Dy

Journal of Al and Data Mining

Vol 8, No 2, 2020, 177-188. DOI: 10.22044/JADM.2019.7903.1929

Hand Gesture Recognition from RGB-D Data using 2D and 3D
Convolutional Neural Networks: a comparative study

M. Kurmanji and F. Ghaderi”

Human Computer Interaction Lab., Electrical and Computer Engineering Department, Tarbiat Modares University, Tehran, Iran.

Received 26 December 2018; Revised 09 April 2019; Accepted 16 June 2019
*Corresponding author: fghaderi@modares.ac.ir (F. Ghaderi).

Abstract

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in
the classification of hand gestures in videos. The latter comes with more challenges including higher computational
complexity and arduous task of representing temporal features. Hand movement dynamics, represented by
temporal features, have to be extracted by analyzing the total frames of a video. So far, both the 2D and 3D
convolutional neural networks (CNNs) have been used to manipulate the temporal dynamics of the video frames.
3D CNNs can extract the changes in the consecutive frames and tend to be more suitable for the video classification
task; however, they usually need more time. On the other hand, using techniques like tiling, it is possible to
aggregate all the frames in a single matrix and preserve the temporal and spatial features. This way, using 2D
CNNs, which are inherently simpler than 3D CNNs, can be used to classify the video instances. In this paper, we
compare the application of 2D and 3D CNNs for representing temporal features and classifying hand gesture
sequences. Additionally, providing a two-stage two-stream architecture, we efficiently combined color and depth
modalities and 2D and 3D CNN predictions. The effects of different types of augmentation techniques are also
investigated. The results obtained confirm that an appropriate usage of 2D CNNs outperforms a 3D CNN
implementation in this task.
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1.Introduction

As a new approach to design human computer
interfaces, hand gesture recognition (HGR) has
attracted the attention of many researchers in the recent
years. Some potential applications include touch-less
control for TVs and computers, robot control,
augmented and virtual reality systems, and sign
language translation [1]. In general, hand gestures are
categorized into static and dynamic poses of human
hand. Dynamic gestures are those that run continuously

over time [2]. Recognition of hand gestures, especially
dynamic gestures, can be a challenging task due to the
followings reasons: cluttered background, tiny finger
movements, fast hand movements, different hand
shapes and skin colors, different illumination settings,
and high number of gestures [3-5]. The last challenge
would dramatically increase the training time and
decrease the recognition accuracy in a learning system
[6,7].
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Figure 1. Block diagram of the proposed method. Input is the RGB and depth modalities of hand gesture videos, and the
output is the predicted label. The following modules are used in the framework. NNI: Nearest Neighbor Interpolation, to fix
video lengths; Aug: Data Augmentation. Binarize layer generates a binary image from depth data. Grad. Layer calculates
Gradient from intensity channel of color data using Canny operator, Tiling, generates a 2D pattern from sequence of video

Many efforts have been made in the last two decades to
overcome these challenges and improve HGR systems.
These efforts can be divided into two general
categories. Methods in the first group use wearable
devices to track hand parts, while the methods in the
second group only use the computer vision techniques
[7]. Wearable devices can improve segmentation of
hand in pictures and also help to better recognize
dynamics of hands. This will lead to an absolute and
fast feature extraction. However, due to the lack of
convenience, these class of methods are not popular [8].
In the recent years, many vision-based methods have
been proposed. In [9], a number of descriptors for joints
are defined that represent hand state, and the aim is to
learn these descriptors. Different feature vectors are
used in these methods. In [10], a specific gesture is
defined through a set of special-temporal descriptors.
Elmezian et al. [11] extracted a feature vector, which
was composed of geometric and physical
characteristics of hand motions. Hosseini and
Hassanian in [12] used a motion detection approach
together with a mean shift method to track hand and
recognize gestures in sign language. The SIFT and
SUFT algorithms are also widely used for extracting
the key points of frames. Dandu et al. [13] have used
Local Histogram Features Descriptor, being also
popular in other fields of image processing. To learn
these feature vectors, many machine learning
algorithms have been used, from which HMM [14],
artificial neural networks [15], and SVM [16] are the
most popular ones. Nachiket et al. [17] explored Hidden
Markov models as an approach for modeling and
recognizing dynamic hand gestures. They used two
types of features, HOG and CNN, to train Markov
modelss and resulted that CNN features better
represented hand shape features than HOG features.

In the last few years, deep learning algorithms, and in
particular, Convolutional Neural Networks (CNNSs),

have revolutionized the signal processing field. Their
most significant usage was in image processing
problems. CNNs extract valuable features through
consecutive convolution and max-pooling layers.
These features can better represent images compared to
the hand-crafted features in traditional methods, and are
very useful in various tasks. Mahmoudi et al. [18]
perfectly used CNN-based features in a multi-target
tracking problem for pedestrian tracking. A successful
example is GoogleNet, a very deep multi-column
architecture [19], which yielded unprecedented results
in ImageNet challenge.

In order to reduce the training time, the researchers
suggested shallow CNNs, e.g. AlexNet [20]. Despite
the achieved saving in time, this shallow networks yield
reasonable  results in  classifications  tasks.
Convolutional neural networks are also useful for
video classification tasks and the most popular
architecture for this application is 3D CNN [21]. Zhi et
al. investigated 3D sequences to learn spatio-temporal
features of human actions from depth sequences [22].
They used features from joint descriptions together
with features from 3D CNN to do a classification of
human actions using a SVM classifier. Necati et al. [23]
used a multi-stream 3D CNN fused with a majority
voting approach to predict human gestures from raw
video data.

On the other hand, using depth modality together with
color data, one can improve the performance of the
HGR systems. Many efforts to fuse these modalities
and take advantage of the information contents of both
data channels have been reported [24] [25] [26]. Moeini
et al. [27], after a process of extracting features, fused
texture and depth feature vectors to train an SVM. Saba
et al. [28] provided rich features by segmenting hand
shape in images to learning algorithms. The authors in
[29] have effectively joined depth and color data
through a deep convolutional neural network to detect
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20 gestures of Italian sign language. In [30], the authors
detected body gestures by learning joint representations
through a multi-stream multi-scale CNN. Malchanov et
al. [26] ranked first in the VIVA hand gesture
recognition challenge using a two-stream 3D CNN.
Each stream had a different resolution. Multi-stream
architectures have shown promising outcomes,
especially in video classifications. This class of
architectures helps to find more features in videos and
create more stable models. In [31], different types of
feature fusion in multi-stream architectures have been
investigated. The most used fusion types are late fusion,
early fusion, and slow fusion.

Dynamic hand gesture recognition is a special case of
video classification. An important issue to be
considered when analyzing dynamic gestures is the
inclusion of temporal evolution of the gestures.
Temporal features represent hand dynamics, and are
substantial to recognize hand movements in video. It
seems that 3D convolutional filters are suitable for
extracting these features [26] by doing convolution
along time axis. However, these filters may not perform
well on videos with tiny movements of objects, e.g.
hand gesture videos. Furthermore, 3D convolutions are
time-consuming. Given a 2D filter of size mxn , the
complexity of applying this filter to an image of size
W xH is of order OW xH xmxn). For a 3D input

image of size m xn xt and 3D filter of sizeW xH xL
: convolution operation is of order
OW xH xL xm xn xt) .Researchers also exploited

Deep Recurrent Neural Networks to deal with temporal
features in hand gesture recognition tasks [32] [33]. Ce
Li et al. [34] integrated a bidirectional LSTM network
and a bidirectional Gated Recurrent network with
Fisher criterion to create discriminative models to
detect hand gestures. Vijay et al. [35] used a
decovolutional neural network to select representative
frames from multi-frames of a hand gesture video and
then trained a long-term recurrent network using these
representative frames. Malchanov et al. [36] created a
recurrent neural network with 3D CNNs to classify
hand gestures. They used a connectionist temporal
classification to train their model and fuse multiple
RRNSs.

In this paper, we compared the effectiveness of learning
temporal representation of hand gestures using 2D and
3D CNNs. To this end, a pipeline for processing depth
and color data was processed. This processing includes
several steps to overcome overfitting and illumination
condition. The color and depth stream are then
combined into a new data frame carrying information
from both modalities. 2D CNNs that performed well in

image classification problem are also used in our
proposed method for classification task. The results
obtained show that this method improves recognition
accuracy and also decreases train and recognition times
compared to the 3D models. To keep advantages of
both sides, we included another step of fusion by which
we combined results of 2D and 3D models in parallel
to provide final predictions.

The proposed pipeline includes preprocessing steps

such as large scale data augmentation. Moreover,

Canny operator and normalization techniques are

applied to enhance the prediction quality.

The contributions of this work are as follow:

a. We showed that 2D CNNSs could perform better than
3D CNN:s for video classification of hand gestures in
terms of classification performance and time
complexity.

b.We introduced a new video representation by fusing
color and depth modalities and making it suitable for
training regular 2D CNNs.

The structure of this paper is as what follows. In

Section 0 we describe the classification framework and

the details of the proposed framework for video

classification. In Sections 2 and 3 the proposed
structure is validated and the results are reported. The

concluding discussions are presented in Section 0.

2. Proposed method

The block diagram of Figure 1 illustrates the process
flow of the proposed framework. The inputs are color
and depth modalities of hand movement videos, and the
objective is to assign a label to each input sample
specifying the hand gesture class. The learning
framework has two fusion stages, i.e. early fusion and
late fusion. The details of the stages are as what
follows:

A. Early fusion stage:

The purpose of the early fusion stage is to combine
depth and color modalities. This stage has two separate
flows for each data modality. The input to the upper
flow in Figure 1 is n frames of depth data relating to
video sample s;. These frames could be gray scale
images, as in the case of VIVA dataset or depth maps.
The input to the lower flow is n frames of color data
relating to sample s;.

For the sake of increasing performance, some pre-
processing steps were applied to the images before
merging them. The pre-processing steps includes a:
normalization of the video length, b: data
augmentation, c: calculating gradient of color images,
and d: binarizing depth images. For datasets that lack
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the depth modality, we simply ignore depth processing
flow and early fusion. The details of the steps are as
follows:

a: Since we used well-known CNNs with pre-defined
structures, the lengths of all videos were fixed to 32
frames for VIV A dataset and 16 frames for Cambridge
HGD. We fixed video lengths using the Nearest
Neighbors Interpolation.

b: In this research work, several data augmentation
techniques are used, i.e. 1) reversing video frames, 2)
translation, 3) rotation, 4) random crop, 5) fixed-pattern
drop [26], 6) random-pattern drop [26]. For translation
augmentation, we translated all frames of video %8
pixels horizontally and +6 pixels vertically. For rotation
augmentation, we rotated videos by +10 degrees around
the central point. For random crop, we used two random
windows of different sizes to crop videos. The drop
augmentation (5 and 6 above) is such that p = 50% of
pixels of each frame is randomly dropped to zero. In
fixed-pattern drop, the pixels are randomly selected
first and their values are dropped to zero for all frames
of the video, while in random-pattern drop
augmentation, the dropped pixels are randomly selected
for each individual frame. Figure 2 illustrates
augmentation of one single frame in a video. For the
sake of more convenient evaluation and considering the
effects of different augmentation methods on the
results, we divided the augmentation methods into two
groups, namely 1 to 3 (of the above augmentation
methods) into one group and the rest into the second
group. We call the first group Augl and the second one
Aug2.

c: we used gradient of image sequences. We computed
contours of hand shape from intensity channel using
Canny operator of size 3x3 pixel with o=0.33.
Afterwards, for each frame i, we subtracted ith frame
from frame, where (i +d) <L, and L is the length of

the video. These two will make the model more robust
against different illumination conditions and also
cluttered background. It is worth mentioning that we
did not perform any normalization on image channels.
d: In the case of depth modality presence, we mapped
the depth information to a binary image by applying a
threshold to the depth images.
We use the RGB data format to merge the depth and
color images into a single structure by placing intensity
channel of the color image and the binarized image of
depth in the first and second channels, respectively. The
third channel is filled with the indices of the frames in
the frame sequence. As far as we know, it is the first
time that depth and color modalities are merged in this
way.

If we define an inputasW xH xnxC , where W, H, n
and C are width, height, number of frames, and number
of channels respectively, in the case of VIVA dataset,
the input to the depth and color flows are of size
57x125xn x1, where n varies for different video
samples, and the inputs to early fusion layer are of size
32x32x32x1 and the output of this layer is of size
32x32x32x3. In the case of Cambridge dataset, the
input to color flow is of size 20x20x20x3 and the
output after preprocessing is of size 20x20x16x 3. As
the CNN models we used in these paper expect 3
channels for input images, for Cambridge dataset that
lacks depth information, we used the gradient value of
each pixel of the frame in the 2nd channel of the RGB

data structure.
a b
c d

Figure 2. Data augmentation, a) original image, b)
translation, c) rotation, d) random crop, e) fixed-pattern
drop, and f) random-pattern drop.

B. Late fusion stage:

The purpose of the late fusion stage is to exploit the
extracted features from both the 2D and 3D CNNs. In
the case of dynamic hand gestures, which sometimes
include small finger movements, retaining the precise
ordering of these movements is necessary to achieve a
correct prediction. 3D networks learn temporal features
by performing convolution and max-pooling operations
in the direction of the time axis. Figure 3 shows the
difference between 2D and 3D convolutional filters. As
it can be seen in this figure, applying a 2D filter to a
single frame (Figure 3.a) or a 3D filter with the depth
equal to the number of stacked frames on all the frames
(Figure 3.b.), would result ina 2D output.
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Figure 3. Graphical illustration of the effects of 2D and 3D convolutions on 2D (images) and 3D (videos) input data. a)
2D input and 2D convolution b) 3D input and 2D convolution ¢) 3D input and 3D convolution [21]. W, H, and L are width,
height and length (number of frames) of the input data, respectively. Size of the 2D Convolutional filter is kxk and the 3D

filter is of size kxkxd, where d corresponds to the depth of the filter.

That means 2D filters discard the temporal information
at the first layer [21]. In this type of networks, the
output value corresponding to the point (x,y) in the

jth feature map at the ith layer of network can be
calculated as follows [37]:

R-1Q;-1

Vi) =tanh + 0 Y > wi(ah )
m p=0 g=0

where, tanh(-) is the hyperbolic tangent used as the
activation function and bj; is the bias corresponding to
the jth feature map at ith layer. m indicates the feature
map in the previous layer ((i —1th layer), which is
connected to the current (jth) feature map. Convolution
Filter at the ith layer is of size P, xQ, , and W " is the

ijm
weight of the filter maps at layer i connected to the
point (p,q). In 3D networks, however, given an input

of shape H xW xC xL, where W, H, C and L are
width, height, number of channels, and length of the
video (in terms of frames), respectively, by applying a
3D convolution filter with depth of I, where | <L , the
output will be a 3D volume conveying temporal
features on 3rd dimension, as shown in Figure 3.c.
Therefore, applying 3D max-pooling and 3D
convolutional filters will retain temporal information at
the subsequent layers. In this case, the output volume at
ith layer and jth feature map corresponding to the point
(x,y,z) will be as follows [37]:
R-1Q-1R;-1

SR UCEDIDIDIDNT

m p=1g=0 r=0

par,, (x+p)(y+a)(z+r)
|Jm (| -1)m ) (2)

where, R; is the depth of convolution filter at the ith
layer. However, temporal features obtained by 3D
convolutional filters may not be appropriate for
representing a displacement. Displacement in video
appears as special differences in consecutive frames. In
videos with shorter lengths, just like hand gestures,
there are very tiny displacements in the subsequent

frames, and this makes it difficult to detect
displacements for temporal filters.

Considering the pros and cons of 2D and 3D
convolution networks for our application, two different
approaches were used in the final classification stage.
3D CNN: as discussed and can be seen in Figure 3.c,
3D networks can extract temporal features by sliding
convolution filter, across the time axis. In the case of
hand gesture videos, this feature would be useful
especially for those gestures with simple hand
movement.

2D CNN: Considering the high computational cost of
3D CNN from one hand and the promising performance
of the 2D CNN architectures, we also used the latter in
our framework. In order to use these networks, we had
to change the structure of the input data and tile the
frames to make a single 2D frame. In the next sub-
section, we describe the details of the proposed method
to use 2D CNNs for classification of hand gesture
videos.

Video classification using 2D CNNs:

In our proposed method, representation of videos that
include temporal data is learned using famous 2D
CNN s like GoogleNet [19] and AlexNet [20]. We use a
2D pattern to represent a video. This pattern is so that
all frames of video keep together in a tiled, ordered, and
non-overlapping pattern to form a single image. To
create such a tiled pattern, for every video of size L
frames with each frame of size mxn, frames are
arranged in a row-major manner to form a matrix of size

L
W xm x—xn,where, every w <L frames make one
W

row. The mentioned parameters should be set in a way
that satisfies restrictions of the used 2D CNN. In the
constructed matrix, the element (frame) at location
(i,j)isthe [(i —)xw xm + jJth frame in the video.
An important issue to be considered when
concatenating the frames is the effect of discontinuity
of boundary pixels in the adjacent frames on the
convolved images. This phenomenon causes two
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problems. firstly, areas near the common border of any
two adjacent frames in the tiled pattern may have
different colors or intensities. These differences are
mis-leading for convolutional filters and make them
learn the differences as a new edge or pattern while
these regions are not logically relevant. Moreover, in
some cases, two adjacent frames are not consecutive in
time (for example, the jth frame in the ith row and the
jth frame in the (i +1)th row). To avoid these two

problems, we simply added a padding area around any
frame before putting it in the tiled pattern. The size of
the padding must be greater or equal to the half size of
the largest filter in the first layer of CNN. Figure 4
shows a tiled pattern for a video of hand gesture. The
constructing frames of this image have been generated
by the Binarized depth frames.

>
- e O 4 L by
Figure 4. A sample tiled pattern. Each row presents
a sub-gesture. There is a zero padding between each
two adjacent rows.

In 3D cases, convolution filters first move in the time
axis direction and then move horizontally or vertically.
Thus a filter looks at a 2D sub-space of video and traces
its changes in time and repeats this to cover the whole
video, while in the 2D cases, convolution filters move
on the images in a row-wise manner. On the other hand,
when we do tile mapping on video frames, every
gestureisturnedto L /w sub-gestures (every w gesture
in one row). Thus the convolutional filters see sub-
gestures that are temporally ordered. In this method,
temporal data appears as ordered patterns in frames. In
fact, time component is mapped into a 2D space.

C. Classification

We used the predictions of both 3D and 2D networks to
improve the accuracy. For this, we trained two CNNs
in parallel and separately. We optimized a separate loss
function for each one of these networks, and while
predicting labels of one video, we used element-wise
eroduct of the prgdictions as the final prediction. Given

P2 (C |x) and Ps (C |x) as output predictions of 2D

CNN and 3D CNN, respectively. Equations (3) to (6)
show how we fused them. This fusion happens in the
Late Fusion Layer as in Figure 1. This is the last layer

u
of model that outputs predictions. P (C |Xx)is the
new prediction vector:

u e(wix+bi)
P, (C=i|x,W,b) =softmax(W.x +b) = ———)

2d

ze(wjx+bj) (3)
fori=1K ,k ]

r e(wix+bi)
Pyy (C =i|x,W,b) = softmax(W.x + b) =

—_—)
D M3x*Es) (4)

fori=1K  k i
1
Py (C =i 1%, W,b) =
I’ne r (5)
Py (C =i |%,W,b)®p,, (C=i|x,W,b) fori=1,K,k
C pregict = agMax;P(C =i|x,w,b) for i=1K  k (6)

where, ® is the element-wise product, k is the number
of labels. x is the input video, and C represents different
possible k classes. W and b are weights and biases of
the last layer, respectively. The probability that the
input video is classified as class i is returned by p[i].
In order to use the full advantages of 2D networks, we
used two well-known CNNs, AlexNet and GoogleNet.
These two networks are trained with the same
configuration, summarized in Table 1. It is worth
mentioning that here, the 2nd version of GoogleNet, i.e.
inception_v2, is used. The optimization procedure
consists of updating network weights W through
minimizing a cost function over a dataset D. To this
end, CrossEntropy cost function is used.

1 D]
E:ﬁZlog(pnun,w) @

n=1

where, | is the true label of sample n. Optimization is
done through stochastic gradient descent on mini-
batches of size 30. Here, we used Nesterov accelerated
gradients (NAGS) to update network weights @ eW at
each iteration using (8).

oL
V(ni
5Wi -1

where, A is the learning rate, u is the momentum,

> Vi = My AW W= W = AV, (8)
batch

Vw . is the average gradient of cost function over all

samples in a batch, and v, is the new weight. All the

convolutional layers of CNNs are initialized with
Xavier with a variance of 0.001. For each layer, Xavier
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selects values from a zero-mean Gaussian distribution
with a fixed variance. For 3D models, C3D and Low
Resolution Network (LRN) [26] models were used.
Again, these two networks are trained under the same
configuration, as in Table 2. In order to avoid
overfitting, we exploited two techniques in all models:
drop-out for the last fully connected layers of CNNs
and data augmentation.

2.Experiments

D. Datasets

For evaluating the proposed method, we used two
different datasets: VIVA HGD [6] and Cambridge
HGD [38]. These datasets have two challenging
attributes in common. First, gestures are performed by
different people. Secondly, the sample videos are
recorded under different illumination conditions. This
enables us to evaluate the robustness of the trained
method against subject and illumination variations.

Table 1. Configuration of 2D CNN’s. Moment:
momentum, acc: accumulation, Ir: learning rate. O:
Optimizer, Es: Epoc step, Mo: Moment, Bs: Batch

size, Bc: Batch Acc, Nes: Nesterov

Max
epoch (0] Es. Mo. Bc. Bs. Lr.
s

200 Nes. 10 0.9 2 25

1072

Table 2. Configuration of 3D networks.

Max
epochs

200 SGD 10 0.9 2 25 107*

Es. M Bc. Bs. Lr

Table 3. Mean and standard deviation of
accuracy and recall. T1 and T2 represent the
training and testing times, respectively. std:
standard deviation.

VIVA Dataset
CNN type L T2

Accuracy std  Recall std .
(min)  (sec
GoogleNet 72.5 6.1 665 65 480 5
AlexNet 70.5 7 63.5 7 155 35

Cambridge Dataset
GoogleNet 7 2.3 69 24 365 5
AlexNet 75 25 65 25 102 35

VIVA HGD is a video dataset of hand gestures. This
dataset is designed and captured in order to facilitate
research work for automatic interpretation of manual
control commands issued by people inside Vehicles.
This dataset consists of 32 different gestures, among
which 19 gestures are considered for this challenge.

Gestures are performed by 8 different subjects while
sitting on the driver or the front passenger seats. Each
one of the subjects performed their gestures under
different illumination conditions. Videos of hand
gestures are grayscale, and there is a depth video
corresponding to each gesture. This dataset consists of
885 samples of hand gestures including color and depth
measurements for each.

Cambridge HGD consists of 900 videos of 9 different
gestures performed by 2 different subjects. These
gestures are a combination of 3 primitive hand
movements and 3 basic postures. Movements are
labeled rightward, leftward, and contract and postures
are labeled flat, spread, and V-shape. Unlike VIVA
HGD, this dataset does not contain depth information.
Gestures are performed under 5 different illumination
conditions, and images are in the RGB format.

E. Experimental setup

We used CAFFE framework for our modeling. For 2D
Networks, we used the main version of CAFFE [39],
and for 3D Networks, we used VIDEO_CAFFE [40]
and C3D CAFFE [21]. All libraries were used on a
machine with an Intel Core i7 CPU, 16 GB RAM and
Ubuntu 14.04 OS installed. We trained our networks on
aNVIDIA GTX 1070 GPU.

3. Results

For evaluation, we used leave-one-subject-out-cross-
validation. This way, video samples of one subject
would be kept for test, while the other subject’s samples
are used to train models. This has been repeated for all
subjects and mean, and standard deviation of accuracies
are reported.

At first, we evaluated the 2D structure. For this purpose,
the 3D and the late fusion modules are discarded from
the framework. Considering the fact that the Cambridge
HGD dataset lacks the depth information, we just used
color data, and hence, the depth stream of Figure 1 is
not included. Table 3 shows the results for 2D
Networks. For both datasets, GoogleNet performed
better than AlexNet by 2% in accuracy. On the other
hand, AlexNet requires less train and test time due to its
shallower architecture. The AlexNet and GoogleNet
convergence times for the VIVA dataset were 155 and
480 minutes, respectively.

Table 4 shows the effect of the data augmentation on
the performance of the framework. The results obtained
are reported for both 2D CNNs. The purpose is to see
the effect of increasing number of data samples by
augmentation on the model accuracy.
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Table 4. . Mean and standard deviation of accuracy
and recall. T1 and T2 represent the training and
testing times, respectively. std: standard deviation.

VIVA Dataset

CNN type Accuracy std Recall std A T2
(min)  (sec)
GoogleNet 725 61 665 65 480 5
AlexNet 70.5 7 63.5 7 155 35
Cambridge Dataset
GoogleNet 77 2.3 69 24 365 5
AlexNet 75 25 65 25 102 35

Table 5. Effect of data augmentation on
classification accuracy. *-' Means that none of the data
augmentation functions are applied. Augl includes
frame reversing, translation, and rotation. Aug2
includes random crop, fixed-pattern drop, and
random-pattern drop. ‘+’ means that both
augmentations are applied simultaneously.

VIVA Dataset

CNN type No
augmentation Augl Aug2 Augl+Aug?
GoogleNet 54.4 63.1 68.8 725
AlexNet 54 60.3 67.9 70.5
Cambridge Dataset
GoogleNet 63.6 69.9 735 77
AlexNet 62.8 67.6 71.4 75

Table 6. Effect of gradient and differentiation layer
on VIVA dataset.

Network Measure - Grad Diff Grad+Diff

GoogleNet 63.5 70 66 725
AlexNet  "U%Y 606 69 641 705

GoogleNet Recall 50 64.2 53 66.5
AlexNet 49 59.8 53 63.5

Table 7. Comparison between 2D model and 3D
model results. t1 and t2 represent the training and
testing times

VIVA Dataset

CNNTYPe  Accuracy  Recall  Ti(min)  T2(sec)
GoogleNet 725 66.5 480 5
AlexNet 70.5 63.5 155 35
Cc3D 68 63 560 55
LRN 69 64 490 4
Cambridge Dataset
GoogleNet 77 69 365 5
AlexNet 75 65 102 35
Cc3D 72 66 569 55
LRN 70 65.6 404 4

Moreover, with grouping of the augmentation methods,
we can compare the methods that alter pixel values
(Aug2) with those that just shift pixels without
alteration (Augl). As it can be seen in this Table 5, the
outcome of GoogleNet is more affected by data

augmentation compared with that of AlexNet. By
applying augmentation, GoogleNet and AlexNet
accuracies, respectively, improved 18.1% and 16.5%
on the VIVA dataset. In addition, the results show that
in both cases, Aug2 methods have a major effect on
accuracy compared with the Augl methods.

The next evaluation was on the effect of the gradient
and differentiation layer. As we mentioned earlier, this
layer is added to make model more robust against
illumination conditions and also for background
removal.

As shown in Table 6, this layer has a considerable effect
on the model in terms of accuracy and recall. The
illumination condition is more realistic and challenging
in the VIV A dataset, and the background of the videos
iS noisier. Moreover, it contains more distinct
illumination types than the Cambridge dataset. So
VIVA dataset is sufficient to evaluate the performance
of this layer. Table 7 compares the results of the
absence and presence of this layer.

One adjustable parameter of this layer is the distance
between the frames that are differentiated. Figure 5
illustrates the diagram of the distance (d) versus mean
accuracy. The best results are achieved with d =1 and
d = 2. As space increases, the logical connection
between the frames decreases.

In the first fusion stage (i.e. early fusion), we merged
the RGB-D data into a new data frame that carry
information from both modalities as well as temporal

Mean accuracy
o o
o o

o

! 2 3Distarélce 5 6 !

Figure 5. Mean accuracy versus the distance
between the frames in differentiation layer.
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Figure 6 comparing our early fusion method vs.
interleaved RGB-D fusion introduced in [20].

order of frame sequences.
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The early and late Fusion types have been well-studied
and compared in the literature. Here, we compared the
results of our method with another early fusion scheme
used in [20]. They stacked depth frames among color
frames after normalization and before feeding to
network. Figure 6 shows the results on two 3D CNNSs.
As the results declare, in both cases, our merging
method performs better.

The proposed method enables us to exploit high-
performance 2D CNNs for video classification. These
networks are well-designed and evaluated on different
datasets, and the results are reported here.

For a fair comparison between the 2D and 3D CNNs,
we repeated all pre-processing steps, as explained
earlier, when evaluating the 3D networks. A
comparison of the results of the 2D and 3D networks is
reported in Table 7. According to these results, 2D
networks outperform 3D models in both accuracy and
time.

The proposed method uses both the 2D and 3D
networks to obtain better predictions. As illustrated in
Figure 1, final model is a two-stream architecture which
fuses predictions of 2D and 3D networks. The data
entered into these networks has passed through the
same preprocessing modules. Table 8 shows the results
of the model on both datasets.

Table 8. Results for the final two-stream method.

VIVA Dataset

Network type Accuracy Recall
fog%%j:tt 745 o8
oogleNe
{{Agﬁet 771%7 Ziz
{Agget 72.2 o
LRN
GoogleNet o Cambridge Dz;tlazet
" v
?Agget 75:8 62
LRN

Table 9. Results of different methods on VIVA Hand
Gesture Dataset

Method Accuracy (inter-subject)
LRN [26] 67
HRN [26] 68
LRN + HRN [26] 70
GoogleNet + C3D 74.5

4. Comparison with other research works

We have two considerations to make a fair comparison
between our results and the other works. Firstly, we
compare our results only with those of the other CNN-
based methods. There are some research works that
combine different techniques, such as RNNs, in order
to extract temporal features. However, the focus of our
work is on CNNs, and therefore, such works are
excluded from our comparison. Secondly, the
evaluations should be inter-subject, as we have
described earlier in this section. One of the most cited
papers with these criteria is [26]. We re-implemented
the full model of this paper with all pre-processing and
post-processing. Table 9 shows the comparing of
results.

5. Concluding discussions

In this work, we investigated the effects of 2D and 3D
convolutional neural networks on the dynamic hand
gesture recognition task. We found out that 2D CNN
could outperform 3D CNNs for learning temporal
representations, specifically for videos with tiny
movements like hand gesture dynamics. In addition, 2D
CNNs have lower time complexity compared with 3D
convolutional operations.

We mapped hand gesture videos to a 2D tiled pattern of
temporally-ordered non-overlapping frames. This data
was used to train well-known and efficient CNNs like
GoogleNet and AlexNet. We also proposed two types
of fusion in this paper, i.e. an early fusion for
combining depth and color modalities and a late fusion
to merge predictions of 2D and 3D CNNSs. We also used
gradient of images and differentiated consecutive
frames to make the model robust against cluttered
background and illumination conditions.

VIVA and Cambridge hand gesture datasets were used
to evaluate our method. Since hand gesture datasets are
small with a limited number of data samples, we
applied two groups of data augmentation methods on
them. The augmentation methods in the first group just
shift or rotate images in different directions, and the
ones in the second group modify some pixels.

As it can be observed in Table 3, standard deviation of
accuracies for different subjects is low for both
datasets, and it shows that the model is robust against
subject variation. Standard deviation for VIVA is
greater than that of Cambridge dataset. This is because
of two reasons: first, the number of subjects is much
more than that of the Cambridge dataset, and secondly,
as it has been mentioned before, in the VIV A dataset,
every subject has performed gestures in a different
illumination condition. Thus it is probable that the
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model does not have enough samples of specific
illumination criteria during training, and hence, would
not learn them properly. This is not the case for the
Cambridge dataset, in which videos with different
illumination conditions are included for all subjects.
Moreover, the results obtained confirm that the
proposed method to use 2D CNNSs, outperforms the
case of using 3D CNNs like C3D. According to Table
7, using the proposed framework, GoogleNet achieved
an accuracy of 72.5% against C3D model with 68% and
LRN with 69% accuracy on VIVA dataset. The 2D
method, mapped videos into a 2D space so that
temporal deviations are depicted as objects in an image.
Furthermore, deviations of temporal order are
considered. The results obtained show that while 3D
CNNs extract temporal features through convolution
over time axis, 2D method perform better for cases like
dynamic hand gestures with tiny movements.

The results in Table 7 also show that, 2D CNNs are
faster than 3D CNNs in both training and testing. Even
GoogleNet that is a very deep network, trained about 80
minutes quicker than C3D. This is because 3D
convolution is much more time-consuming than 2D
convolution. In fact, as we mentioned earlier, 2D
convolution time complexity is OW xH xmxn),

while for 3D convolution, time complexity is
OW xH xLxmxnxt).

The gradient and differentiation layer we added to our
framework has a great impact on the results. This layer
improved accuracy for both GoogleNet and AlexNet by
roughly 10%, according to Table 6. Also the
augmentation layer tuned CNNs better with more
samples. The results in Table 5 showed that, those type
of augmentations that alter pixel values performed
better than augmentations that just shifted pixels. The
outcome of GoogleNet is more affected by data
augmentation than that of AlexNet. GoogleNet is a
multi-column CNN, which has a much deeper
architecture than AlexNet. However, the number of
learnable parameters in GoogleNet is much fewer than
that of AlexNet (12 times fewer parameter [19]). This
means that, while GoogleNet has fewer learnable
parameters because of its architecture, it is more
effected by augmentation than AlexNet.

Finally, we merged both 2D and 3D networks to
reinforce predictions. We got at max 2.5%
improvement in accuracy by merging 2D and 3D CNNs
predictions compared to their separate predictions. Our
final structure that is a two-stage two-stream
architecture improved accuracy of recognition on
Cambridge HGD by %1.5 and VIVA HGD by 2.5%.

A natural direction for future work is to investigate new
2D CNNs that have been introduced recently, e.g.
DenseNet and inception-v4. DenseNet is a compact 2D
CNN that can improve train and test times significantly.
Moreover, Inception-v4 was more optimized than
version 2 of GoogleNet that we used in this work and
could improve its accuracy.
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