

Journal of AI and Data Mining

Vol 8, No 2, 2020, 177-188. DOI: 10.22044/JADM.2019.7903.1929

 Hand Gesture Recognition from RGB-D Data using 2D and 3D

Convolutional Neural Networks: a comparative study

M. Kurmanji and F. Ghaderi*

Human Computer Interaction Lab., Electrical and Computer Engineering Department, Tarbiat Modares University, Tehran, Iran.

Received 26 December 2018; Revised 09 April 2019; Accepted 16 June 2019

*Corresponding author: fghaderi@modares.ac.ir (F. Ghaderi).

Abstract

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in

the classification of hand gestures in videos. The latter comes with more challenges including higher computational

complexity and arduous task of representing temporal features. Hand movement dynamics, represented by

temporal features, have to be extracted by analyzing the total frames of a video. So far, both the 2D and 3D

convolutional neural networks (CNNs) have been used to manipulate the temporal dynamics of the video frames.

3D CNNs can extract the changes in the consecutive frames and tend to be more suitable for the video classification

task; however, they usually need more time. On the other hand, using techniques like tiling, it is possible to

aggregate all the frames in a single matrix and preserve the temporal and spatial features. This way, using 2D

CNNs, which are inherently simpler than 3D CNNs, can be used to classify the video instances. In this paper, we

compare the application of 2D and 3D CNNs for representing temporal features and classifying hand gesture

sequences. Additionally, providing a two-stage two-stream architecture, we efficiently combined color and depth

modalities and 2D and 3D CNN predictions. The effects of different types of augmentation techniques are also

investigated. The results obtained confirm that an appropriate usage of 2D CNNs outperforms a 3D CNN

implementation in this task.

Keywords: Convolutional Neural Networks, Deep Learning, Hand Gesture Recognition, Video Classification.

1. Introduction

As a new approach to design human computer

interfaces, hand gesture recognition (HGR) has

attracted the attention of many researchers in the recent

years. Some potential applications include touch-less

control for TVs and computers, robot control,

augmented and virtual reality systems, and sign

language translation [1]. In general, hand gestures are

categorized into static and dynamic poses of human

hand. Dynamic gestures are those that run continuously

over time [2]. Recognition of hand gestures, especially

dynamic gestures, can be a challenging task due to the

followings reasons: cluttered background, tiny finger

movements, fast hand movements, different hand

shapes and skin colors, different illumination settings,

and high number of gestures [3-5]. The last challenge

would dramatically increase the training time and

decrease the recognition accuracy in a learning system

[6,7].

http://dx.doi.org/10.22044/jadm.2018.6311.1746

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

178

Many efforts have been made in the last two decades to

overcome these challenges and improve HGR systems.

These efforts can be divided into two general

categories. Methods in the first group use wearable

devices to track hand parts, while the methods in the

second group only use the computer vision techniques

[7]. Wearable devices can improve segmentation of

hand in pictures and also help to better recognize

dynamics of hands. This will lead to an absolute and

fast feature extraction. However, due to the lack of

convenience, these class of methods are not popular [8].

In the recent years, many vision-based methods have

been proposed. In [9], a number of descriptors for joints

are defined that represent hand state, and the aim is to

learn these descriptors. Different feature vectors are

used in these methods. In [10], a specific gesture is

defined through a set of special-temporal descriptors.

Elmezian et al. [11] extracted a feature vector, which

was composed of geometric and physical

characteristics of hand motions. Hosseini and

Hassanian in [12] used a motion detection approach

together with a mean shift method to track hand and

recognize gestures in sign language. The SIFT and

SUFT algorithms are also widely used for extracting

the key points of frames. Dandu et al. [13] have used

Local Histogram Features Descriptor, being also

popular in other fields of image processing. To learn

these feature vectors, many machine learning

algorithms have been used, from which HMM [14],

artificial neural networks [15], and SVM [16] are the

most popular ones. Nachiket et al. [17] explored Hidden

Markov models as an approach for modeling and

recognizing dynamic hand gestures. They used two

types of features, HOG and CNN, to train Markov

modelsو and resulted that CNN features better

represented hand shape features than HOG features.

In the last few years, deep learning algorithms, and in

particular, Convolutional Neural Networks (CNNs),

have revolutionized the signal processing field. Their

most significant usage was in image processing

problems. CNNs extract valuable features through

consecutive convolution and max-pooling layers.

These features can better represent images compared to

the hand-crafted features in traditional methods, and are

very useful in various tasks. Mahmoudi et al. [18]

perfectly used CNN-based features in a multi-target

tracking problem for pedestrian tracking. A successful

example is GoogleNet, a very deep multi-column

architecture [19], which yielded unprecedented results

in ImageNet challenge.

In order to reduce the training time, the researchers

suggested shallow CNNs, e.g. AlexNet [20]. Despite

the achieved saving in time, this shallow networks yield

reasonable results in classifications tasks.

Convolutional neural networks are also useful for

video classification tasks and the most popular

architecture for this application is 3D CNN [21]. Zhi et

al. investigated 3D sequences to learn spatio-temporal

features of human actions from depth sequences [22].

They used features from joint descriptions together

with features from 3D CNN to do a classification of

human actions using a SVM classifier. Necati et al. [23]

used a multi-stream 3D CNN fused with a majority

voting approach to predict human gestures from raw

video data.

On the other hand, using depth modality together with

color data, one can improve the performance of the

HGR systems. Many efforts to fuse these modalities

and take advantage of the information contents of both

data channels have been reported [24] [25] [26]. Moeini

et al. [27], after a process of extracting features, fused

texture and depth feature vectors to train an SVM. Saba

et al. [28] provided rich features by segmenting hand

shape in images to learning algorithms. The authors in

[29] have effectively joined depth and color data

through a deep convolutional neural network to detect

Figure 1. Block diagram of the proposed method. Input is the RGB and depth modalities of hand gesture videos, and the

output is the predicted label. The following modules are used in the framework. NNI: Nearest Neighbor Interpolation, to fix

video lengths; Aug: Data Augmentation. Binarize layer generates a binary image from depth data. Grad. Layer calculates

Gradient from intensity channel of color data using Canny operator, Tiling, generates a 2D pattern from sequence of video

frames.

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

179

20 gestures of Italian sign language. In [30], the authors

detected body gestures by learning joint representations

through a multi-stream multi-scale CNN. Malchanov et

al. [26] ranked first in the VIVA hand gesture

recognition challenge using a two-stream 3D CNN.

Each stream had a different resolution. Multi-stream

architectures have shown promising outcomes,

especially in video classifications. This class of

architectures helps to find more features in videos and

create more stable models. In [31], different types of

feature fusion in multi-stream architectures have been

investigated. The most used fusion types are late fusion,

early fusion, and slow fusion.

 Dynamic hand gesture recognition is a special case of

video classification. An important issue to be

considered when analyzing dynamic gestures is the

inclusion of temporal evolution of the gestures.

Temporal features represent hand dynamics, and are

substantial to recognize hand movements in video. It

seems that 3D convolutional filters are suitable for

extracting these features [26] by doing convolution

along time axis. However, these filters may not perform

well on videos with tiny movements of objects, e.g.

hand gesture videos. Furthermore, 3D convolutions are

time-consuming. Given a 2D filter of size m n , the

complexity of applying this filter to an image of size

W H is of order ()O W H m n   . For a 3D input

image of size m n t  and 3D filter of size W H L 

, convolution operation is of order

()O W H L m n t     .Researchers also exploited

Deep Recurrent Neural Networks to deal with temporal

features in hand gesture recognition tasks [32] [33]. Ce

Li et al. [34] integrated a bidirectional LSTM network

and a bidirectional Gated Recurrent network with

Fisher criterion to create discriminative models to

detect hand gestures. Vijay et al. [35] used a

decovolutional neural network to select representative

frames from multi-frames of a hand gesture video and

then trained a long-term recurrent network using these

representative frames. Malchanov et al. [36] created a

recurrent neural network with 3D CNNs to classify

hand gestures. They used a connectionist temporal

classification to train their model and fuse multiple

RRNs.

In this paper, we compared the effectiveness of learning

temporal representation of hand gestures using 2D and

3D CNNs. To this end, a pipeline for processing depth

and color data was processed. This processing includes

several steps to overcome overfitting and illumination

condition. The color and depth stream are then

combined into a new data frame carrying information

from both modalities. 2D CNNs that performed well in

image classification problem are also used in our

proposed method for classification task. The results

obtained show that this method improves recognition

accuracy and also decreases train and recognition times

compared to the 3D models. To keep advantages of

both sides, we included another step of fusion by which

we combined results of 2D and 3D models in parallel

to provide final predictions.

The proposed pipeline includes preprocessing steps

such as large scale data augmentation. Moreover,

Canny operator and normalization techniques are

applied to enhance the prediction quality.

The contributions of this work are as follow:

a. We showed that 2D CNNs could perform better than

3D CNNs for video classification of hand gestures in

terms of classification performance and time

complexity.

b. We introduced a new video representation by fusing

color and depth modalities and making it suitable for

training regular 2D CNNs.

The structure of this paper is as what follows. In

Section 0 we describe the classification framework and

the details of the proposed framework for video

classification. In Sections 2 and 3 the proposed

structure is validated and the results are reported. The

concluding discussions are presented in Section 0.

2. Proposed method

The block diagram of Figure 1 illustrates the process

flow of the proposed framework. The inputs are color

and depth modalities of hand movement videos, and the

objective is to assign a label to each input sample

specifying the hand gesture class. The learning

framework has two fusion stages, i.e. early fusion and

late fusion. The details of the stages are as what

follows:

A. Early fusion stage:

The purpose of the early fusion stage is to combine

depth and color modalities. This stage has two separate

flows for each data modality. The input to the upper

flow in Figure 1 is n frames of depth data relating to

video sample 𝑠𝑖. These frames could be gray scale

images, as in the case of VIVA dataset or depth maps.

The input to the lower flow is n frames of color data

relating to sample 𝑠𝑖.
For the sake of increasing performance, some pre-

processing steps were applied to the images before

merging them. The pre-processing steps includes a:

normalization of the video length, b: data

augmentation, c: calculating gradient of color images,

and d: binarizing depth images. For datasets that lack

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

180

the depth modality, we simply ignore depth processing

flow and early fusion. The details of the steps are as

follows:

a: Since we used well-known CNNs with pre-defined

structures, the lengths of all videos were fixed to 32

frames for VIVA dataset and 16 frames for Cambridge

HGD. We fixed video lengths using the Nearest

Neighbors Interpolation.

b: In this research work, several data augmentation

techniques are used, i.e. 1) reversing video frames, 2)

translation, 3) rotation, 4) random crop, 5) fixed-pattern

drop [26], 6) random-pattern drop [26]. For translation

augmentation, we translated all frames of video ±8

pixels horizontally and ±6 pixels vertically. For rotation

augmentation, we rotated videos by ±10 degrees around

the central point. For random crop, we used two random

windows of different sizes to crop videos. The drop

augmentation (5 and 6 above) is such that 𝑝 = 50% of

pixels of each frame is randomly dropped to zero. In

fixed-pattern drop, the pixels are randomly selected

first and their values are dropped to zero for all frames

of the video, while in random-pattern drop

augmentation, the dropped pixels are randomly selected

for each individual frame. Figure 2 illustrates

augmentation of one single frame in a video. For the

sake of more convenient evaluation and considering the

effects of different augmentation methods on the

results, we divided the augmentation methods into two

groups, namely 1 to 3 (of the above augmentation

methods) into one group and the rest into the second

group. We call the first group Aug1 and the second one

Aug2.

c: we used gradient of image sequences. We computed

contours of hand shape from intensity channel using

Canny operator of size 3 3 pixel with 0.33  .

Afterwards, for each frame i, we subtracted ith frame

from frame, where ()i d L  , and L is the length of

the video. These two will make the model more robust

against different illumination conditions and also

cluttered background. It is worth mentioning that we

did not perform any normalization on image channels.

d: In the case of depth modality presence, we mapped

the depth information to a binary image by applying a

threshold to the depth images.

We use the RGB data format to merge the depth and

color images into a single structure by placing intensity

channel of the color image and the binarized image of

depth in the first and second channels, respectively. The

third channel is filled with the indices of the frames in

the frame sequence. As far as we know, it is the first

time that depth and color modalities are merged in this

way.

If we define an input as W H n C   , where W, H, n

and C are width, height, number of frames, and number

of channels respectively, in the case of VIVA dataset,

the input to the depth and color flows are of size

57 125 1n   , where n varies for different video

samples, and the inputs to early fusion layer are of size

32 32 32 1   and the output of this layer is of size

32 32 32 3   . In the case of Cambridge dataset, the

input to color flow is of size 20 20 20 3   and the

output after preprocessing is of size 20 20 16 3   . As

the CNN models we used in these paper expect 3

channels for input images, for Cambridge dataset that

lacks depth information, we used the gradient value of

each pixel of the frame in the 2nd channel of the RGB

data structure.

B. Late fusion stage:

The purpose of the late fusion stage is to exploit the

extracted features from both the 2D and 3D CNNs. In

the case of dynamic hand gestures, which sometimes

include small finger movements, retaining the precise

ordering of these movements is necessary to achieve a

correct prediction. 3D networks learn temporal features

by performing convolution and max-pooling operations

in the direction of the time axis. Figure 3 shows the

difference between 2D and 3D convolutional filters. As

it can be seen in this figure, applying a 2D filter to a

single frame (Figure 3.a) or a 3D filter with the depth

equal to the number of stacked frames on all the frames

(Figure 3.b.), would result in a 2D output.

a b

c d

e f
Figure 2. Data augmentation, a) original image, b)

translation, c) rotation, d) random crop, e) fixed-pattern

drop, and f) random-pattern drop.

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

181

That means 2D filters discard the temporal information

at the first layer [21]. In this type of networks, the

output value corresponding to the point (,)x y in the

jth feature map at the ith layer of network can be

calculated as follows [37]:

11

(,) ()()
(,) (1)

0 0

()

ji
QP

x y pq x p y q
ij ijmi j i m

m p q

v tanh b w v


 


 

   (1)

where, 𝑡𝑎𝑛ℎ(∙) is the hyperbolic tangent used as the

activation function and bij is the bias corresponding to

the jth feature map at ith layer. m indicates the feature

map in the previous layer ((1)i th layer), which is

connected to the current (jth) feature map. Convolution

Filter at the ith layer is of size
i i

P Q , and
pq

ijm
W is the

weight of the filter maps at layer 𝑖 connected to the

point (,)p q . In 3D networks, however, given an input

of shape H W C L   , where W, H, C and L are

width, height, number of channels, and length of the

video (in terms of frames), respectively, by applying a

3D convolution filter with depth of l, where l L , the

output will be a 3D volume conveying temporal

features on 3rd dimension, as shown in Figure 3.c.

Therefore, applying 3D max-pooling and 3D

convolutional filters will retain temporal information at

the subsequent layers. In this case, the output volume at

ith layer and jth feature map corresponding to the point

(, ,)x y z will be as follows [37]:

1 1 1
(, ,) ()()()

(.) (1)

1 0 0

()
i i iP Q R

x y z pqr x p y q z r

i j ij ijm i m

m p q r

v tanh b w v

  
  



  

    (2)

where, Ri is the depth of convolution filter at the ith

layer. However, temporal features obtained by 3D

convolutional filters may not be appropriate for

representing a displacement. Displacement in video

appears as special differences in consecutive frames. In

videos with shorter lengths, just like hand gestures,

there are very tiny displacements in the subsequent

frames, and this makes it difficult to detect

displacements for temporal filters.

Considering the pros and cons of 2D and 3D

convolution networks for our application, two different

approaches were used in the final classification stage.

3D CNN: as discussed and can be seen in Figure 3.c,

3D networks can extract temporal features by sliding

convolution filter, across the time axis. In the case of

hand gesture videos, this feature would be useful

especially for those gestures with simple hand

movement.

2D CNN: Considering the high computational cost of

3D CNN from one hand and the promising performance

of the 2D CNN architectures, we also used the latter in

our framework. In order to use these networks, we had

to change the structure of the input data and tile the

frames to make a single 2D frame. In the next sub-

section, we describe the details of the proposed method

to use 2D CNNs for classification of hand gesture

videos.

Video classification using 2D CNNs:

In our proposed method, representation of videos that

include temporal data is learned using famous 2D

CNNs like GoogleNet [19] and AlexNet [20]. We use a

2D pattern to represent a video. This pattern is so that

all frames of video keep together in a tiled, ordered, and

non-overlapping pattern to form a single image. To

create such a tiled pattern, for every video of size L

frames with each frame of size m n , frames are

arranged in a row-major manner to form a matrix of size

L
w m n

w
   , where, every w L frames make one

row. The mentioned parameters should be set in a way

that satisfies restrictions of the used 2D CNN. In the

constructed matrix, the element (frame) at location

(,)i j is the [(1)]i w m j th    frame in the video.

An important issue to be considered when

concatenating the frames is the effect of discontinuity

of boundary pixels in the adjacent frames on the

convolved images. This phenomenon causes two

a b c

Figure 3. Graphical illustration of the effects of 2D and 3D convolutions on 2D (images) and 3D (videos) input data. a)

2D input and 2D convolution b) 3D input and 2D convolution c) 3D input and 3D convolution [21]. W, H, and L are width,

height and length (number of frames) of the input data, respectively. Size of the 2D Convolutional filter is k×k and the 3D

filter is of size k×k×d, where d corresponds to the depth of the filter.

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

182

problems. firstly, areas near the common border of any

two adjacent frames in the tiled pattern may have

different colors or intensities. These differences are

mis-leading for convolutional filters and make them

learn the differences as a new edge or pattern while

these regions are not logically relevant. Moreover, in

some cases, two adjacent frames are not consecutive in

time (for example, the jth frame in the ith row and the

jth frame in the (1)i th row). To avoid these two

problems, we simply added a padding area around any

frame before putting it in the tiled pattern. The size of

the padding must be greater or equal to the half size of

the largest filter in the first layer of CNN. Figure 4

shows a tiled pattern for a video of hand gesture. The

constructing frames of this image have been generated

by the Binarized depth frames.

In 3D cases, convolution filters first move in the time

axis direction and then move horizontally or vertically.

Thus a filter looks at a 2D sub-space of video and traces

its changes in time and repeats this to cover the whole

video, while in the 2D cases, convolution filters move

on the images in a row-wise manner. On the other hand,

when we do tile mapping on video frames, every

gesture is turned to /L w sub-gestures (every w gesture

in one row). Thus the convolutional filters see sub-

gestures that are temporally ordered. In this method,

temporal data appears as ordered patterns in frames. In

fact, time component is mapped into a 2D space.

C. Classification

We used the predictions of both 3D and 2D networks to

improve the accuracy. For this, we trained two CNNs

in parallel and separately. We optimized a separate loss

function for each one of these networks, and while

predicting labels of one video, we used element-wise

product of the predictions as the final prediction. Given

2 (|)dP C x
ur

 and 3 (|)dP C x
ur

 as output predictions of 2D

CNN and 3D CNN, respectively. Equations (3) to (6)

show how we fused them. This fusion happens in the

Late Fusion Layer as in Figure 1. This is the last layer

of model that outputs predictions. (|)newP C x
ur

is the

new prediction vector:

()

2
()

(|) ())

1, ,

i i

d

j

j j

e
P C i softmax

e

for i k




  




K

ur w x b

w x b
x,W,b W.x + b

 (3)

()

3
()

(|) ())

 1, ,

d

j

e
p C i softmax

e

for i k

  




K

r w x+b
i i

w x+b
j j

x,W,b W.x + b
 (4)

3 2
1

(|)

(|) (|) , ,

new

d d

p C i

p C i p C i for i k

 

    K

r

r r
x,W,b

x,W,b x,W,b

 (5)

argmax (| , ,) 1 , , predict iC P C i for ki   Kx w b (6)

where,  is the element-wise product, k is the number

of labels. x is the input video, and C represents different

possible k classes. W and b are weights and biases of

the last layer, respectively. The probability that the

input video is classified as class i is returned by 𝑝[𝑖].
In order to use the full advantages of 2D networks, we

used two well-known CNNs, AlexNet and GoogleNet.

These two networks are trained with the same

configuration, summarized in Table 1. It is worth

mentioning that here, the 2nd version of GoogleNet, i.e.

inception_v2, is used. The optimization procedure

consists of updating network weights W through

minimizing a cost function over a dataset D. To this

end, CrossEntropy cost function is used.

1

1
log(| ,)

D

n n

n

E p l
D




  w (7)

where, nl is the true label of sample n. Optimization is

done through stochastic gradient descent on mini-

batches of size 30. Here, we used Nesterov accelerated

gradients (NAGs) to update network weights W at

each iteration using (8).

1 1
, ,

1
i i i i i i i

i batch

v v w w w w

w


  


 

     



L

 (8)

where,  is the learning rate,  is the momentum,

i
w is the average gradient of cost function over all

samples in a batch, and
i

v is the new weight. All the

convolutional layers of CNNs are initialized with

Xavier with a variance of 0.001. For each layer, Xavier

Figure 4. A sample tiled pattern. Each row presents

a sub-gesture. There is a zero padding between each

two adjacent rows.

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

183

selects values from a zero-mean Gaussian distribution

with a fixed variance. For 3D models, C3D and Low

Resolution Network (LRN) [26] models were used.

Again, these two networks are trained under the same

configuration, as in Table 2. In order to avoid

overfitting, we exploited two techniques in all models:

drop-out for the last fully connected layers of CNNs

and data augmentation.

2. Experiments

D. Datasets

For evaluating the proposed method, we used two

different datasets: VIVA HGD [6] and Cambridge

HGD [38]. These datasets have two challenging

attributes in common. First, gestures are performed by

different people. Secondly, the sample videos are

recorded under different illumination conditions. This

enables us to evaluate the robustness of the trained

method against subject and illumination variations.

VIVA HGD is a video dataset of hand gestures. This

dataset is designed and captured in order to facilitate

research work for automatic interpretation of manual

control commands issued by people inside Vehicles.

This dataset consists of 32 different gestures, among

which 19 gestures are considered for this challenge.

Gestures are performed by 8 different subjects while

sitting on the driver or the front passenger seats. Each

one of the subjects performed their gestures under

different illumination conditions. Videos of hand

gestures are grayscale, and there is a depth video

corresponding to each gesture. This dataset consists of

885 samples of hand gestures including color and depth

measurements for each.

Cambridge HGD consists of 900 videos of 9 different

gestures performed by 2 different subjects. These

gestures are a combination of 3 primitive hand

movements and 3 basic postures. Movements are

labeled rightward, leftward, and contract and postures

are labeled flat, spread, and V-shape. Unlike VIVA

HGD, this dataset does not contain depth information.

Gestures are performed under 5 different illumination

conditions, and images are in the RGB format.

E. Experimental setup

We used CAFFE framework for our modeling. For 2D

Networks, we used the main version of CAFFE [39],

and for 3D Networks, we used VIDEO_CAFFE [40]

and C3D CAFFE [21]. All libraries were used on a

machine with an Intel Core i7 CPU, 16 GB RAM and

Ubuntu 14.04 OS installed. We trained our networks on

a NVIDIA GTX 1070 GPU.

3. Results

For evaluation, we used leave-one-subject-out-cross-

validation. This way, video samples of one subject

would be kept for test, while the other subject’s samples

are used to train models. This has been repeated for all

subjects and mean, and standard deviation of accuracies

are reported.

At first, we evaluated the 2D structure. For this purpose,

the 3D and the late fusion modules are discarded from

the framework. Considering the fact that the Cambridge

HGD dataset lacks the depth information, we just used

color data, and hence, the depth stream of Figure 1 is

not included. Table 3 shows the results for 2D

Networks. For both datasets, GoogleNet performed

better than AlexNet by 2% in accuracy. On the other

hand, AlexNet requires less train and test time due to its

shallower architecture. The AlexNet and GoogleNet

convergence times for the VIVA dataset were 155 and

480 minutes, respectively.

Table 4 shows the effect of the data augmentation on

the performance of the framework. The results obtained

are reported for both 2D CNNs. The purpose is to see

the effect of increasing number of data samples by

augmentation on the model accuracy.

Table 1. Configuration of 2D CNN’s. Moment:

momentum, acc: accumulation, lr: learning rate. O:

Optimizer, Es: Epoc step, Mo: Moment, Bs: Batch

size, Bc: Batch Acc, Nes: Nesterov

Max

epoch

s

O Es. Mo. Bc. Bs. Lr.

200 Nes. 10 0.9 2 25 10−2

Table 2. Configuration of 3D networks.

Max

epochs O Es. M Bc. Bs. Lr

200 SGD 10 0.9 2 25 10−3

Table 3. Mean and standard deviation of

accuracy and recall. T1 and T2 represent the

training and testing times, respectively. std:

standard deviation.

CNN type
VIVA Dataset

Accuracy std Recall std T1

(min)
T2

(sec)
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 72.5 6.1 66.5 6.5 480 5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 70.5 7 63.5 7 155 3.5

 Cambridge Dataset

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 77 2.3 69 2.4 365 5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 75 2.5 65 2.5 102 3.5

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

184

Moreover, with grouping of the augmentation methods,

we can compare the methods that alter pixel values

(Aug2) with those that just shift pixels without

alteration (Aug1). As it can be seen in this Table 5, the

outcome of GoogleNet is more affected by data

augmentation compared with that of AlexNet. By

applying augmentation, GoogleNet and AlexNet

accuracies, respectively, improved 18.1% and 16.5%

on the VIVA dataset. In addition, the results show that

in both cases, Aug2 methods have a major effect on

accuracy compared with the Aug1 methods.

The next evaluation was on the effect of the gradient

and differentiation layer. As we mentioned earlier, this

layer is added to make model more robust against

illumination conditions and also for background

removal.

As shown in Table 6, this layer has a considerable effect

on the model in terms of accuracy and recall. The

illumination condition is more realistic and challenging

in the VIVA dataset, and the background of the videos

is noisier. Moreover, it contains more distinct

illumination types than the Cambridge dataset. So

VIVA dataset is sufficient to evaluate the performance

of this layer. Table 7 compares the results of the

absence and presence of this layer.

One adjustable parameter of this layer is the distance

between the frames that are differentiated. Figure 5

illustrates the diagram of the distance (d) versus mean

accuracy. The best results are achieved with d = 1 and

d = 2. As space increases, the logical connection

between the frames decreases.

In the first fusion stage (i.e. early fusion), we merged

the RGB-D data into a new data frame that carry

information from both modalities as well as temporal

order of frame sequences.

Figure 5. Mean accuracy versus the distance

between the frames in differentiation layer.

Figure 6 comparing our early fusion method vs.

interleaved RGB-D fusion introduced in [20].

0

50

100

1 2 3 4 5 6 7 8

M
ea

n
 a

cc
u

ra
cy

Distance

60

62

64

66

68

70

C3D LRN

A
cc

u
ra

cy

our RGB-D fusion method Interleaved

Table 4. . Mean and standard deviation of accuracy

and recall. T1 and T2 represent the training and

testing times, respectively. std: standard deviation.

CNN type
VIVA Dataset

Accuracy std Recall std T1
(min)

T2
(sec)

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 72.5 6.1 66.5 6.5 480 5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 70.5 7 63.5 7 155 3.5

 Cambridge Dataset

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 77 2.3 69 2.4 365 5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 75 2.5 65 2.5 102 3.5

Table 5. Effect of data augmentation on

classification accuracy. '-' Means that none of the data

augmentation functions are applied. Aug1 includes

frame reversing, translation, and rotation. Aug2

includes random crop, fixed-pattern drop, and

random-pattern drop. ‘+’ means that both

augmentations are applied simultaneously.

CNN type
VIVA Dataset

No
augmentation Aug1 Aug2 Aug1+Aug2

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 54.4 63.1 68.8 72.5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 54 60.3 67.9 70.5

 Cambridge Dataset
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 63.6 69.9 73.5 77
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 62.8 67.6 71.4 75

Table 6. Effect of gradient and differentiation layer

on VIVA dataset.

Network Measure - Grad Diff Grad+Diff
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

Accuracy
63.5 70 66 72.5

𝐀𝐥𝐞𝐱𝐍𝐞𝐭 60.6 69 64.1 70.5
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

Recall
50 64.2 53 66.5

𝐀𝐥𝐞𝐱𝐍𝐞𝐭 49 59.8 53 63.5

Table 7. Comparison between 2D model and 3D

model results. t1 and t2 represent the training and

testing times

CNN type VIVA Dataset
Accuracy Recall T1(min) T2(sec)

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 72.5 66.5 480 5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 70.5 63.5 155 3.5
𝐂𝟑𝐃 68 63 560 5.5
𝐋𝐑𝐍 69 64 490 4

 Cambridge Dataset

𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭 77 69 365 5
𝐀𝐥𝐞𝐱𝐍𝐞𝐭 75 65 102 3.5
𝐂𝟑𝐃 72 66 569 5.5
𝐋𝐑𝐍 70 65.6 404 4

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

185

The early and late Fusion types have been well-studied

and compared in the literature. Here, we compared the

results of our method with another early fusion scheme

used in [20]. They stacked depth frames among color

frames after normalization and before feeding to

network. Figure 6 shows the results on two 3D CNNs.

As the results declare, in both cases, our merging

method performs better.

The proposed method enables us to exploit high-

performance 2D CNNs for video classification. These

networks are well-designed and evaluated on different

datasets, and the results are reported here.

For a fair comparison between the 2D and 3D CNNs,

we repeated all pre-processing steps, as explained

earlier, when evaluating the 3D networks. A

comparison of the results of the 2D and 3D networks is

reported in Table 7. According to these results, 2D

networks outperform 3D models in both accuracy and

time.

The proposed method uses both the 2D and 3D

networks to obtain better predictions. As illustrated in

Figure 1, final model is a two-stream architecture which

fuses predictions of 2D and 3D networks. The data

entered into these networks has passed through the

same preprocessing modules. Table 8 shows the results

of the model on both datasets.

4. Comparison with other research works

We have two considerations to make a fair comparison

between our results and the other works. Firstly, we

compare our results only with those of the other CNN-

based methods. There are some research works that

combine different techniques, such as RNNs, in order

to extract temporal features. However, the focus of our

work is on CNNs, and therefore, such works are

excluded from our comparison. Secondly, the

evaluations should be inter-subject, as we have

described earlier in this section. One of the most cited

papers with these criteria is [26]. We re-implemented

the full model of this paper with all pre-processing and

post-processing. Table 9 shows the comparing of

results.

5. Concluding discussions

In this work, we investigated the effects of 2D and 3D

convolutional neural networks on the dynamic hand

gesture recognition task. We found out that 2D CNN

could outperform 3D CNNs for learning temporal

representations, specifically for videos with tiny

movements like hand gesture dynamics. In addition, 2D

CNNs have lower time complexity compared with 3D

convolutional operations.

We mapped hand gesture videos to a 2D tiled pattern of

temporally-ordered non-overlapping frames. This data

was used to train well-known and efficient CNNs like

GoogleNet and AlexNet. We also proposed two types

of fusion in this paper, i.e. an early fusion for

combining depth and color modalities and a late fusion

to merge predictions of 2D and 3D CNNs. We also used

gradient of images and differentiated consecutive

frames to make the model robust against cluttered

background and illumination conditions.

VIVA and Cambridge hand gesture datasets were used

to evaluate our method. Since hand gesture datasets are

small with a limited number of data samples, we

applied two groups of data augmentation methods on

them. The augmentation methods in the first group just

shift or rotate images in different directions, and the

ones in the second group modify some pixels.

As it can be observed in Table 3, standard deviation of

accuracies for different subjects is low for both

datasets, and it shows that the model is robust against

subject variation. Standard deviation for VIVA is

greater than that of Cambridge dataset. This is because

of two reasons: first, the number of subjects is much

more than that of the Cambridge dataset, and secondly,

as it has been mentioned before, in the VIVA dataset,

every subject has performed gestures in a different

illumination condition. Thus it is probable that the

Table 8. Results for the final two-stream method.

Network type VIVA Dataset
Accuracy Recall

{
𝐆𝐨𝐨𝐥𝐞𝐍𝐞𝐭

𝐂𝟑𝐃
 74.5 68

{
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

𝐋𝐑𝐍
 75 68.5

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐂𝟑𝐃

 71.7 64.9

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐋𝐑𝐍

 72.2 65
 Cambridge Dataset

{
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

𝐂𝟑𝐃
 78.5 71.5

{
𝐆𝐨𝐨𝐠𝐥𝐞𝐍𝐞𝐭

𝐋𝐑𝐍
 78 72

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐂𝟑𝐃

 75.7 67

{
𝐀𝐥𝐞𝐱𝐍𝐞𝐭
𝐋𝐑𝐍

 75.8 67.2

Table 9. Results of different methods on VIVA Hand

Gesture Dataset

Method Accuracy (inter-subject)

LRN [26] 67

HRN [26] 68

LRN + HRN [26] 70

GoogleNet + C3D 74.5

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

186

model does not have enough samples of specific

illumination criteria during training, and hence, would

not learn them properly. This is not the case for the

Cambridge dataset, in which videos with different

illumination conditions are included for all subjects.

Moreover, the results obtained confirm that the

proposed method to use 2D CNNs, outperforms the

case of using 3D CNNs like C3D. According to Table

7, using the proposed framework, GoogleNet achieved

an accuracy of 72.5% against C3D model with 68% and

LRN with 69% accuracy on VIVA dataset. The 2D

method, mapped videos into a 2D space so that

temporal deviations are depicted as objects in an image.

Furthermore, deviations of temporal order are

considered. The results obtained show that while 3D

CNNs extract temporal features through convolution

over time axis, 2D method perform better for cases like

dynamic hand gestures with tiny movements.

The results in Table 7 also show that, 2D CNNs are

faster than 3D CNNs in both training and testing. Even

GoogleNet that is a very deep network, trained about 80

minutes quicker than C3D. This is because 3D

convolution is much more time-consuming than 2D

convolution. In fact, as we mentioned earlier, 2D

convolution time complexity is ()O W H m n   ,

while for 3D convolution, time complexity is

()O W H L m n t     .

The gradient and differentiation layer we added to our

framework has a great impact on the results. This layer

improved accuracy for both GoogleNet and AlexNet by

roughly 10%, according to Table 6. Also the

augmentation layer tuned CNNs better with more

samples. The results in Table 5 showed that, those type

of augmentations that alter pixel values performed

better than augmentations that just shifted pixels. The

outcome of GoogleNet is more affected by data

augmentation than that of AlexNet. GoogleNet is a

multi-column CNN, which has a much deeper

architecture than AlexNet. However, the number of

learnable parameters in GoogleNet is much fewer than

that of AlexNet (12 times fewer parameter [19]). This

means that, while GoogleNet has fewer learnable

parameters because of its architecture, it is more

effected by augmentation than AlexNet.

Finally, we merged both 2D and 3D networks to

reinforce predictions. We got at max 2.5%

improvement in accuracy by merging 2D and 3D CNNs

predictions compared to their separate predictions. Our

final structure that is a two-stage two-stream

architecture improved accuracy of recognition on

Cambridge HGD by %1.5 and VIVA HGD by 2.5%.

A natural direction for future work is to investigate new

2D CNNs that have been introduced recently, e.g.

DenseNet and inception-v4. DenseNet is a compact 2D

CNN that can improve train and test times significantly.

Moreover, Inception-v4 was more optimized than

version 2 of GoogleNet that we used in this work and

could improve its accuracy.

References

[1] Yin, X. & Xie, M. (2001). Hand gesture segmentation,

recognition and application. Computational Intelligence in

IEEE International Symposium on Robotics and Automation

pp. 438–443.

[2] Rautaray, S. & Agrawal, A. (2015). Vision based hand

gesture recognition for human computer interaction: a

survey. Artif. Intell. Rev., vol. 43, no. 1, pp. 1–54.

[3] Ren, Z., Yuan, J., Meng, J. & Zhang, Z. (2013). Robust

part-based hand gesture recognition using kinect sensor,

IEEE Trans. Multimed., vol. 15, no. 5, pp. 1110–1120.

[4] A. Kulshreshth, C. Zorn, & LaViola. J. (2013), Poster:

Real-time markerless kinect based finger tracking and hand

gesture recognition for HCI, in IEEE Symposium on 3D User

Interfaces (3DUI). pp. 187–188.

[5] Hsiao, Y., Sanchez-Riera, J., Lim, T., Hua, K. & Cheng,

W. (2014). LaRED: a large RGB-D extensible hand gesture

dataset, in Proceedings of the 5th ACM Multimedia Systems

Conference. pp. 53–58.

[6] Ohn-Bar, E. & Trivedi, M. (2014). Hand gesture

recognition in real time for automotive interfaces: A

multimodal vision-based approach and evaluations. IEEE

Trans. Intell. Transp. Syst. vol. 15, no. 6, pp. 2368–2377.

[7] Yamashita, T. & Watasue, T. (2014). Hand posture

recognition based on bottom-up structured deep

convolutional neural network with curriculum learning. in

IEEE International Conference on Image Processing (ICIP).,

pp. 853–857.

[8] Yiyi, R., Xie, X., Li, G., & Wang, Z. (2016). Hand

Gesture Recognition with Multi-Scale Weighted Histogram

of Contour Direction (MSWHCD) Normalization for

Wearable Applications. IEEE Trans. Circuits Syst. Video

Technol.

[9] LaViola, J. (2014). An introduction to 3D gestural

interfaces. ACM SIGGRAPH Courses, pp. 25.

[10] Trindade, P., Lobo, J. & Barreto, J. (2012). Hand gesture

recognition using color and depth images enhanced with

hand angular pose data. IEEE Conference on Multisensor

Fusion and Integration for Intelligent Systems (MFI), pp. 71–

76.

[11] Elmezain, M., Al-Hamadi, A. & Michaelis, B. (2009)

Hand gesture recognition based on combined features

extraction. World Acad. Sci. Eng. Technol., vol. 60, p. 395.

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

187

[12] Hosseini, M. & Hassanian, J. (2013). Applying mean

shift and motion detection approaches to hand tracking in

sign language. Journal of. AI Data Min. JAIDM, vol. 2, no.

1, pp. 15–24.

[13] Reddy, D., Sahoo, J. & Ari, S. (2018) Hand Gesture

Recognition Using Local Histogram Feature Descriptor. 2nd

International Conference on Trends in Electronics and

Informatics (ICOEI). pp. 199-203.

[14] Auephanwiriyakul, S., Phitakwinai, S., Suttapak, W.,

Chanda, P., & Theera-Umpon, N. (2013). Thai sign language

translation using scale invariant feature transform and hidden

markov models. Pattern Recognition Letters, 34(11), 1291-

1298.

[15] Murthy, G. R. S., & Jadon, R. S. (2010). Hand gesture

recognition using neural networks. In 2010 IEEE 2nd

International Advance Computing Conference (IACC). pp.

134-138.

[16] Ren, Y., & Zhang, F. (2009). Hand gesture recognition

based on MEB-SVM. In 2009 International Conference on

Embedded Software and Systems. pp. 344-349.

[17] Deo, N., Rangesh, A., & Trivedi, M. (2016). In-vehicle

hand gesture recognition using hidden markov models. In

2016 IEEE 19th International Conference on Intelligent

Transportation Systems (ITSC). pp. 2179-2184.

[18] Mahmoudi, N., Ahadi, S. M., & Rahmati, M. (2019).

Multi-target tracking using CNN-based features: CNNMTT.

Multimedia Tools and Applications, 78(6), 7077-7096

[19] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., ... & Rabinovich, A. (2015). Going deeper

with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition. pp. 1-9.

[20] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing

systems. pp. 1097-1105.

[21] Tran, D., Bourdev, L., Fergus, R., Torresani, L., &

Paluri, M. (2015). Learning spatiotemporal features with 3d

convolutional networks. In Proceedings of the IEEE

international conference on computer vision. pp. 4489-4497.

[22] Liu, Z., Zhang, C., & Tian, Y. (2016). 3D-based deep

convolutional neural network for action recognition with

depth sequences. Image and Vision Computing, 55, 93-100.

[23] Camgoz, N. C., Hadfield, S., Koller, O., & Bowden, R.

(2016). Using convolutional 3d neural networks for user-

independent continuous gesture recognition. In 2016 23rd

International Conference on Pattern Recognition (ICPR). pp.

49-54.

[24] Y. Yao and Y. Fu. (2012). Real-time hand pose

estimation from RGB-D sensor. In Multimedia and Expo

(ICME), 2012 IEEE International Conference on, 2012, pp.

705–710.

[25] Chen, X., & Koskela, M. (2013). Online RGB-D gesture

recognition with extreme learning machines. In Proceedings

of the 15th ACM on International conference on multimodal

interaction. pp. 467-474.

[26] Molchanov, P., Gupta, S., Kim, K., & Kautz, J. (2015).

Hand gesture recognition with 3D convolutional neural

networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops. pp. 1-7.

[27]. Moeini, A., Faez, K., Sadeghi, H., & Moeini, H. (2016).

2D facial expression recognition via 3D reconstruction and

feature fusion. Journal of Visual Communication and Image

Representation, 35, 1-14.

[28] Jadooki, S., Mohamad, D., Saba, T., Almazyad, A. S.,

& Rehman, A. (2017). Fused features mining for depth-based

hand gesture recognition to classify blind human

communication. Neural Computing and Applications,

28(11), 3285-3294.

[29] Strezoski, G., Stojanovski, D., Dimitrovski, I., &

Madjarov, G. (2016). Hand gesture recognition using deep

convolutional neural networks. In International Conference

on ICT Innovations pp. 49-58.

[30] Neverova, N., Wolf, C., Taylor, G. W., & Nebout, F.

(2014). Multi-scale deep learning for gesture detection and

localization. In European Conference on Computer Vision

pp. 474-490.

[31] Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S.,

Vinyals, O., Monga, R., & Toderici, G. (2015). Beyond short

snippets: Deep networks for video classification. In

Proceedings of the IEEE conference on computer vision and

pattern recognition pp. 4694-4702.

[32] Murakami, K., & Taguchi, H. (1991). Gesture

recognition using recurrent neural networks. In Proceedings

of the SIGCHI conference on Human factors in computing

systems (pp. 237-242).

[33] Maraqa, M., & Abu-Zaiter, R. (2008). Recognition of

Arabic Sign Language (ArSL) using recurrent neural

networks. In 2008 First International Conference on the

Applications of Digital Information and Web Technologies

(ICADIWT) pp. 478-481.

[34] Li, C., Xie, C., Zhang, B., Chen, C., & Han, J. (2018).

Deep Fisher discriminant learning for mobile hand gesture

recognition. Pattern Recognition, vol. 77, pp. 276-288.

[35] John, V., Boyali, A., Mita, S., Imanishi, M., & Sanma,

N. (2016). Deep learning-based fast hand gesture recognition

using representative frames. In 2016 International

Conference on Digital Image Computing: Techniques and

Applications (DICTA). pp. 1-8.

[36] Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S.,

& Kautz, J. (2016). Online detection and classification of

dynamic hand gestures with recurrent 3d convolutional

neural network. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. pp. 4207-4215.

Ghaderi & Kurmanji / Journal of AI and Data Mining, Vol 8, No 2, 2020.

188

[37] Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016).

Deep feature extraction and classification of hyperspectral

images based on convolutional neural networks. IEEE

Transactions on Geoscience and Remote Sensing, vol. 54,

no. 10, pp. 6232-6251.

[38] Kim, T. K., & Cipolla, R. (2008). Canonical correlation

analysis of video volume tensors for action categorization

and detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 31, no. 8, pp. 1415-1428.

[39] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long,

J., Girshick, R., ... & Darrell, T. (2014). Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of the

22nd ACM international conference on Multimedia pp. 675-

678.

 نشریه هوش مصنوعی و داده کاوی

های کانولوشنی دو بعدی و سه بعدی: یک با استفاده از شبکه RGB-Dهای تشخیص ژست دست از داده

 ایمقایسهمطالعه

 *فواد قادری و مقداد کرمانجی

 .ایران، تهران، دانشگاه تربیت مدرس، کامپیوتردانشکده برق و آزمایشگاه تعامل انسان و کامپیوتر،

 16/06/2019 پذیرش ؛09/04/2019اصلاح ؛26/12/2018 ارسال

 چکیده:

های دست در ویدیوها وجود بندی ژستزیادی در زمینه دستههای ،کماکان چالشتصاویر گیر در تشخیص ژست دست درهای چشمبا وجود پیشرفت

که با کات دست،پویایی حرهای زمانی را به همراه دارد. های بیشتری مانند پیچیدگی زمانی بالاتر و دشواری نمایش ویژگیمورد دوم چالشدارد.

و سه های کانولوشنی دو بعدیتا کنون، هر دو نوع شبکه. های یک ویدیو استخراج شودی فریم، باید با در نظر گرفتن تمامشودیان میبهای زمانی ویژگی

های ا در فریمتوانند تغییرات رهای کانولوشنی سه بعدی میشبکه اند.یو مورد استفاده قرار گرفتههای یک ویدزمانی در فریم هایپویایی بازیابیبعدی برای

ش و ها اکثرا به زمان بیشتری برای آموزتر باشند؛ با این وجود، این شبکهیو مناسببندی ویدرسد که برای مساله دستهمتوالی پیدا کنند و به نظر می

ای هماتریس جمع کرد در حالی که ویژگیهای یک ویدیو را در یک توان تمامی فریممی های الحاق،استفاده از روشاز طرفی دیگر، با تست نیاز دارند.

بندی تر هستند، برای دستههای سه بعدی سادههای کانولوشنی دو بعدی که اساسا از مدلتوان از شبکهاز این طریق، میرا حفظ کرد. آن زمانی و مکانی

های دست بندی دنباله ژستهای زمانی و دستهبرای نمایش ویژگی های دو بعدی و سه بعدیربرد شبکهدر این مقاله، کاهای ویدیویی استفاده کرد. نمونه

های بینی از شبکههای رنگ و عمق و همچنین نتایج پیشای دو جریانی، ماهیتعلاوه بر این، با معرفی یک معماری دو مرحلهقایسه شده است. در ویدیو م

دهد مینتایج به دست آمده نشان است. های ازدیاد داده بررسی شدههمچنین تاثیر استفاده از روشاند. دو بعدی و سه بعدی به شکل کارایی ادغام شده

 های سه بعدی عملکرد بهتری در این مساله دارند. سازیپیادهبا های کانولوشنی دو بعدی در مقایسهاز شبکهمناسب گیریبه کارکه

 .بندی ویدیوهای کانولوشنی، یادگیری عمیق، تشخیص ژست دست، دستهشبکه :کلمات کلیدی

