. Unlike VIVA 

HGD, this dataset does not contain depth information. 

Gestures are performed under 5 different illumination 

conditions, and images are in the RGB format. 

E. Experimental setup 

We used CAFFE framework for our modeling. For 2D 

Networks, we used the main version of CAFFE [39], 

and for 3D Networks, we used VIDEO_CAFFE [40] 

and C3D CAFFE [21]. All libraries were used on a 

machine with an Intel Core i7 CPU, 16 GB RAM and 

Ubuntu 14.04 OS installed. We trained our networks on 

a NVIDIA GTX 1070 GPU.  

 

3.  Results 

For evaluation, we used leave-one-subject-out-cross-

validation. This way, video samples of one subject 

would be kept for test, while the other subject’s samples 

are used to train models. This has been repeated for all 

subjects and mean, and standard deviation of accuracies 

are reported. 

At first, we evaluated the 2D structure. For this purpose, 

the 3D and the late fusion modules are discarded from 

the framework. Considering the fact that the Cambridge 

HGD dataset lacks the depth information, we just used 

color data, and hence, the depth stream of Figure 1 is 

not included. Table 3 shows the results for 2D 

Networks. For both datasets, GoogleNet performed 

better than AlexNet by 2% in accuracy. On the other 

hand, AlexNet requires less train and test time due to its 

shallower architecture. The AlexNet and GoogleNet 

convergence times for the VIVA dataset were 155 and 

480 minutes, respectively.  

Table 4 shows the effect of the data augmentation on 

the performance of the framework. The results obtained 

are reported for both 2D CNNs. The purpose is to see 

the effect of increasing number of data samples by 

augmentation on the model accuracy.  

Table 1. Configuration of 2D CNN’s. Moment: 

momentum, acc: accumulation, lr: learning rate. O: 

Optimizer, Es: Epoc step, Mo: Moment, Bs: Batch 

size, Bc: Batch Acc, Nes: Nesterov 

Max 

epoch

s 

O Es. Mo. Bc. Bs. Lr. 

200 Nes. 10 0.9 2 25 10−2 

 
Table 2. Configuration of 3D networks. 

Max 

epochs O Es. M Bc. Bs. Lr 

200 SGD 10 0.9 2 25 10−3 

 
Table 3. Mean and standard deviation of 

accuracy and recall. T1 and T2 represent the 

training and testing times, respectively. std: 

standard deviation. 

CNN type 
VIVA Dataset 

Accuracy   std Recall std T1 

(min) 
T2 

(sec) 
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 72.5 6.1 66.5 6.5 480 5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 70.5 7 63.5 7 155 3.5 

 Cambridge Dataset 

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 77 2.3 69 2.4 365 5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 75 2.5 65 2.5 102 3.5 
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Moreover, with grouping of the augmentation methods, 

we can compare the methods that alter pixel values 

(Aug2) with those that just shift pixels without 

alteration (Aug1). As it can be seen in this Table 5, the 

outcome of GoogleNet is more affected by data 

augmentation compared with that of AlexNet. By 

applying augmentation, GoogleNet and AlexNet 

accuracies, respectively, improved 18.1% and 16.5% 

on the VIVA dataset. In addition, the results show that 

in both cases, Aug2 methods have a major effect on 

accuracy compared with the Aug1 methods.  

The next evaluation was on the effect of the gradient 

and differentiation layer. As we mentioned earlier, this 

layer is added to make model more robust against 

illumination conditions and also for background 

removal.  

As shown in Table 6, this layer has a considerable effect 

on the model in terms of accuracy and recall. The 

illumination condition is more realistic and challenging 

in the VIVA dataset, and the background of the videos 

is noisier. Moreover, it contains more distinct 

illumination types than the Cambridge dataset. So 

VIVA dataset is sufficient to evaluate the performance 

of this layer. Table 7 compares the results of the 

absence and presence of this layer.  

One adjustable parameter of this layer is the distance 

between the frames that are differentiated. Figure 5 

illustrates the diagram of the distance (d) versus mean 

accuracy. The best results are achieved with d = 1 and 

d = 2. As space increases, the logical connection 

between the frames decreases. 

In the first fusion stage (i.e. early fusion), we merged 

the RGB-D data into a new data frame that carry 

information from both modalities as well as temporal 

order of frame sequences.   

 
Figure 5. Mean accuracy versus the distance 

between the frames in differentiation layer. 

 
Figure 6 comparing our early fusion method vs. 

interleaved RGB-D fusion introduced in [20]. 
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Table 4. . Mean and standard deviation of accuracy 

and recall. T1 and T2 represent the training and 

testing times, respectively. std: standard deviation. 

CNN type 
VIVA Dataset 

Accuracy   std Recall std T1 
(min) 

T2 
(sec) 

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 72.5 6.1 66.5 6.5 480 5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 70.5 7 63.5 7 155 3.5 

 Cambridge Dataset 

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 77 2.3 69 2.4 365 5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 75 2.5 65 2.5 102 3.5 

 

Table 5. Effect of data augmentation on 

classification accuracy. '-' Means that none of the data 

augmentation functions are applied. Aug1 includes 

frame reversing, translation, and rotation. Aug2 

includes random crop, fixed-pattern drop, and 

random-pattern drop. ‘+’ means that both 

augmentations are applied simultaneously. 

CNN type 
VIVA Dataset 

No 
augmentation Aug1 Aug2 Aug1+Aug2 

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 54.4 63.1 68.8 72.5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 54 60.3 67.9 70.5 

 Cambridge Dataset 
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 63.6 69.9 73.5 77 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 62.8 67.6 71.4 75 

 
Table 6. Effect of gradient and differentiation layer 

on VIVA dataset. 

Network Measure - Grad Diff Grad+Diff 
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 

Accuracy 
63.5 70 66 72.5 

𝐀𝐥𝐞𝐱𝐍𝐞𝐭 60.6 69 64.1 70.5 
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 

Recall 
50 64.2 53 66.5 

𝐀𝐥𝐞𝐱𝐍𝐞𝐭 49 59.8 53 63.5 

 

Table 7. Comparison between 2D model and 3D 

model results. t1 and t2 represent the training and 

testing times 

CNN type VIVA Dataset 
Accuracy Recall T1(min) T2(sec) 

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 72.5 66.5 480 5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 70.5 63.5 155 3.5 
𝐂𝟑𝐃 68 63 560 5.5 
𝐋𝐑𝐍 69 64 490 4 

 Cambridge Dataset 

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 77 69 365 5 
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 75 65 102 3.5 
𝐂𝟑𝐃 72 66 569 5.5 
𝐋𝐑𝐍 70 65.6 404 4 
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The early and late Fusion types have been well-studied 

and compared in the literature. Here, we compared the 

results of our method with another early fusion scheme 

used in [20]. They stacked depth frames among color 

frames after normalization and before feeding to 

network. Figure 6 shows the results on two 3D CNNs. 

As the results declare, in both cases, our merging 

method performs better. 

The proposed method enables us to exploit high-

performance 2D CNNs for video classification. These 

networks are well-designed and evaluated on different 

datasets, and the results are reported here. 

For a fair comparison between the 2D and 3D CNNs, 

we repeated all pre-processing steps, as explained 

earlier, when evaluating the 3D networks. A 

comparison of the results of the 2D and 3D networks is 

reported in Table 7. According to these results, 2D 

networks outperform 3D models in both accuracy and 

time. 

The proposed method uses both the 2D and 3D 

networks to obtain better predictions. As illustrated in 

Figure 1, final model is a two-stream architecture which 

fuses predictions of 2D and 3D networks. The data 

entered into these networks has passed through the 

same preprocessing modules. Table 8 shows the results 

of the model on both datasets.  

4.  Comparison with other research works 

We have two considerations to make a fair comparison 

between our results and the other works. Firstly, we 

compare our results only with those of the other CNN-

based methods. There are some research works that 

combine different techniques, such as RNNs, in order 

to extract temporal features. However, the focus of our 

work is on CNNs, and therefore, such works are 

excluded from our comparison. Secondly, the 

evaluations should be inter-subject, as we have 

described earlier in this section. One of the most cited 

papers with these criteria is [26]. We re-implemented 

the full model of this paper with all pre-processing and 

post-processing. Table 9 shows the comparing of 

results. 

 

5.  Concluding discussions 

In this work, we investigated the effects of 2D and 3D 

convolutional neural networks on the dynamic hand 

gesture recognition task. We found out that 2D CNN 

could outperform 3D CNNs for learning temporal 

representations, specifically for videos with tiny 

movements like hand gesture dynamics. In addition, 2D 

CNNs have lower time complexity compared with 3D 

convolutional operations.  

We mapped hand gesture videos to a 2D tiled pattern of 

temporally-ordered non-overlapping frames. This data 

was used to train well-known and efficient CNNs like 

GoogleNet and AlexNet. We also proposed two types 

of fusion in this paper, i.e. an early fusion for 

combining depth and color modalities and a late fusion 

to merge predictions of 2D and 3D CNNs. We also used 

gradient of images and differentiated consecutive 

frames to make the model robust against cluttered 

background and illumination conditions. 

VIVA and Cambridge hand gesture datasets were used 

to evaluate our method. Since hand gesture datasets are 

small with a limited number of data samples, we 

applied two groups of data augmentation methods on 

them. The augmentation methods in the first group just 

shift or rotate images in different directions, and the 

ones in the second group modify some pixels.  

As it can be observed in Table 3, standard deviation of 

accuracies for different subjects is low for both 

datasets, and it shows that the model is robust against 

subject variation. Standard deviation for VIVA is 

greater than that of Cambridge dataset. This is because 

of two reasons: first, the number of subjects is much 

more than that of the Cambridge dataset, and secondly, 

as it has been mentioned before, in the VIVA dataset, 

every subject has performed gestures in a different 

illumination condition. Thus it is probable that the 

Table 8. Results for the final two-stream method. 

Network type VIVA Dataset 
Accuracy Recall 

{
𝐆𝐨𝐨𝐥𝐞𝐍𝐞𝐭

𝐂𝟑𝐃
 74.5 68 

{
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

𝐋𝐑𝐍
 75 68.5 

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐂𝟑𝐃

 71.7 64.9 

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐋𝐑𝐍

 72.2 65 
 Cambridge Dataset 

{
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

𝐂𝟑𝐃
 78.5 71.5 

{
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

𝐋𝐑𝐍
 78 72 

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐂𝟑𝐃

 75.7 67 

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐋𝐑𝐍

 75.8 67.2 
 

Table 9. Results of different methods on VIVA Hand 

Gesture Dataset 

Method Accuracy (inter-subject) 

LRN [26] 67 

HRN [26] 68 

LRN + HRN [26] 70 

GoogleNet + C3D 74.5 
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model does not have enough samples of specific 

illumination criteria during training, and hence, would 

not learn them properly. This is not the case for the 

Cambridge dataset, in which videos with different 

illumination conditions are included for all subjects. 

Moreover, the results obtained confirm that the 

proposed method to use 2D CNNs, outperforms the 

case of using 3D CNNs like C3D. According to Table 

7, using the proposed framework, GoogleNet achieved 

an accuracy of 72.5% against C3D model with 68% and 

LRN with 69% accuracy on VIVA dataset. The 2D 

method, mapped videos into a 2D space so that 

temporal deviations are depicted as objects in an image. 

Furthermore, deviations of temporal order are 

considered. The results obtained show that while 3D 

CNNs extract temporal features through convolution 

over time axis, 2D method perform better for cases like 

dynamic hand gestures with tiny movements. 

The results in Table 7 also show that, 2D CNNs are 

faster than 3D CNNs in both training and testing. Even 

GoogleNet that is a very deep network, trained about 80 

minutes quicker than C3D. This is because 3D 

convolution is much more time-consuming than 2D 

convolution. In fact, as we mentioned earlier, 2D 

convolution time complexity is ( )O W H m n   , 

while for 3D convolution, time complexity is 

( )O W H L m n t     .  

The gradient and differentiation layer we added to our 

framework has a great impact on the results. This layer 

improved accuracy for both GoogleNet and AlexNet by 

roughly 10%, according to Table 6.  Also the 

augmentation layer tuned CNNs better with more 

samples. The results in Table 5 showed that, those type 

of augmentations that alter pixel values performed 

better than augmentations that just shifted pixels. The 

outcome of GoogleNet is more affected by data 

augmentation than that of AlexNet.  GoogleNet is a 

multi-column CNN, which has a much deeper 

architecture than AlexNet. However, the number of 

learnable parameters in GoogleNet is much fewer than 

that of AlexNet (12 times fewer parameter [19]). This 

means that, while GoogleNet has fewer learnable 

parameters because of its architecture, it is more 

effected by augmentation than AlexNet. 

Finally, we merged both 2D and 3D networks to 

reinforce predictions. We got at max 2.5% 

improvement in accuracy by merging 2D and 3D CNNs 

predictions compared to their separate predictions. Our 

final structure that is a two-stage two-stream 

architecture improved accuracy of recognition on 

Cambridge HGD by %1.5 and VIVA HGD by 2.5%. 

A natural direction for future work is to investigate new 

2D CNNs that have been introduced recently, e.g. 

DenseNet and inception-v4. DenseNet is a compact 2D 

CNN that can improve train and test times significantly. 

Moreover, Inception-v4 was more optimized than 

version 2 of GoogleNet that we used in this work and 

could improve its accuracy.  
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های کانولوشنی دو بعدی و سه بعدی: یک با استفاده از شبکه RGB-Dهای تشخیص ژست دست از داده

 ایمقایسهمطالعه 

 

 *فواد قادری و مقداد کرمانجی

 .ایران، تهران، دانشگاه تربیت مدرس، کامپیوتردانشکده برق و آزمایشگاه تعامل انسان و کامپیوتر، 

 16/06/2019 پذیرش ؛09/04/2019اصلاح  ؛26/12/2018 ارسال

 چکیده:

های دست در ویدیوها وجود بندی ژستزیادی در زمینه دستههای ،کماکان چالشتصاویر گیر در تشخیص ژست دست درهای چشمبا وجود پیشرفت

که با  کات دست،پویایی حرهای زمانی را به همراه دارد. های بیشتری مانند پیچیدگی زمانی بالاتر و دشواری نمایش ویژگیمورد دوم چالشدارد. 

و سه  های کانولوشنی دو بعدیتا کنون، هر دو نوع شبکه. های یک ویدیو استخراج شودی فریم، باید با در نظر گرفتن تمامشودیان میبهای زمانی ویژگی

های ا در فریمتوانند تغییرات رهای کانولوشنی سه بعدی میشبکه اند.یو مورد استفاده قرار گرفتههای یک ویدزمانی در فریم هایپویایی بازیابیبعدی برای 

ش و ها اکثرا به زمان بیشتری برای آموزتر باشند؛ با این وجود، این شبکهیو مناسببندی ویدرسد که برای مساله دستهمتوالی پیدا کنند و به نظر می

ای هماتریس جمع کرد در حالی که ویژگیهای یک ویدیو را در یک توان تمامی فریممی های الحاق،استفاده از روشاز طرفی دیگر، با تست نیاز دارند. 

بندی تر هستند، برای دستههای سه بعدی سادههای کانولوشنی دو بعدی که اساسا از مدلتوان از شبکهاز این طریق، میرا حفظ کرد. آن زمانی و مکانی 

های دست بندی دنباله ژستهای زمانی و دستهبرای نمایش ویژگی های دو بعدی و سه بعدیربرد شبکهدر این مقاله، کاهای ویدیویی استفاده کرد. نمونه

های بینی از شبکههای رنگ و عمق و همچنین نتایج پیشای دو جریانی، ماهیتعلاوه بر این، با معرفی یک معماری دو مرحلهقایسه شده است. در ویدیو م

دهد مینتایج به دست آمده نشان است. های ازدیاد داده بررسی شدههمچنین تاثیر استفاده از روشاند. دو بعدی و سه بعدی به شکل کارایی ادغام شده

 های سه بعدی عملکرد بهتری در این مساله دارند. سازیپیادهبا  های کانولوشنی دو بعدی در مقایسهاز شبکهمناسب  گیریبه کارکه 
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