

Journal of AI and Data Mining

Vol 7, No 4, 2019, 537-550 DOI: 10.22044/JADM.2019.7483.1893

 A New Algorithm for High Average-utility Itemset Mining

A. Soltani1* and M. Soltani2

1. Dept. of Computer Engineering, University of Bojnord, Bojnord, Iran.

2. Dept. of Computer Engineering, Quchan University of Technology, Quchan, Iran.

Received 22 September 2018; Revised 22 January 2019; Accepted 07 April 2019

*Corresponding author: a.soltani@ub.ac.ir (A.Soltani).

Abstract
High utility itemset mining (HUIM) is a new emerging field in data mining, which has gained growing interests

due to its various applications. The goal of this work is to discover all itemsets whose utility exceeds minimum

threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and the

utility values tend to become higher for itemsets containing more items. Hence, HUIM algorithms discover a

huge enormous number of long patterns. High average-utility itemset mining (HAUIM) is a variation in HUIM

that selects patterns by considering both their utilities and lengths. In the last decades, several algorithms have

been introduced to mine high average-utility itemsets. To speed up the HAUIM process, here, a new algorithm

is proposed, which uses a new list structure and pruning strategy. Several experiments performed on the real

and synthetic datasets show that the proposed algorithm outperforms the state-of-the-art HAUIM algorithms

in terms of runtime and memory consumption.

Keywords: Data Mining, Frequent Pattern, Utility, High Average-utility Itemset.

1. Introduction

Nowadays, the quantity of digital data is growing

exponentially and finding appropriate data is

increasingly challenging. Hence, it is impossible to

obtain useful knowledge without computers and

data mining techniques. Frequent Itemset Mining

(FIM) is one of the most important tasks of data

mining introduced by Agrawal [1]. The problem is

defined as mining the set of frequent patterns. An

itemset 𝑋 is a frequent pattern, if it appears in a

dataset more than a predefined threshold. Many

algorithms have been developed to find frequent

itemsets [2]–[7]. Most of these algorithms use the

downward closure property (Apriori property) to

prune search space; according to this property, if a

set is frequent, all of its subsets must be frequent as

well. Frequent patterns are widely used in many

applications such as market basket analysis, web

mining, and biological analysis. Since the

publication of the original paper, several

researchers have tried to extend this idea, and

hence many variants of FIM such as temporal

pattern mining, sequence pattern mining, and rare

pattern mining have been proposed.

Although frequent pattern mining plays a

fundamental role in data mining, it assumes that all

items have the same utility, and their occurrence in

transactions is binary. Therefore, these algorithms

cannot find high-utility itemsets in some databases.

For example, in a supermarket database, items have

different prices/profits. Moreover, in each basket,

one item may appear more than once. Frequent

pattern mining extracts all frequent patterns;

however, some frequent patterns may have a low

profit. High Utility Itemset Mining (HUIM) is a

generalization of the frequent pattern mining

problem, which addresses the above issue [8]–[12].

In this problem, items can appear more than once

in a transaction, and they have different utilities.

Therefore, there are two concepts of internal

(frequency in the transaction) and external utility

(the actual utility of the item). The purpose is to

find the itemsets that provide a higher utility in the

entire database. The utility of an itemset 𝑋 in a

transaction is the sum of products of the internal

utility of each item from 𝑋 and their external utility.

Moreover, the utility of an itemset in a whole

dataset is the sum of the itemset utilities in all

http://dx.doi.org/10.22044/jadm.2018.6311.1746

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

538

transactions containing 𝑋. All itemsets whose

overall utility is greater than the pre-defined

threshold are considered as high-utility itemsets.

Finding high-utility itemsets is not an easy task,

because, contrary to the frequent patterns, the high-

utility patterns do not have downward closure

property. In other words, a low utility itemset may

have a high utility supersets. Most of the proposed

algorithms use overestimation of utility to define a

new criterion with downward closure property for

pruning the search space.

According to the definition of high-utility itemsets,

as the itemset is longer, it will have a higher utility.

This causes to generate too many long itemsets as

high utility patterns. Several methods have been

proposed to solve this problem. Most of these

algorithms look for high average-utility itemsets

instead of finding high-utility itemsets. In other

words, they try to eliminate the direct impact of the

number of items on the final utility through

dividing the itemset utility by its length [13]–[16].

An obvious solution is to generate all high-utility

itemsets and then separate the ones with high

average utility as output. This method is time-

consuming. Therefore, the goal of the HAUIM1

methods is to use average utility to reduce the

search space as well. The primary algorithms work

based on Apriori such as [13], [15], [17]. These

algorithms require multiple scans of the database,

and in each scan, they generate many candidate

itemsets, which should be counted in the next scan.

Another category is the tree-based algorithms [15],

[16], which generate candidate itemsets without

multiple database scans. These methods generate

conditional trees recursively, which is also time-

consuming. The list-based methods try to store the

database in the lists and then explore the lists to

find high-utility itemsets in a depth first search

manner [18]–[20].

In this research work, a new method is presented

for discovering high average-utility itemsets. The

proposed method uses a new list structure and

pruning strategy to increase the efficiency. The

major contributions of this paper are as what

follow:

- A novel utility list structure is presented,

which is more compact than the previous

utility lists.

- A new algorithm is proposed that can mine

all high average-utility itemsets using a

new utility list structure.

- We also propose a tighter upper bound,

which provides a more precise estimate of

1 High Average Utility Itemsets Miner

the average utility, and thus it can further

reduce the search space.

- For evaluating the proposed method,

several experiments have been performed

on real datasets.

The rest of the paper is organized as follows.

Previous works are reviewed in Section 2. In

Section 3, the problem statement and the required

preliminaries are described. Section 4 introduces

the proposed method. The experiments carried out

are analyzed in Section 5, and Section 6 concludes

the paper. All symbols are defined in table 1.

Table 1. Nomenclature.

Symbol Meaning

 I List of all Items

 T List of all transactions

 m Number of items

 n Number of transactions

 qT
A transaction

  , j qu i T Utility of the item ji in qT

  , qu X T Utility of an itemset X in qT

  u X Utility of an itemset X in a database

   qtu T Utility of qT

  , qau X T Average utility of X in qT

 au X The average utility of X in a database

  qtmu T The maximum utility of qT

()AUUB X Average Utility Upper Bound of X

 , qtmu X T maximum average-utility of X in a qT

 XA Set of all items a that ,b X a b   and

also     , ,q qu a T au X T

2. Literature survey

High-utility itemset mining is an extension of the

frequent pattern-mining problem. As stated in the

previous section, high-utility itemsets do not have

the downward closure property, and the search

space cannot be easily pruned in their mining

process, because if an itemset has a utility less than

threshold, a superset of it may have a higher utility

than the threshold. In other words, a high-utility

item may be added to a low-utility itemset, which

may produce a high-utility superset. Therefore, in

the high-utility itemset mining algorithms, finding

a pruning criterion that has the downward closure

property is very important. This criterion should be

an overestimation of the utility of itemsets so that

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

539

pruning does not affect the correctness of the

algorithm. Liu et al. introduced the concept of

Transaction Weighted Utilization (TWU) for the

first time [8]. For each itemset X, TWU is equal to

the sum of the total utility of all transactions that

contains X. This value is an upper bound, and is

always greater than or equal to the actual utility of

the itemset X. Therefore, if it is less than the

threshold, the utility of the itemset is also less than

the threshold. This feature has the downward

closure property. In other words, any superset Y of

X can only occurs in the same transactions in which

X appears. Therefore, the sum of the total utility of

transactions in which Y occurs is less than the sum

of the utility of transactions in which X occurs.

Therefore, if TWU of X is lower than minUtil, then

TWU of all of its supersets will be also less than

minUtil and can be pruned. Based on this feature,

Liu et al. [8] introduced a two-step algorithm. In

the first step, all candidate itemsets whose TWU

are not less than the threshold are found based on

the Apriori algorithm with several database scans.

Then, in the second step, using another scan, the

real utility of these itemsets are obtained and high-

utility itemsets are discovered.

Although the Apriori and TWU-based methods

have reduced the search space greatly, they have to

scan the database for several times to generate

candidate itemsets. In order to solve this problem,

tree-based methods have been introduced. These

algorithms first convert the database into a tree

form; then, without having to scan the database,

they find the candidate itemsets using the data

stored in the tree and recursive methods[21]–[23].

In these algorithms, the search space pruning is

based on TWU's, i.e. the search space is still large

and there are plenty of conditional trees, which is

time-consuming. In addition, these methods have

to find candidate itemsets that have a TWU greater

than the threshold, and then find the real utility of

the itemsets with another scan.

List-based solutions attempt to generate high-

utility itemsets without the need to generate

candidate itemsets [24]–[26]. In these methods,

first, all the necessary information from the

database is stored in the form of lists in the main

memory. Then the search space is traversed in

depth first order, and high-utility itemsets are

found by extending the patterns, merging the lists,

and computing the utility of itemsets using

information in the lists. In these algorithms, the

memory consumption of the lists and the pruning

methods are of great importance.

Since the initial definition of a high-utility itemset

does not take into account the length of the itemset,

longer itemsets are more likely to be selected as

high-utility itemsets. Several algorithms are

proposed that try to consider the length of an

itemset in the process of high-utility itemset

mining. For example, in [27], in addition to the

utility of an itemset, there is also a limitation on the

length of the output itemsets, that is, the length of

high-utility itemsets should be less than the pre-

defined minimum length as well. Several other

methods are proposed to deal with this problem that

use the average utility of an itemset instead of its

utility[14], [15], [17]–[20]. In other words, in order

to include the length of an itemset in the mining

process, the total utility of that itemset is divided

by its length. Contrary to the HUIM problem in

which it is possible to use TWU for the initial

pruning, in high average-utility itemset mining,

TWU cannot be used for pruning because the

average-utility of an itemset may be less than the

average-utility of its subsets. For example, if

 ,qT a b ,  X b and the utility of a is greater

than the utility of b, then the utility of qT is equal to

the sum of the utilities of a and b that are greater

than the utility of X , while the average-utility of

qT will be less than the average-utility of X .

Therefore, the transaction maximum utility

criterion is used as an upper bound for itemset

utility in these algorithms. The maximum utility of

each itemset is always greater than the average

utility of all its subsets. Therefore, the AUUB

(Average Utility Upper Bound) can be used for

pruning, which is equal to the sum of the maximum

utility of the transactions in which the itemset has

occurred.

The first algorithm to solve the high average-utility

itemset mining problem is the TPAU method [17],

which is based on Apriori. Similar to the two-stage

methods, this algorithm first finds candidate

itemsets whose average utility upper bound is not

less than the pre-defined threshold and then finds

the real average-utility with rescanning the

database. Multiple database scans and generation

of the large number of candidate itemsets are the

weaknesses of this method. The HAUI-Growth

method is a tree-based method [15], which

eliminates the need for multiple scans and

generation of candidate itemsets by keeping

information about items and their utilities in a tree.

The HAUI-Tree [16] is another tree-based method

that accesses to the database projection in the main

memory by TIDs, and therefore, there will be no

need for multiple scans of the database. Some new

list-based methods such as HAUI-Miner [18],

MHAU [19], and EHAUPM [20] have also been

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

540

introduced recently. These methods are explained

in more details in the next section.

3. Problem statement and required

preliminaries

3.1. Problem statement

 Suppose that  1 2 , , , nD T T T  is the set of

all transactions, and  1 2, , , mI i i i  is the set

of all distinct items in D . Each transaction is

presented as  1 2 , , , q lT i i i  , qT D , which

has a unique identifier called TID. A k-itemset X

( 1 2, , , kX i i i ) is a sub-set of I with k

items. If an itemset X is a subset of a transaction

qT ()qX T , then we can say that qT contains X

or X appearing in qT . The external utility of an

item ji is presented as   jpr i that is equal to the

profit value of that item. The internal utility of an

item ji in a transaction qT is represented as

  , j qq i T that is equal to the number of item ji in

the transaction qT . Table 2 shows a sample

database containing six transactions and six

distinct items with different utilities. Table 3

specifies the external utility for each item.

Table 2. A sample database.

Transaction(item, quantity) TID

A:2, B:3, C:2, D:4 1

C:4, E:5, F:1 2

B:2, C:5, F:6 3

A:5, B:6, C:4, E:7, F:2 4

A:3, B:7, C:4, E:5,F:5 5

D:4, E:6, F:5 6

Table 3. External utility.

F E D C B A Item

4 2 3 1 3 4 Profit

According to table 2, the internal utility of the item

A in the transaction 1 is equal to 2 and the internal

utility of the item E in the transaction 4 is equal to

7. Moreover, according to table 3, the external

utility of item A is 4 and the external utility of item

E is 2.

The following definitions are required in the rest of

this paper:

Definition 1 (the utility of the item ji): the utility

of an item ji in a transaction qT is defined as the

product of   , j qq i T and  jpr i , as:

For example, in table 2,  E,4 14u  and

 A,1 8u  .

Definition 2 (the utility of an itemset X in a

transaction qT): the utility of an itemset X in a

transaction qT that is represented as  , qu X T is

calculated as:

For example,  1, 2 4 3 3 2 1u ABC T      

19 .

 Definition 3 (the utility of an itemset X in a

database D): the utility of an itemset X in a

database is defined as:

 For example,   19 42 37 98u ABC     .

Definition 4 (utility of the transaction)qT : the

utility of a transaction qT , that is represented as

  qtu T is the sum of all its item utilities:

For example,  1 2 4 3 3 2 1tu T      

4 3 31   .

Definition 5 (the total utility of a database D):

the total utility of a database is the sum of all its

transaction utilities, that is:

For example, 31 18 35 64 54TU     
44 246  .

Definition 6 (the average utility of a k-itemset in

a transaction qT): the average utility of an itemset

X with k items in a transaction qT ( , qau X T

) is defined as:

     , , j q j q ju i T q i T pr i  (1)

     

, ,
j q

q j q j

i X X T

u X T q i T pr i
  

  (2)

   

,
q q

q

X T T D

u X u X T
 

  (3)

   

 ,
j q

q j q

i T

tu T u i T


  (4)

 

q

q

T D

TU tu T


 
(5)

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

541

In this formula, k is the number of items in X (

X k). For example,  1, au CD T

2 1 4 3
7

2

  
  and  1, au ACD T

2 4 2 1 4 3
7.33

3

    
 ;

Definition 7 (the average utility of a k-itemset in

a dataset D): this utility, denoted as   au X , is

equal to the sum of the average utilities of X in all

transactions in D, that is:

For example,    2, au EF au EF T

     4 5 6, , , au EF T au EF T au EF T  

7 11 15 16 49    

Definition 8 (HAUIM: High Average-Utility

Itemset Mining): the high average-utility itemset

mining problem attempts to find all itemsets whose

average-utility in the entire database D is not less

than the pre-defined threshold (minUtil). This

value is obtained as:

where δ is an arbitrary percent value between 0%

and 100% predefined by the user.

 Definition 9 (Transaction Maximum Utility):

previous algorithms for HAUI mining use the

maximum utility of each transaction to reduce the

search space. The transaction maximum utility of

 qT is presented as   qtmu T , which is equal to

the largest utility of the items in the transaction qT .

This value is obtained by the following formula:

For example,    2 4,1 0 ,4 10tmu T max  .

Definition 10 (the Average-Utility Upper Bound

of the itemset X): this is denoted as AUUB (X) and

is equal to the sum of the maximum utilities of all

transactions in which X appears and it is calculated

as:

For example,    2 AUUB E tmu T

     4 5 6 tmu T tmu T tmu T  

10 20 21 20 71     . Table 4 shows AUUBs

of all items in our running example.

Table 4. AUUBs.

F E D C B A Item

95 71 32 87 77 53 AUUB

3.2 Preliminaries

In this section, we explain three state-of-the-art

HAUIM algorithms in more details.

3.2.1 HAUI-miner

HAUI-Miner [18] uses the AU-List structure to

store all the required information. In AU-List, there

is one row for each transaction that contains X .

Each row has three fields: tid (transaction qT

identifier), iu (real utility of X in the transaction qT

) and mu (maximum utility of items greater than X

in the transaction qT).

HAUI-Miner finds the maximum utility of all

transactions at the first scan of a database, and then

calculates the AUUB for each item. Then it deletes

all the items with AUUB less than the threshold

from the database. For example, if the threshold

(minUtil) is considered to be 40 in the running

example, the data item D is deleted. Then all

transactions are sorted according to the order of

AUUB. In the current example, the order of the

items will be in the form of A E B C Fp p p p .

The new database is called the modified database,

and is represented as D . The modified database

for the current example is shown in table 5. The

number in front of each item in this table is the real

utility (the internal utility multiplied by the external

utility).

Table 5. Modified database.

Transaction (item, quantity) TID

A:8, B:9,C:2 1

E:10, C:4, F:4 2

B:6, C:5, F:24 3

A:20, E:14, B:18, C:4, F:8 4

A:12, E:10, B:21, C:4, ,F:20 5

E:12, F:20 6

 
   

 ,

,
j q

j q ji X X T

q

q i T pr i
au X T

k

  





(6)

   

,
q q

q

X T T D

au X au X T
 

  (7)

  | HAUI X au X TU    . (8)

      | q j j qtmu T max u i i T  .
(9)

   

q q

q

X T T D

AUUB X tmu T
 

 
ô

 (10)

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

542

After constructing the AU-lists for all items, all

high average utility itemsets are generated by

combining these lists, recursively. Suppose that X

is the itemset that has extended the prefix P by

adding xi (or xX p i  ,  1 2, , , pp i i i  and

1 2 p xi i i ip p p p). Then to extend X , it is

possible to combine it with any itemset Y (

jY p i ) where j xi if . At each stage, pruning

the search space is performed based on AUUB, and

the database is projected based on the itemset X .

In addition, new lists are obtained by combination

of the previous lists.

The disadvantage of this method is that the highest

utilities of items in a transaction is considered as

the AUUB of all itemsets appearing in that

transaction. Although this value is usually much

higher than the real average, it can be used as the

upper bound in the search space pruning. Hence,

this method is not efficient and useful in large

databases.

3.2.2 MHAI

MHAI uses the remaining items and the remaining

maximum utilities for efficient pruning [19]. Using

these new criteria, more candidate itemsets are

pruned. Similar to HAUI-Miner, the database is

scanned first and AUUB of all items are computed.

In the second scanning, transactions are read one

by one. First, items that have an AUUB less than

the threshold are removed from the transaction, and

then the rest of the items are sorted in an AUUB

ascending order. For each item, ji , that remains in

the transaction, if its HAI-list has not been created

yet, an HAI list is created; otherwise, its previous

list will be updated. In this method, the lists are

similar to the HAUI-Miner method, with the

exception that in each list, in addition to the rows,

the itemset X and the maximum remaining items

(mn) are also stored.

 Definition 11 (the maximum remaining items):

suppose that a transaction qT is arranged in an

AUUB ascending order and xi is the last item in X.

If  , x qn i T specifies the number of items that are

placed in the transaction qT after xi , the maximum

number of remaining items (mn) stored in the HAI-

List for the itemset X is equal to the maximum

value of  , x qn i T for all transactions qT where

X occurred. It is defined as:

 Definition 12 (remaining maximal utility):

suppose that a transaction qT contains an itemset

X . The remaining maximal utility is denoted as

(,)qmu X T and defined by the following formula.

Figure 1 illustrates how these HAI-lists are built for

our running example shown in table 5. Each list in

this figure is the HAI-list of an itemset. Moreover,

in figure 1, sections (a), (b), and (c) show the

updated HAI-lists after processing of 1T , 2T and 3T

respectively. For example, by processing the third

transaction and seeing an item B, since the list of B

has already been made, it is updated. The utility of

B in this transaction is 6, and the maximum utility

after the B belongs to F (24); therefore, it adds a

row to the previous structure with TID, iu and mu

utilities of 3, 6, and 24. The maximum number of

items after B in this transaction is 2, so the mn value

changes to 2.

After generating HAI lists in the MHAI algorithm,

the process of building and combining the lists is

performed based on the HAUI-Miner method.

Accordingly, ylist is combined with xlist and

xylist is built. To build xylist , for each row e shared

in xlist and ylist , a new row e is built in xylist and

its iu is equal tox y plist e iu list e iu list e iu  . (

plist is the list of the shared prefix; if the itemset

corresponding to xlist is a single member,

. .plist e iu is considered zero). Besides, its mu is

equal to . .ylist e mu and . .xy ylist mn list mn .

The MHAI method attempts to use pruning before

generating larger itemsets to reduce the time and

the memory usage. In this method, a new pruning

criterion is used, which is stricter than HAUI-

Miner pruning criterion and can reduce the search

space better. In MHAI, the maximum average

utility of itemset X is used.

     , |x q qmn X max n i T X T 
(11)

 

(,)

max({ , | })

q

j q j q j x

mu X T

u i T i T i i   f

 (12)

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

543

 Definition 13 (maximum average-utility in a

transaction): the maximum average-utility of an

itemset X in a transaction qT is denoted as

  , qmau X T , and it is calculated as:

 

     

 
 

   
 

 

 ,

, ,
, , au(,

, ,
, 0 , au(,

1

0 ,

)

0

)

q

q q

q q

q q

q q

q

mau X T

u X T mu X T mn X
mu X T X T

X mn X

u X T mu X T
mu X T X T

X

mu X T

  
 





 








(13)

 Definition 14 (maximum average-utility of an

itemset X In a database D): the maximum average-

utility of an itemset X in a database D is shown by

 mau X and obtained as:

This criterion shows the maximum utility of any

superset built based on X . Therefore, if this value

is less than the threshold, the X extension can be

excluded because any set built based on X cannot

have a high average-utility.

The recursive procedure of high-average utility

itemset mining in MHAI first selects a xlist from

the lists and calculates the average utility of X,

which is equal to the sum of the average utility of

itemset X in all transactions that contain X . If the

average utility is not less than the threshold, it will

go to the output as a high average utility itemset.

Then, the maximum average-utility is calculated

for this itemset. If it is less than the threshold, the

recursive process backs to the previous step;

otherwise, it extends the itemset X and generates

new lists based on it.

One of the weaknesses of this method is the

unrealistic upper bound considered for the average-

utility of itemsets. In other words, due to

overestimation, the search space is not well-

pruned, which increases the memory consumption

and runtime.

3.2.3 EHAUPM algorithm

The EHAUPM [20] algorithm addresses the MHAI

problem by defining the optimal upper bound for

the average-utility as well as the use of various

strategies in pruning the search space. There are

three ways to reduce the search space in this

algorithm. Initially, like similar algorithms, all

items whose AUUB is less than the threshold are

deleted from the database. In the second step, the

AUUB is calculated for all pairs of items in the

database and stored in the EAUCM matrix. It can

be concluded that if AUUB of each pair of items is

less than the threshold, the average utility of the

whole itemset that is made with these two items is

also less than the threshold and will prevent them

from expanding. Moreover, EHMUPM uses two

tighter upper-bound models (the Looser Upper-

Bound (lub) and the revised tighter upper-bound

(rtub)) to further reduce the search space for

mining HAUIs.

One of the weaknesses of this method is that it

constructs the co-occurrence matrix and calculates

    ,
q

q

X T D

mau x mau X T
 

  (14)

A mn:2

TID iu mu

1 8 9

B mn:1

TID iu mu

1 9 2

E mn=2

TID iu mu

2 10 4

F mn=0

TID iu mu

2 4 5

C mn=1

TID iu mu

1 2 0

2 4 4

A mn:2

TID iu mu

1 8 9

B mn:1

TID iu mu

1 9 2

C mn:0

TID iu mu

1 2 0

a) HAI-lists after processing 1T

b) HAI-lists after processing 2T

A mn:2

TID iu mu

1 8 9

B mn:2

TID iu mu

1 9 2

3 6 24

E mn=2

TID iu mu

2 10 4

F mn=0

TID iu mu

2 4 0

3 24 0

C mn=1

TID iu mu

1 2 0

2 4 4

3 5 24

c) HAI-lists after processing 3T

Figure 1-AU-lists after processing 1T , 2T and 3 T .

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

544

AUUB for each pair of items, which affects the

speed and the amount of memory used for large

databases.

4. Proposed algorithm

The HAUI_Miner algorithm uses the projected

database. Although the authors' goal is to reduce

the search space and runtime of the algorithm,

constructing the projected database itself is time-

consuming, If the database is projected for each

item in the mining process, the database has to be

scanned for several times, which is very time-

consuming. In addition, if all sub-databases are

created in the first scan, the algorithm requires a lot

of memory to save them. In contrast to HAUI-

Miner, the MHAI method, initially removes all

items with low AUUB from the database and then

stores all the required information in a list

structure. Several experiments in the corresponding

paper show that MHAI occupies less memory than

HAUI-Miner. Moreover, this algorithm uses a

tighter criterion for pruning, which makes the

search space more pruned, and thus has a lower

running time than HAUI-Miner.

In the proposed algorithm, a new structure for

storing information and a new method for pruning

the search space are introduced, which would

increase the efficiency.

4.1. Proposed structure

In the proposed algorithm, similar to the previous

methods, after AUUB calculation for all items,

those items with AUUB less than the threshold are

removed from the database. Then, the required

information of the database is stored in a TID list

structure and a set of transactions.

For each item, the TID list stores the TID of all

transactions containing that data item. This

structure for our running example is shown in

figure 2. In contrast to the AU-list structure in the

previous approaches, we do not save the item

utility and remaining maximal utility in this

structure. Hence, memory consumption of each

row in the proposed structure is one-third of that in

the previous methods.

Instead of storing in AU-lists, we store some

necessary information in a transaction list, i.e. all

transactions are stored in another separate list.

There is one element for each transaction that

contains two arrays (one array for the transaction

items and another for their corresponding utilities).

Figure 3 shows this structure. This transaction list

is also used for pruning.

Since for each candidate itemset we should create

an AU-List, the memory consumption for AU-lists

is proportional to the number of candidate itemsets

( # O Candidate Itemset). Hence, tighter

pruning causes to generation of less candidate

itemsets and lists, which leads to less memory

usage. As a result, pruning unpromising candidate

itemsets can compensate for the transaction list

overhead in the proposed method. Moreover,

EHAUIM stores AUUB for all pair items in the

ECAUPS structure, which needs  2o m memory

space (where m is the number of distinct items in

the dataset).

{E,F}

{12,20}
{A,E,B,C,F}

{12,10,21,4,20}
{A,E,B,C,F}

{20,14,18,4,8}
{B,C,F}
{6,5,24}

{E,C,F}
{10,4,4}

{A,B,C}
{8,9,2}

4.2. Mining process

The search space is represented as an enumeration

tree. Each node is an itemset that may be a high

average utility itemset. The proposed algorithm

scans the search space using a depth-first search. At

each step, the itemset X is extended by adding an

item (whose AUUB value is greater than the

AUUB of all items appearing in X). As an itemset

expands, the average-utility of the extended itemset

is calculated. If it exceeds the pre-defined

threshold, it is added to the HAUI list. Suppose that

X is an itemset that has extended the prefix P by

adding xi (or  1 2 , , , pp i i i  , xX p i  and

1 2 p xi i i ip p p p); Then, we can extend X

by combining it with a set Y (
yY p i  that

y xi if) to construct a new candidate itemset XY

(
x yXY p i i  ). The TID lists of XY is

achieved by intersection of the TID lists of X and

Y . The average-utility of XY is calculated using

this list and the information stored in the

transaction set. In other words, it is possible to

retrieve the utility of the items and calculate the

average utility by referring directly to the

transactions specified in the TID list.

Figure 2. TID lists for modified database in Table

5.

A

1

4

5

B

1

3

4

5

E

2

4

5

6

C

1

2

3

4

5

F

2

3

4

5

6

Figure 3. The array structure for storing all

transactions.

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

545

As mentioned earlier, since the downward closure

property does not hold for the average-utility value,

an itemset might have a low average utility value

but one of its extended might has a high average

value. Therefore, if during the exploration of the

search space a low utility itemset appears, it should

be extended and cannot be pruned. Due to the large

size of the search space, finding an appropriate way

to prune it is necessary. The HAUI-Miner method

uses the transaction maximum utility for pruning.

This overestimation cannot prune the search space

well. In the MHAU method, instead of the

transaction maximum utility, the remaining

maximum utility is used, which is closer to reality.

However, for the calculation of the maximum

average-utility, the number of remaining items is

also required. To save the memory, instead of

keeping the number of remaining items for each

transaction containing X , the largest one is stored

and calculations are made based on it. This also

leads to having looser upper bound.

In the proposed method, TID list of an itemset X
stores all TIDs of transactions that contain X. Since

all the required information about transactions is

stored in the transaction set, we can access to them

using their TID. Hence, the maximum average

utility for any supersets of X can be estimated

more precisely because the utility of all remaining

items are available.

Definition 15 (the maximum average utility of an

itemset X in a transaction qT): as mentioned

earlier,  u X is the real utility of X in the entire

database and  , qu X T is the real utility of X in

the transaction qT ; assume that XA is the set of all

items that are larger than all items of X in AUUB

order and also have a utility value greater than the

average utility of X , that is:

The maximum average utility of an itemset X in a

transaction qT is denoted as   , qmau X T , and is

calculated as:

To achieve ' XA , XA is arranged in the ascending

order of utility values in qT and then items of XA

are added to
'

XA from the largest utility to the least

until the average utility decreases.

 Definition 16 (maximum average-utility of an

itemset X in a database D): similar to formula 14,

if the   , qmau X T value for all transactions that

contain X is summed-up, the maximum average-

utility of an itemset X is obtained in the entire

database.

 Theorem 1:   , qmau X T is greater than or

equal to  , qau X T (average utility of X).

PROOF:

 
   '

'

 , ,
, X

q qa A

q

X

u X T u a T
mau X T

X A









 
 

'

'

 ,
 ,

X

q

q a A

X

u X T
u X T

X

X A









 
 '

'

 ,
 ,

q

q X

X

u X T
u X T A

X

X A

 




   

 
 

'

'

 ,
,

q X

q

X

u X T X A
au X T

X X A

 
 

 

    , , q qmau X T au X T  ■

 Theorem 2: MAU has downward closure property

PROOF: Suppose that X z is one of the X

supersets. If mau has a downward closure property,

 , qmau X T should be greater than or equal to

the mau of all of its supersets (

   X z, X, q qmau T mau T  . Based on the

utility of the new added item (z), two modes

happen:

First mode: the utility of z in qT is equal to or

greater than the average utility of X in qT ; in other

words,  (,) au X,q qu z T T . Accordingly,

Xz A and the average utility of X z is greater

than or equal to  au X, qT . Hence,

X z XA z A   , thus    X z Xmau mau 

())}

{ | &

, (,

X q

q q

A a a T b X

a b u a T au X T

   

   

(15)

 

   '

'
'

 ,

, ,
X

X X

q

q qa A

A A

X

mau X T

u X T u a T
max

X A







 
 
 
 



(16)

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

546

Second mode: the utility of the element z in qT is

less than the average utility of X ; in other words,

 (,) au X,q qu z T T . In this case, X zA  is

defined as:

 

    

X z & ,

 & & , ,

M

X

N

q q

A a a A a z

a a X a z u a T au X T

   

  

6 4 4 4 7 4 4 4 8

6 4 4 4 4 4 4 4 7 4 4 4 4 4 4 4 8

Suppose that M  and N are sub-sets of M and

N , for which the maximum utility of X zA  is

achieved. The average utility of the items of N is

less than  , qau X T and the average utility of the

items of M  is greater than  , qau X T .

 

       

 

 

z,

, , , ,

1

1 *

1

,

q

E

q q q qa M a N

F

q

mau X T

u X T u a T u z T u a T

X M N

E
E N

EF

F N F

mau X T

  



  


  

 

 
 



 





 
6 4 4 4 4 7 4 4 4 48

14 2 43

Since X is a sub-set of X z , the transactions

containing X z are subsets of transactions that

contain X . Moreover, mau is a positive value;

hence:

   

   

X z

X z

X z X z,

, ,

()

q

q q

q

T D

q q

T D X T D

mau mau T

mau X T mau X T

mau X

  

    

  

 





 

   X zmau mau X   ■

At the mining step, all itemsets are expanded

according to the search space shown in figure 4. As

the X set is extended, the transaction data is

accessed based on the TID list and its real average-

utility is obtained. If this value is greater than the

threshold, X is added to the list of high average-

utility itemset. Then, mau is calculated for all

itemsets, whether they have a high utility or not. If

()mau X is less than the threshold, since

()mau X is the upper bound of average-utility that

a superset X can have, it is not possible to find a

superset in the search space whose average utility

is more than the threshold. Therefore, the subtree

of the X itemset in the search space is pruned.

Reducing search space generates fewer candidate

itemsets and thus reduces the memory and time

required to create TIDs and calculate the real

average-utility.

Figure 4. Search space base on the modified

database in Table 5.

Since in the new pruning method uses the real value

of utilities instead of using the maximum utility,

the estimation is closer to reality, which makes the

search space more pruned than the previous

methods.

5. Evaluation

In this section, the proposed method has been

compared in terms of runtime, memory

consumption and candidate count with two state-

of-the-art algorithms (EHAUPM and MHAI

algorithms [17], [18]).

The code for the EHAUPM algorithm is taken from

the SPMF package [28]. In this package, more than

150 algorithms are implemented in the field of data

mining, frequent pattern mining, and association

rules in Java. We have implemented the MHAI

algorithm and the proposed algorithm in Java as

well. All experiments are carried out on a computer

with Windows 10, Intel Corei3, 2.40GHz, 4GB

RAM. In order to compare the performance of the

proposed algorithm with the existing algorithms,

three real datasets and 5 synthetic datasets are used.

Information about these datasets is presented in

table 6. It should be noted that the execution of the

EHAUPM algorithm on the Connect database had

out of memory error, and information about this run

is not provided in the comparisons.

Table 6. Parameter of the databases.

Database Transaction Count
Unique

Item Count

Average

Transaction

Length

accident 340183 468 33.8

Chess 3196 75 37

Connect 67557 129 43

T35 I100D|X|K X×1000 (x=1 to 5) 100 35

5.1. Memory usage

In this sub-section we investigate memory

consumption of the algorithms (the proposed

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

547

algorithm, EHAUPM, and MHAI). The peak

memory consumption of the algorithms has been

measured by utilizing the standard Java API. The

results obtained are shown in figure 5 and table 7.

Accordingly, with increasing minUtil (TU ),

memory consumption decreases. The reason is that

by increasing the minUtil, the minimum average-

utility will also increase and the search space is

likely to be reduced due to the more pruning. Thus

less memory space is required.

As it can be seen in figure 5, the memory

consumption in the proposed algorithm is far less

than the other algorithms. In comparison to

EHAUPM and MHAI, the proposed method can

reduce memory consumption by up to 10 and 6

times, respectively. This reduction has two reasons;

firstly, the proposed method optimizes the list

structure, and secondly, it chooses a better strategy

for pruning, which reduces memory consumption.

Moreover, although EHAUPM, in some situation,

can prune more candidate itemsets, storing

ECAUPS structure causes a memory overhead of

 2o m .

5.2. Runtime

Figure 5 and table 7 show the runtime of the

algorithms for different minimum average utility

thresholds. Note that, runtime, here, means the total

time used for running the algorithms, which is the

period between input and output. As the minimum

average utility increases, the number of itemsets

whose utilities are greater that minimum threshold

are decreased and runtime decreases as well.

According to figure 5, the performance of the

proposed algorithm is far better than EHAUPM

and MHAI. More specifically, it is 5-14 times

faster than MHAI and 15-367 times faster than

EHAUPM. The reason is that our proposed

approach can prune more unpromising candidate

itemsets compared to EHAUPM and MHAI, and it

does not require to perform the costly join

operation for creating the supersets of these pruned

candidate itemsets. MHAI uses the maximum

remaining items and remaining maximal utility to

estimate maximum average remaining utility of an

itemset X . It assumes that all transactions

approximately have the same length and it stores

only one mn value for X (maximum number of

items that appear after the last item of X in all

transactions containing X). Also assumes that the

item utilities in a transaction approximately are the

same and only stores the remaining maximal utility

for each transactions in the AU-lists. Since the

maximum average utility for X is calculated

based on these values, the difference between the

estimated and actual value, may become high;

especially when the difference in length of

transactions or item utilities is high, the MAU

estimation will become very high, which causes to

generate many candidate itemsets. Furthermore,

EHAUPM needs to construct ECAUPS (Estimated

Average-Utility Co-Occurrence Matrix) that stores

the AUUB values of all 2-itemsets. If l is the

average length of each transaction, there will be
2l

pair of items in each transaction whose utilities

should be evaluated for calculating the auub

value. Hence, the time complexity overhead of

ECAUPS construction is  2 O l n ; in

consequence, it is expected that, in comparison to

the MHAI and the proposed approach, EHAUPM

does not perform well in dense and large datasets.

5.3. Number of candidate itemsets

As described earlier, in each step of the HAUIM

algorithms, the search space is explored and the

candidate itemsets is generated. For each candidate

itemsets, AU-list structure should be constructed to

verify that the candidate itemset is HAUI or not.

Accordingly, as the number of candidate itemsets

increases, the algorithm slows down and its

memory consumption increases. Hence, it is an

important factor for comparing HAUI mining

algorithms. The number of generated candidates is

displayed in figure 5 and table 7. Due to the tighter

pruning strategies, the proposed algorithm

generates much less candidate itemsets than the

other two algorithms.

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

548

Table 7. Memory consumption, runtime, and candidate count for various average utility thresholds.

 Connect Accidents Chess

δ

The

Proposed

Algorithm

MHAI

δ

The

Proposed

Algorithm

EHAUPM MHAI

δ

The

Proposed

Algorithm

EHAUPM MHAI

M
e
m

o
ry

(M
B

)

0.045 332 747 0.041 486 729 669 0.047 112 292 300

0.046 258 762 0.043 498 687 656 0.051 67 298 237

0.047 266 775 0.045 457 707 705 0.056 44 284 162

0.048 289 753 0.047 413 701 638 0.060 36 269 201

0.049 255 762 0.049 372 693 675 0.065 28 291 176

0.050 255 748 0.051 360 681 537 0.069 112 292 300

R
u

n
ti

m
e
 (

S
) 0.045 14.5 192.3 0.041 14.4 207.2 41.5 0.047 1 288.5 4.8

0.046 10.5 139.8 0.043 10.6 164.6 27.6 0.051 0.4 150.6 2.1

0.047 10.5 109.2 0.045 10.6 128 16.1 0.056 0.2 75.2 1

0.048 8.8 86.6 0.047 9.7 102.2 16.5 0.060 0.1 40.5 0.6

0.049 6.8 68.6 0.049 10.6 68.1 14.6 0.065 0.09 20.7 0.4

0.050 5 51.7 0.051 7.3 49.9 12.5 0.069 0.06 10.8 0.2

C
a

n
d

id
a

te

C
o

u
n

t

0.045 693 46810 0.041 167 4456 705 0.047 919 1214999 27691

0.046 571 36048 0.043 72 3363 449 0.051 468 604849 13564

0.047 514 28405 0.045 72 2554 322 0.056 203 304258 7172

0.048 435 22300 0.047 60 1882 266 0.060 98 152331 3572

0.049 314 17327 0.049 54 1320 225 0.065 43 75924 2061

0.050 215 13406 0.051 41 941 215 0.069 25 37833 1018

5.4. Scalability assessment

In this section, we compare the scalability of the

compared algorithms in terms of runtime, memory

usage, and candidate itemset counts. The

algorithms are performed on several synthetic

datasets. For creating the synthetic datasets, we use

the database generator tool [28]. We generate 5

datasets with 100 items. Each transaction has up to

50 items, and the number of transactions varies

from 100,000 to 500,000 transactions. We indicate

this datasets by T35I100D|X|K, in which X varies

from 100 to 500 using an increment of 100(K)

transactions. The minimum high average threshold

is set to 0.01TU  for all datasets. Figure 6 shows

0

150

300

450

600

750

900

4.5 4.6 4.7 4.8 4.9 5

M
em

o
ry

 (
M

B
)

average-utility threshold(%)

connect

0

200

400

600

800

4.1 4.3 4.5 4.7 4.9 5.1

M
em

o
ry

 (
M

B
)

average-utility threshold(%)

accidents

0

100

200

300

400

4.7 5.15 5.6 6.05 6.5 6.95

M
em

o
ry

 (
M

B
)

average-utility threshold(%)

chess

0

50

100

150

200

4.5 4.6 4.7 4.8 4.9 5

R
u
n
ti

m
e(

S
)

average-utility threshold(%)

connect

0

20

40

60

80

100

4.1 4.3 4.5 4.7 4.9 5.1

R
u
n
ti

m
e

(S
)

average-utility threshold(%)

accidents

0

2

4

6

4.7 5.15 5.6 6.05 6.5 6.95

R
u
n
ti

m
e

(S
)

average-utility threshold(%)

chess

0

10000

20000

30000

40000

50000

4.5 4.6 4.7 4.8 4.9 5

C
an

d
id

at
e

C
o
u
n
t

average-utility threshold(%)

connect

0

1000

2000

3000

4000

5000

4.1 4.3 4.5 4.7 4.9 5.1

C
an

d
id

at
e

C
o
u
n
t

average-utility threshold(%)

accident

0

10000

20000

30000

4.7 5.15 5.6 6.05 6.5 6.95

C
an

d
id

at
e

C
o
u
n
t

average-utility threshold(%)

chess

Figure 5. Memory consumption, runtime, and candidate count for various average utility thresholds.

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

549

the runtime and memory consumption of the

compared algorithms on the five synthetic datasets

mentioned above. Besides, for a better illustration,

the candidate itemset counts are represented in the

bar graph format in figure 7. As shown in this

figure, since the data distribution is constant in

these datasets, the number of high average utility

and also the number of candidate itemsets are

approximately equal in all datasets regardless of

dataset size. The results obtained show that the

proposed method generates much less candidate

itemsets than EHAUPM and MHAI.

Although the number of AU-Lists (number of

candidate itemset counts) are approximately equal

in all datasets but the size of AU-Lists is different

because as the number of dataset transactions

increases, the number of entries in each AU-list

also increases, and accordingly, the time required

for joint operations becomes higher. This causes a

significant reduction in the runtime of the proposed

method in comparison with the other approaches

due to the much lower candidate itemset count

(which is illustrated in Figure 6).

Furthermore, figure 6 reveals that the memory

usage of EHAUPM and AHIM is raised as the

number of transactions is increased. However,

since our proposed approach has a more compact

AU-Lists (it only store TIDs), dataset size does not

influence much in its memory usage. Accordingly,

we can determine that the proposed algorithm has

the highest scalability performance among the

compared algorithms.

Moreover, as shown in figure 5, the proposed

algorithm runtime for real datasets increases

linearly by decreasing the minimum average utility

threshold. However, it is non-linear in other

algorithms, which confirms the scalability of the

proposed algorithm.

6. Conclusion

In this paper, a new list-based algorithm has been

proposed for high average-utility itemset mining

task. In the proposed algorithm, an optimal

structure was introduced to store the lists.

Decreasing of the list size will reduce the memory

consumption of the proposed algorithm. Besides, a

new strategy has been proposed to prune the search

space. Tighter pruning causes generation of less

candidate itemsets and lists, which reduces the

memory usage and increases the speed of the

algorithm. Several experiments have been carried

out to evaluate the proposed algorithm on real and

synthetic datasets. The results obtained show that

the proposed algorithm is more efficient than the

state-of-the-art algorithms in terms of time,

memory, and number of generated candidate

itemsets; more specifically, in the performed

experiments, the proposed method is 5-14 times

faster than MHAI and 15-367 times faster than

EHAUPM. Moreover, the peak memory usage of

the proposed method is reduced by up to 10 times.

References
[1] Agrawal, R., & Srikant, R. (1994). Fast algorithms

for mining association rules. Proceedings of the 20th

international conference on very large data bases,

VLDB, 1215, pp. 487–499.

[2] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining

frequent patterns without candidate generation: A

frequent-pattern tree approach. Data mining and

knowledge discovery, vol. 8(1), pp. 53–87.

[3] Zaki, M. J., & Gouda, K. (2003). Fast vertical mining

using diffsets, Proceedings of the 9th ACM SIGKDD,

pp. 326–335.

0

5

10

15

20

100 200 300 400 500

C
an

d
id

at
e

It
em

se
t

C
o

u
n

t

x
1

0
0

0
0

Dataset size of |X|

The Proposed Algorithm EHAUPM MHAI

0

100

200

300

400

500

600

700

100 200 300 400 500

R
u
n
T

im
e

(S
)

Dataset size of |X|

0

500

1000

1500

2000

2500

3000

100 200 300 400 500

M
em

o
ry

 (
M

B
)

Dataset size of |X|

Figure 6. Runtime and memory consumption for

various dataset sizes on T35 I100D |X|K.

Figure 7. Candidate itemset counts for various

dataset sizes on T35 I100D |X|K.

A.Soltani and M.Soltani/ Journal of AI and Data Mining, Vol 7, No 4, 2019.

550

[4] Borgelt, C. (2005). Keeping things simple: finding

frequent item sets by recursive elimination, Proceedings

of the 1st international workshop on open source data

mining, pp. 66–70.

[5] Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., & Yang,

D. (2007). H-mine: Fast and space-preserving frequent

pattern mining in large databases. IIE Transactions, vol.

39, no. 6, pp. 593–605.

[6] Deng, Z., Wang, Z., & Jiang, J. (2012). A new

algorithm for fast mining frequent itemsets using n-lists,

Science China Information Sciences, vol. 55, no. 9, pp.

2008–2030.

[7] Sakenian Dehkordi, M., & Naderi Dehkordi, M.

(2016). Introducing an algorithm for use to hide

sensitive association rules through perturb technique.

Journal of AI and Data Mining, vol. 4, no, 2, pp. 219–

227.

[8] Liu, Y., Liao, W.-k., & Choudhary, A. N. (2005). A

two-phase algorithm for fast discovery of high utility

itemsets, PAKDD, vol. 3518, pp. 689–695.

[9] Li, H.-F., Huang, H.-Y., Chen, Y.-C., Liu, Y.-J., &

Lee, S.-Y. (2008). Fast and memory efficient mining of

high utility itemsets in data streams. Eighth IEEE

International Conference on Data Mining

(ICDM’08), pp. 881–886.

[10] Tseng, V. S., Shie, B.-E., Wu, C.-W., & Philip, S.

Y. (2013). Efficient algorithms for mining high utility

itemsets from transactional databases, IEEE transactions

on knowledge and data engineering, vol. 25, no. 8, pp.

1772–1786.

[11] Song, W., Liu, Y., & Li, J. (2014). BAHUI: fast and

memory efficient mining of high utility itemsets based

on bitmap. International Journal of Data Warehousing

and Mining (IJDWM), vol. 10, no. 1, pp. 1–15.

[12] Lan, G.-C., Hong, T.-P., & Tseng, V. S. (2014). An

efficient projection-based indexing approach for mining

high utility itemsets, Knowledge and information

systems, vol. 38, no.1, pp. 85–107.

[13] Hong, T.-P., Lee, C.-H., & Wang, S.-L. (2009).

Mining high average-utility itemsets, IEEE International

Conference on Systems, Man and Cybernetics, SMC

2009, pp. 2526–2530.

[14] Lan, G.-C., Hong, T.-P., Tseng, V. S., & others.

(2012). A projection-based approach for discovering

high average-utility itemsets, Journal of Information

science and Engineering, vol. 28, no. 1, pp. 193–209.

[15] Lin, C.-W., Hong, T.-P., & Lu, W.-H. (2010).

Efficiently Mining High Average Utility Itemsets with a

Tree Structure, In Proceedings of Intelligent Information

and Database Systems, pp. 131–139.

[16] Lu, T., Vo, B., Nguyen, H. T., & Hong, T.-P.

(2014). A new method for mining high average utility

itemsets, IFIP International Conference on Computer

Information Systems and Industrial Management, pp.

33–42.

[17] Hong, T.-P., Lee, C.-H., & Wang, S.-L. (2011).

Effective utility mining with the measure of average

utility, Expert Systems with Applications, vol. 38, no. 7,

pp. 8259–8265.

[18] Lin, J. C.-W., Li, T., Fournier-Viger, P., Hong, T.-

P., Zhan, J., & Voznak, M. (2016). An efficient

algorithm to mine high average-utility itemsets,

Advanced Engineering Informatics, vol. 30, no. 2,

pp. 233–243.

[19] Yun, U., & Kim, D. (2017). Mining of high

average-utility itemsets using novel list structure and

pruning strategy, Future Generation Computer

Systems, vol. 68, pp. 346–360.

[20] Lin, J. C.-W., Ren, S., Fournier-Viger, P., & Hong,

T.-P. (2017). EHAUPM: Efficient High Average-Utility

Pattern Mining With Tighter Upper Bounds, IEEE

Access, vol. 5, pp. 12927–12940.

[21] Tseng, V. S., Wu, C.-W., Shie, B.-E., & Yu, P. S.

(2010). UP-Growth: an efficient algorithm for high

utility itemset mining,” in Proceedings of the 16th ACM

SIGKDD, international conference on Knowledge

discovery and data mining, 2010, pp. 253–262.

[22] Lin, C.-W., Hong, T.-P., & Lu, W.-H. (2011). “An

effective tree structure for mining high utility itemsets,”

Expert Systems with Applications, vol. 38, no. 6, pp.

7419–7424.

[23] Lin, J. C.-W., Gan, W., Hong, T.-P., & Tseng, V.

S. (2015). Efficient algorithms for mining up-to-date

high-utility patterns, Advanced Engineering

Informatics, vol. 29, no. 3, pp. 648–661.

[24] Liu, M., & Qu, J. (2012). “Mining high utility

itemsets without candidate generation,” in Proceedings

of the 21st ACM international conference on

Information and knowledge management, 2012, pp. 55–

64.

[25] Fournier-Viger, P., Wu, C.-W., Zida, S., & Tseng,

V. S. (2014). FHM: faster high-utility itemset mining

using estimated utility co-occurrence pruning, in

International symposium on methodologies for

intelligent systems, pp. 83–92.

[26] Krishnamoorthy, S. (2015). Pruning strategies for

mining high utility itemsets, Expert Systems with

Applications, vol. 42, no. 5, pp. 2371–2381, 2015.

[27] Fournier-Viger, P., Lin, J. C.-W., Duong, Q.-H., &

Dam, T.-L. (2016). FHM+: faster high-utility itemset

mining using length upper-bound reduction, in

International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems,

2016, pp. 115–127.

[28] Fournier-Viger, P., Gomariz, A., Gueniche, T.,

Soltani, A., Wu, C.-W., & Tseng, V. S. (2014). SPMF:

a java open-source pattern mining library, The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 3389–

3393.

 نشریه هوش مصنوعی و داده کاوی

 روشی جدید جهت استخراج مجموعه اقلام با متوسط ارزش بالا

 2محمود سلطانیو 1آزاده سلطانی

 .گروه مهندسی کامپیوتر، دانشگاه بجنورد، بجنورد، ایران 1

 .قوچان، قوچان، ایراندانشگاه صنعتی مهندسی کامپیوتر ، گروه 2

 90/90/2900 پذیرش؛ 22/90/2900 بازنگری؛ 22/90/2902 ارسال

 چکیده:

 فای م ج فدر حوزه کاوی اسئئک کا با ع ک داشئئجر کاربردفای اراوا جدیدی از داده ی، شئئا ا(HUIM) وعا اق ام با ارزش بالاممسئئه ا اسئئج را م

آسجانا مورد نظر کمجر نباشد. اقلفدف ایر مسه ا، یااجر تمام م موعا اق امی اسک کا ارزش آنها از حد .مورد توجا بسئااری از مقققا قرار رراجا اسک

فایی با طول باشئئجر بالاتر وافد بود؛ موعاشئئود. از آن ایا ا ارزش م رراجا نمیدر نظر فا م موعا، طول ، برای مقاسئئبا ارزش HUIMدر مسئئه ا

ورژ ، (HAUIM) مجوسط ارزش بالابا طول بالا تولاد وافند کرد. مسئه ا اسج را م موعا اق ام با ،تعداد زیادی الگوی با ارزش HUIMالگوریجمهای

اسک. الگوریجمهای مجعددی برای حل ایر مسئه ا اراها شده رارد.آنها در نظر میفا را ناز در مقاسئبا ارزش اسئک کا طول م موعا HUIMجدیدی از

کا از سئئا جار داده و شئئده اسئئک، الگوریجم جدیدی اراها مجوسئئط ارزش بالاکشئئف م موعا اق ام با ی تققاق، برای سئئرعک ب شئئاد با پروسئئادر ایر

دفد کا روش نشئئا می ،فای واقعی و مصئئنوعی ان ام شئئدهای مجعددی کا بر روی م موعا دادهکند. آزمایشئئهاسئئجرات ی فرج جدیدی اسئئج اده می

 ظر زما اجرا و حااظا مصرای بهجر عمل کرده اسک.از ن HAUIM اع ی ک با روشهایپاشنهادی نسب

 .کاوی، الگوی پرت رار، الگوی با ارزش بالا، الگوی با ارزش مجوسط بالاداده :کلمات کلیدی

