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Abstract 
High utility itemset mining (HUIM) is a new emerging field in data mining, which has gained growing interests 

due to its various applications. The goal of this work is to discover all itemsets whose utility exceeds minimum 

threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and the 

utility values tend to become higher for itemsets containing more items. Hence, HUIM algorithms discover a 

huge enormous number of long patterns. High average-utility itemset mining (HAUIM) is a variation in HUIM 

that selects patterns by considering both their utilities and lengths. In the last decades, several algorithms have 

been introduced to mine high average-utility itemsets. To speed up the HAUIM process, here, a new algorithm 

is proposed, which uses a new list structure and pruning strategy. Several experiments performed on the real 

and synthetic datasets show that the proposed algorithm outperforms the state-of-the-art HAUIM algorithms 

in terms of runtime and memory consumption. 

Keywords: Data Mining, Frequent Pattern, Utility, High Average-utility Itemset. 

1. Introduction 

Nowadays, the quantity of digital data is growing 

exponentially and finding appropriate data is 

increasingly challenging. Hence, it is impossible to 

obtain useful knowledge without computers and 

data mining techniques. Frequent Itemset Mining 

(FIM) is one of the most important tasks of data 

mining introduced by Agrawal [1]. The problem is 

defined as mining the set of frequent patterns. An 

itemset 𝑋 is a frequent pattern, if it appears in a 

dataset more than a predefined threshold. Many 

algorithms have been developed to find frequent 

itemsets [2]–[7]. Most of these algorithms use the 

downward closure property (Apriori property) to 

prune search space; according to this property, if a 

set is frequent, all of its subsets must be frequent as 

well. Frequent patterns are widely used in many 

applications such as market basket analysis, web 

mining, and biological analysis. Since the 

publication of the original paper, several 

researchers have tried to extend this idea, and 

hence many variants of FIM such as temporal 

pattern mining, sequence pattern mining, and rare 

pattern mining have been proposed. 

 

Although frequent pattern mining plays a 

fundamental role in data mining, it assumes that all 

items have the same utility, and their occurrence in 

transactions is binary. Therefore, these algorithms 

cannot find high-utility itemsets in some databases. 

For example, in a supermarket database, items have 

different prices/profits. Moreover, in each basket, 

one item may appear more than once. Frequent 

pattern mining extracts all frequent patterns; 

however, some frequent patterns may have a low 

profit.   High Utility Itemset Mining (HUIM) is a 

generalization of the frequent pattern mining 

problem, which addresses the above issue [8]–[12]. 

In this problem, items can appear more than once 

in a transaction, and they have different utilities. 

Therefore, there are two concepts of internal 

(frequency in the transaction) and external utility 

(the actual utility of the item). The purpose is to 

find the itemsets that provide a higher utility in the 

entire database. The utility of an itemset 𝑋 in a 

transaction is the sum of products of the internal 

utility of each item from 𝑋 and their external utility. 

Moreover, the utility of an itemset in a whole 

dataset is the sum of the itemset utilities in all 
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transactions containing 𝑋. All itemsets whose 

overall utility is greater than the pre-defined 

threshold are considered as high-utility itemsets. 

Finding high-utility itemsets is not an easy task, 

because, contrary to the frequent patterns, the high-

utility patterns do not have downward closure 

property. In other words, a low utility itemset may 

have a high utility supersets. Most of the proposed 

algorithms use overestimation of utility to define a 

new criterion with downward closure property for 

pruning the search space. 

According to the definition of high-utility itemsets, 

as the itemset is longer, it will have a higher utility. 

This causes to generate too many long itemsets as 

high utility patterns. Several methods have been 

proposed to solve this problem. Most of these 

algorithms look for high average-utility itemsets 

instead of finding high-utility itemsets. In other 

words, they try to eliminate the direct impact of the 

number of items on the final utility through 

dividing the itemset utility by its length [13]–[16]. 

An obvious solution is to generate all high-utility 

itemsets and then separate the ones with high 

average utility as output. This method is time-

consuming. Therefore, the goal of the HAUIM1 

methods is to use average utility to reduce the 

search space as well. The primary algorithms work 

based on Apriori such as [13], [15], [17]. These 

algorithms require multiple scans of the database, 

and in each scan, they generate many candidate 

itemsets, which should be counted in the next scan. 

Another category is the tree-based algorithms [15], 

[16], which generate candidate itemsets without 

multiple database scans. These methods generate 

conditional trees recursively, which is also time-

consuming. The list-based methods try to store the 

database in the lists and then explore the lists to 

find high-utility itemsets in a depth first search 

manner [18]–[20]. 

In this research work, a new method is presented 

for discovering high average-utility itemsets. The 

proposed method uses a new list structure and 

pruning strategy to increase the efficiency. The 

major contributions of this paper are as what 

follow: 

- A novel utility list structure is presented, 

which is more compact than the previous 

utility lists. 

- A new algorithm is proposed that can mine 

all high average-utility itemsets using a 

new utility list structure. 

- We also propose a tighter upper bound, 

which provides a more precise estimate of 

                                                      
1 High Average Utility Itemsets Miner 

the average utility, and thus it can further 

reduce the search space.  

- For evaluating the proposed method, 

several experiments have been performed 

on real datasets. 

The rest of the paper is organized as follows. 

Previous works are reviewed in Section 2. In 

Section 3, the problem statement and the required 

preliminaries are described. Section 4 introduces 

the proposed method. The experiments carried out 

are analyzed in Section 5, and Section 6 concludes 

the paper. All symbols are defined in table 1. 

Table 1. Nomenclature. 

Symbol Meaning 

 I  List of all Items 

 T  List of all transactions 

 m  Number of items 

 n  Number of transactions 

 qT  
A transaction 

  ,  j qu i T  Utility of the item   ji  in qT  

  ,   qu X T  Utility of an itemset X  in   qT  

  u X  Utility of an itemset X  in a database 

    qtu T  Utility of   qT  

  ,  qau X T  Average utility of X in   qT  

 au X  The average utility of X  in a database 

   qtmu T  The maximum utility of  qT  

( )AUUB X  Average Utility Upper Bound of X 

 ,  qtmu X T  maximum average-utility of X  in a qT  

 XA  Set of all items a   that    ,b X a b    and 

also      , ,q qu a T au X T  

 

2. Literature survey  

High-utility itemset mining is an extension of the 

frequent pattern-mining problem. As stated in the 

previous section, high-utility itemsets do not have 

the downward closure property, and the search 

space cannot be easily pruned in their mining 

process, because if an itemset has a utility less than 

threshold, a superset of it may have a higher utility 

than the threshold. In other words, a high-utility 

item may be added to a low-utility itemset, which 

may produce a high-utility superset. Therefore, in 

the high-utility itemset mining algorithms, finding 

a pruning criterion that has the downward closure 

property is very important. This criterion should be 

an overestimation of the utility of itemsets so that 
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pruning does not affect the correctness of the 

algorithm. Liu et al. introduced the concept of 

Transaction Weighted Utilization (TWU) for the 

first time [8]. For each itemset X, TWU is equal to 

the sum of the total utility of all transactions that 

contains X. This value is an upper bound, and is 

always greater than or equal to the actual utility of 

the itemset X. Therefore, if it is less than the 

threshold, the utility of the itemset is also less than 

the threshold. This feature has the downward 

closure property. In other words, any superset Y of 

X can only occurs in the same transactions in which 

X appears. Therefore, the sum of the total utility of 

transactions in which Y occurs is less than the sum 

of the utility of transactions in which X occurs. 

Therefore, if TWU of X is lower than minUtil, then 

TWU of all of its supersets will be also less than 

minUtil and can be pruned. Based on this feature, 

Liu et al. [8] introduced a two-step algorithm. In 

the first step, all candidate itemsets whose TWU 

are not less than the threshold are found based on 

the Apriori algorithm with several database scans. 

Then, in the second step, using another scan, the 

real utility of these itemsets are obtained and high-

utility itemsets are discovered. 

Although the Apriori and TWU-based methods 

have reduced the search space greatly, they have to 

scan the database for several times to generate 

candidate itemsets. In order to solve this problem, 

tree-based methods have been introduced. These 

algorithms first convert the database into a tree 

form; then, without having to scan the database, 

they find the candidate itemsets using the data 

stored in the tree and recursive methods[21]–[23]. 

In these algorithms, the search space pruning is 

based on TWU's, i.e. the search space is still large 

and there are plenty of conditional trees, which is 

time-consuming. In addition, these methods have 

to find candidate itemsets that have a TWU greater 

than the threshold, and then find the real utility of 

the itemsets with another scan. 

List-based solutions attempt to generate high-

utility itemsets without the need to generate 

candidate itemsets [24]–[26]. In these methods, 

first, all the necessary information from the 

database is stored in the form of lists in the main 

memory. Then the search space is traversed in 

depth first order, and high-utility itemsets are 

found by extending the patterns, merging the lists, 

and computing the utility of itemsets using 

information in the lists. In these algorithms, the 

memory consumption of the lists and the pruning 

methods are of great importance. 

Since the initial definition of a high-utility itemset 

does not take into account the length of the itemset, 

longer itemsets are more likely to be selected as 

high-utility itemsets. Several algorithms are 

proposed that try to consider the length of an 

itemset in the process of high-utility itemset 

mining. For example, in [27], in addition to the 

utility of an itemset, there is also a limitation on the 

length of the output itemsets, that is, the length of 

high-utility itemsets should be less than the pre-

defined minimum length as well. Several other 

methods are proposed to deal with this problem that 

use the average utility of an itemset instead of its 

utility[14], [15], [17]–[20]. In other words, in order 

to include the length of an itemset in the mining 

process, the total utility of that itemset is divided 

by its length. Contrary to the HUIM problem in 

which it is possible to use TWU for the initial 

pruning, in high average-utility itemset mining, 

TWU cannot be used for pruning because the 

average-utility of an itemset may be less than the 

average-utility of its subsets. For example, if 

 ,qT a b ,  X b  and the utility of a is greater 

than the utility of b, then the utility of qT is equal to 

the sum of the utilities of a and b that are greater 

than the utility of X  , while the average-utility of 

qT  will be less than the average-utility of X . 

Therefore, the transaction maximum utility 

criterion is used as an upper bound for itemset 

utility in these algorithms. The maximum utility of 

each itemset is always greater than the average 

utility of all its subsets. Therefore, the AUUB 

(Average Utility Upper Bound) can be used for 

pruning, which is equal to the sum of the maximum 

utility of the transactions in which the itemset has 

occurred. 

The first algorithm to solve the high average-utility 

itemset mining problem is the TPAU method [17], 

which is based on Apriori. Similar to the two-stage 

methods, this algorithm first finds candidate 

itemsets whose average utility upper bound is not 

less than the pre-defined threshold and then finds 

the real average-utility with rescanning the 

database. Multiple database scans and generation 

of the large number of candidate itemsets are the 

weaknesses of this method. The HAUI-Growth 

method is a tree-based method [15], which 

eliminates the need for multiple scans and 

generation of candidate itemsets by keeping 

information about items and their utilities in a tree. 

The HAUI-Tree [16] is another tree-based method 

that accesses to the database projection in the main 

memory by TIDs, and therefore, there will be no 

need for multiple scans of the database. Some new 

list-based methods such as HAUI-Miner [18], 

MHAU [19], and EHAUPM [20] have also been 
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introduced recently. These methods are explained 

in more details in the next section. 

 

3. Problem statement and required 

preliminaries   

3.1. Problem statement  

 Suppose that  1 2  ,   ,   ,   nD T T T   is the set of 

all transactions, and  1 2,   ,   ,   mI i i i   is the set 

of all distinct items in D . Each transaction is 

presented as  1 2  ,   ,   ,  q lT i i i  , qT D  , which 

has a unique identifier called TID. A k-itemset X  

(  1 2,   ,   ,   kX i i i  ) is a sub-set of I  with k  

items. If an itemset X  is a subset of a transaction 

qT  ( )qX T , then we can say that qT  contains X  

or X  appearing in   qT . The external utility of an 

item ji  is presented as    jpr i  that is equal to the 

profit value of that item. The internal utility of an 

item ji  in a transaction   qT  is represented as

   ,  j qq i T  that is equal to the number of item ji  in 

the transaction   qT . Table 2 shows a sample 

database containing six transactions and six 

distinct items with different utilities. Table 3 

specifies the external utility for each item. 
 

Table 2. A sample database. 

Transaction(item, quantity) TID 

A:2, B:3, C:2, D:4 1 

C:4, E:5, F:1 2 

B:2, C:5, F:6 3 

A:5, B:6, C:4, E:7, F:2 4 

A:3, B:7, C:4, E:5,F:5 5 

D:4, E:6, F:5 6 

Table 3. External utility.  

F E D C B A Item 

4 2 3 1 3 4 Profit 

 

According to table 2, the internal utility of the item 

A in the transaction 1 is equal to 2 and the internal 

utility of the item E in the transaction 4 is equal to 

7. Moreover, according to table 3, the external 

utility of item A is 4 and the external utility of item 

E is 2. 

The following definitions are required in the rest of 

this paper: 

Definition 1 (the utility of the item   ji ): the utility 

of an item ji  in a transaction   qT  is defined as the 

product of    ,  j qq i T  and  jpr i , as: 

For example, in table 2,  E,4 14u   and 

 A,1 8u  . 

 

Definition 2 (the utility of an itemset X  in a 

transaction   qT ): the utility of an itemset X  in a 

transaction   qT  that is represented as  ,   qu X T  is 

calculated as: 

For example,  1,   2 4 3 3 2 1u ABC T      

19 . 

 Definition 3 (the utility of an itemset X  in a 

database D): the utility of an itemset X  in a 

database is defined as: 

 For example,    19 42 37 98u ABC     . 

Definition 4 (utility of the transaction    )qT : the 

utility of a transaction    qT , that is represented as 

   qtu T  is the sum of all its item utilities: 

For example,  1  2 4 3 3 2 1tu T      

4 3 31   .  
 

Definition 5 (the total utility of a database D): 

the total utility of a database is the sum of all its 

transaction utilities, that is: 

For example, 31 18 35 64 54TU     
44 246  .  

Definition 6 (the average utility of a k-itemset in 

a transaction   qT ): the average utility of an itemset 

X  with k items in a transaction   qT  (  ,   qau X T

) is defined as:  

     ,     ,  j q j q ju i T q i T pr i   (1) 

     
 

,     ,  
j q

q j q j

i X X T

u X T q i T pr i
  

   (2) 

   
   

,  
q q

q

X T T D

u X u X T
 

   (3) 

   
 

  ,  
j q

q j q

i T

tu T u i T


   (4) 

 
 

 
q

q

T D

TU tu T


   
(5) 
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In this formula, k  is the number of items in X (

X k ). For example,  1,  au CD T

2 1 4 3
7

2

  
   and  1,  au ACD T

2 4 2 1 4 3
7.33

3

    
 ;  

Definition 7 (the average utility of a k-itemset in 

a dataset D): this utility, denoted as   au X , is 

equal to the sum of the average utilities of X in all 

transactions in D, that is:  

For example,    2,    au EF au EF T

     4 5 6,       ,   ,  au EF T au EF T au EF T  

7 11 15 16 49      

 

Definition 8 (HAUIM: High Average-Utility 

Itemset Mining): the high average-utility itemset 

mining problem attempts to find all itemsets whose 

average-utility in the entire database D is not less 

than the pre-defined threshold (minUtil). This 

value is obtained as: 

where δ is an arbitrary percent value between 0% 

and 100% predefined by the user.  

 Definition 9 (Transaction Maximum Utility): 

previous algorithms for HAUI mining use the 

maximum utility of each transaction to reduce the 

search space. The transaction maximum utility of 

  qT  is presented as      qtmu T , which is equal to 

the largest utility of the items in the transaction   qT . 

This value is obtained by the following formula: 

For example,    2  4,1  0 ,4  10tmu T max  .  

Definition 10 (the Average-Utility Upper Bound 

of the itemset X): this is denoted as AUUB (X) and 

is equal to the sum of the maximum utilities of all 

transactions in which X appears and it is calculated 

as: 

For example,    2   AUUB E tmu T

     4 5 6     tmu T tmu T tmu T  

10 20 21 20 71     .  Table 4 shows AUUBs 

of all items in our running example. 

Table 4. AUUBs.   

F E D C B A Item 

95 71 32 87 77 53 AUUB 
 

3.2 Preliminaries   

In this section, we explain three state-of-the-art 

HAUIM algorithms in more details. 

 

3.2.1 HAUI-miner 

HAUI-Miner [18] uses the AU-List structure to 

store all the required information. In AU-List, there 

is one row for each transaction that contains  X . 

Each row has three fields: tid (transaction   qT  

identifier), iu (real utility of X in the transaction   qT

) and mu (maximum utility of items greater than X 

in the transaction   qT ).  

HAUI-Miner finds the maximum utility of all 

transactions at the first scan of a database, and then 

calculates the AUUB for each item. Then it deletes 

all the items with AUUB less than the threshold 

from the database. For example, if the threshold 

(minUtil) is considered to be 40 in the running 

example, the data item D  is deleted. Then all 

transactions are sorted according to the order of 

AUUB. In the current example, the order of the 

items will be in the form of A E B C Fp p p p . 

The new database is called the modified database, 

and is represented as D . The modified database 

for the current example is shown in table 5. The 

number in front of each item in this table is the real 

utility (the internal utility multiplied by the external 

utility). 

Table 5. Modified database. 

Transaction (item, quantity) TID 

A:8, B:9,C:2 1 

E:10, C:4, F:4 2 

B:6, C:5, F:24 3 

A:20, E:14, B:18, C:4,  F:8  4 

A:12, E:10, B:21, C:4, ,F:20 5 

E:12, F:20 6 

 

 
   

 
  ,  

,  
j q

j q ji X X T

q

q i T pr i
au X T

k

  





 

   
(6) 

   
   

,  
q q

q

X T T D

au X au X T
 

   (7) 

  |  HAUI X au X TU    . (8) 

       |     q j j qtmu T max u i i T  . 
(9) 

   
   

 
q q

q

X T T D

AUUB X tmu T
 

 
ô

 (10) 
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After constructing the AU-lists for all items, all 

high average utility itemsets are generated by 

combining these lists, recursively. Suppose that X  

is the itemset that has extended the prefix P  by 

adding xi (or xX p i  ,  1 2,   ,   , pp i i i  and 

1 2    p xi i i ip p p p ). Then to extend X , it is 

possible to combine it with any itemset Y  (

jY p i  ) where   j xi if . At each stage, pruning 

the search space is performed based on AUUB, and 

the database is projected based on the itemset X . 

In addition, new lists are obtained by combination 

of the previous lists. 

The disadvantage of this method is that the highest 

utilities of items in a transaction is considered as 

the AUUB of all itemsets appearing in that 

transaction. Although this value is usually much 

higher than the real average, it can be used as the 

upper bound in the search space pruning. Hence, 

this method is not efficient and useful in large 

databases. 

 

3.2.2 MHAI 

MHAI uses the remaining items and the remaining 

maximum utilities for efficient pruning [19]. Using 

these new criteria, more candidate itemsets are 

pruned. Similar to HAUI-Miner, the database is 

scanned first and AUUB of all items are computed. 

In the second scanning, transactions are read one 

by one. First, items that have an AUUB less than 

the threshold are removed from the transaction, and 

then the rest of the items are sorted in an AUUB 

ascending order. For each item, ji , that remains in 

the transaction, if its HAI-list has not been created 

yet, an HAI list is created; otherwise, its previous 

list will be updated. In this method, the lists are 

similar to the HAUI-Miner method, with the 

exception that in each list, in addition to the rows, 

the itemset X  and the maximum remaining items 

(mn) are also stored. 

  Definition 11 (the maximum remaining items): 

suppose that a transaction qT  is arranged in an 

AUUB ascending order and xi  is the last item in X. 

If  ,  x qn i T  specifies the number of items that are 

placed in the transaction qT  after xi , the maximum 

number of remaining items (mn) stored in the HAI-

List for the itemset X  is equal to the maximum 

value of  ,  x qn i T  for all transactions qT  where 

X  occurred. It is defined as:  

  Definition 12 (remaining maximal utility): 

suppose that a transaction qT  contains an itemset 

X . The remaining maximal utility is denoted as 

( , )qmu X T  and defined by the following formula. 

Figure 1 illustrates how these HAI-lists are built for 

our running example shown in table 5. Each list in 

this figure is the HAI-list of an itemset. Moreover, 

in figure 1, sections (a), (b), and (c) show the 

updated HAI-lists after processing of 1T , 2T  and 3T  

respectively. For example, by processing the third 

transaction and seeing an item B, since the list of B 

has already been made, it is updated. The utility of 

B in this transaction is 6, and the maximum utility 

after the B belongs to F (24); therefore, it adds a 

row to the previous structure with TID, iu and mu 

utilities of 3, 6, and 24. The maximum number of 

items after B in this transaction is 2, so the mn value 

changes to 2.  

After generating HAI lists in the MHAI algorithm, 

the process of building and combining the lists is 

performed based on the HAUI-Miner method. 

Accordingly,  ylist is combined with xlist  and 

xylist  is built. To build   xylist , for each row e shared 

in  xlist and ylist , a new row e  is built in xylist  and 

its iu is equal to . . . . . .x y plist e iu list e iu list e iu  . (

plist  is the list of the shared prefix; if the itemset 

corresponding to xlist  is a single member, 

. .plist e iu  is considered zero). Besides, its mu is 

equal to . .ylist e mu  and . .xy ylist mn list mn .  

The MHAI method attempts to use pruning before 

generating larger itemsets to reduce the time and 

the memory usage. In this method, a new pruning 

criterion is used, which is stricter than HAUI-

Miner pruning criterion and can reduce the search 

space better. In MHAI, the maximum average 

utility of itemset X  is used. 

 

 

     ,   |x q qmn X max n i T X T   
(11) 

 

( , )

max({ ,   |   })

q

j q j q j x

mu X T

u i T i T i i   f

 
  (12) 
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  Definition 13 (maximum average-utility in a 

transaction): the maximum average-utility of an 

itemset X  in a transaction qT  is denoted as 

   ,   qmau X T , and it is calculated as: 

 

     

 
 

   
 

 

  ,  

, ,
,     , au( ,

, ,
,    0 , au( ,

1

0 ,

)

0

)

q

q q

q q

q q

q q

q

mau X T

u X T mu X T mn X
mu X T X T

X mn X

u X T mu X T
mu X T X T

X

mu X T

  
 





 








 

(13) 

  Definition 14 (maximum average-utility of an 

itemset X In a database D): the maximum average-

utility of an itemset X in a database D is shown by 

 mau X  and obtained as: 

This criterion shows the maximum utility of any 

superset built based on X . Therefore, if this value 

is less than the threshold, the X  extension can be 

excluded because any set built based on X  cannot 

have a high average-utility.  

The recursive procedure of high-average utility 

itemset mining in MHAI first selects a xlist  from 

the lists and calculates the average utility of X, 

which is equal to the sum of the average utility of 

itemset X in all transactions that contain X . If the 

average utility is not less than the threshold, it will 

go to the output as a high average utility itemset. 

Then, the maximum average-utility is calculated 

for this itemset. If it is less than the threshold, the 

recursive process backs to the previous step; 

otherwise, it extends the itemset X  and generates 

new lists based on it.  

One of the weaknesses of this method is the 

unrealistic upper bound considered for the average-

utility of itemsets. In other words, due to 

overestimation, the search space is not well-

pruned, which increases the memory consumption 

and runtime.  

 

3.2.3 EHAUPM algorithm 

The EHAUPM [20] algorithm addresses the MHAI 

problem by defining the optimal upper bound for 

the average-utility as well as the use of various 

strategies in pruning the search space. There are 

three ways to reduce the search space in this 

algorithm. Initially, like similar algorithms, all 

items whose AUUB is less than the threshold are 

deleted from the database. In the second step, the 

AUUB is calculated for all pairs of items in the 

database and stored in the EAUCM matrix. It can 

be concluded that if AUUB of each pair of items is 

less than the threshold, the average utility of the 

whole itemset that is made with these two items is 

also less than the threshold and will prevent them 

from expanding. Moreover, EHMUPM uses two 

tighter upper-bound models (the Looser Upper-

Bound (lub) and the revised tighter upper-bound 

(rtub)) to further reduce the search space for 

mining HAUIs. 

One of the weaknesses of this method is that it 

constructs the co-occurrence matrix and calculates 

    ,  
q

q

X T D

mau x mau X T
 

   (14) 

A mn:2 

TID iu mu 

1 8 9 

 

B mn:1 

TID iu mu 

1 9 2 

 

E mn=2 

TID iu mu 

2 10 4 

 

F mn=0 

TID iu mu 

2 4 5 

 

C mn=1 

TID iu mu 

1 2 0 

2 4 4 

 

A mn:2 

TID iu mu 

1 8 9 

 

B mn:1 

TID iu mu 

1 9 2 

 

C mn:0 

TID iu mu 

1 2 0 

 

a) HAI-lists after processing 1T  

b) HAI-lists after processing 2T  

A mn:2 

TID iu mu 

1 8 9 

 

B mn:2 

TID iu mu 

1 9 2 

3 6 24 

 

E mn=2 

TID iu mu 

2 10 4 

 

F mn=0 

TID iu mu 

2 4 0 

3 24 0 

 

C mn=1 

TID iu mu 

1 2 0 

2 4 4 

3 5 24 

 
c) HAI-lists after processing 3T  

Figure 1-AU-lists after processing 1T , 2T  and 3 T . 
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AUUB for each pair of items, which affects the 

speed and the amount of memory used for large 

databases. 

 

4. Proposed algorithm 

The HAUI_Miner algorithm uses the projected 

database. Although the authors' goal is to reduce 

the search space and runtime of the algorithm, 

constructing the projected database itself is time- 

consuming, If the database is projected for each 

item in the mining process, the database has to be 

scanned for several times, which is very time-

consuming. In addition, if all sub-databases are 

created in the first scan, the algorithm requires a lot 

of memory to save them. In contrast to HAUI-

Miner, the MHAI method, initially removes all 

items with low AUUB from the database and then 

stores all the required information in a list 

structure. Several experiments in the corresponding 

paper show that MHAI occupies less memory than 

HAUI-Miner. Moreover, this algorithm uses a 

tighter criterion for pruning, which makes the 

search space more pruned, and thus has a lower  

running time than HAUI-Miner.  

In the proposed algorithm, a new structure for 

storing information and a new method for pruning 

the search space are introduced, which would 

increase the efficiency. 

 

4.1. Proposed structure 

In the proposed algorithm, similar to the previous 

methods, after AUUB calculation for all items, 

those items with AUUB less than the threshold are 

removed from the database. Then, the required 

information of the database is stored in a TID list 

structure and a set of transactions.  

For each item, the TID list stores the TID of all 

transactions containing that data item. This 

structure for our running example is shown in 

figure 2. In contrast to the AU-list structure in the 

previous approaches, we do not save the item 

utility and remaining maximal utility in this 

structure. Hence, memory consumption of each 

row in the proposed structure is one-third of that in 

the previous methods. 

Instead of storing in AU-lists, we store some 

necessary information in a transaction list, i.e. all 

transactions are stored in another separate list. 

There is one element for each transaction that 

contains two arrays (one array for the transaction 

items and another for their corresponding utilities). 

Figure 3 shows this structure. This transaction list 

is also used for pruning.   

Since for each candidate itemset we should create 

an AU-List, the memory consumption for AU-lists 

is proportional to the number of candidate itemsets 

(  #   O Candidate Itemset ). Hence, tighter 

pruning causes to generation of less candidate 

itemsets and lists, which leads to less memory 

usage. As a result, pruning unpromising candidate 

itemsets can compensate for the transaction list 

overhead in the proposed method. Moreover, 

EHAUIM stores AUUB for all pair items in the 

ECAUPS structure, which needs  2o m  memory 

space (where m  is the number of distinct items in 

the dataset). 

 
{E,F} 

{12,20} 
{A,E,B,C,F} 

{12,10,21,4,20} 
{A,E,B,C,F} 

{20,14,18,4,8} 
{B,C,F} 
{6,5,24} 

{E,C,F} 
{10,4,4} 

{A,B,C} 
{8,9,2} 

4.2. Mining process 

The search space is represented as an enumeration 

tree. Each node is an itemset that may be a high 

average utility itemset. The proposed algorithm 

scans the search space using a depth-first search. At 

each step, the itemset X  is extended by adding an 

item (whose AUUB value is greater than the 

AUUB of all items appearing in X ). As an itemset 

expands, the average-utility of the extended itemset 

is calculated. If it exceeds the pre-defined 

threshold, it is added to the HAUI list. Suppose that 

X  is an itemset that has extended the prefix P  by 

adding xi  (or  1 2  ,   ,   , pp i i i  , xX p i   and 

1 2    p xi i i ip p p p ); Then, we can extend X  

by combining it with a set Y  (
yY p i   that 

y xi if ) to construct a new candidate itemset XY  

(
x yXY p i i   ).  The TID lists of XY  is 

achieved by intersection of the TID lists of X  and

Y . The average-utility of XY is calculated using 

this list and the information stored in the 

transaction set. In other words, it is possible to 

retrieve the utility of the items and calculate the 

average utility by referring directly to the 

transactions specified in the TID list. 

Figure 2. TID lists for modified database in Table 

5. 

A 

1 
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5 
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1 

3 

4 

5 

 

E 

2 

4 

5 

6 

 

C 

1 

2 
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F 

2 

3 

4 

5 

6 

 

Figure 3. The array structure for storing all 

transactions. 
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As mentioned earlier, since the downward closure 

property does not hold for the average-utility value, 

an itemset might have a low average utility value 

but one of its extended might has a high average 

value. Therefore, if during the exploration of the 

search space a low utility itemset appears, it should 

be extended and cannot be pruned. Due to the large 

size of the search space, finding an appropriate way 

to prune it is necessary. The HAUI-Miner method 

uses the transaction maximum utility for pruning. 

This overestimation cannot prune the search space 

well. In the MHAU method, instead of the 

transaction maximum utility, the remaining 

maximum utility is used, which is closer to reality. 

However, for the calculation of the maximum 

average-utility, the number of remaining items is 

also required. To save the memory, instead of 

keeping the number of remaining items for each 

transaction containing X , the largest one is stored 

and calculations are made based on it. This also 

leads to having looser upper bound.  

In the proposed method, TID list of an itemset X
stores all TIDs of transactions that contain X. Since 

all the required information about transactions is 

stored in the transaction set, we can access to them 

using their TID. Hence, the maximum average 

utility for any supersets of X  can be estimated 

more precisely because the utility of all remaining 

items are available.   

Definition 15 (the maximum average utility of an 

itemset X  in a transaction qT ): as mentioned 

earlier,  u X  is the real utility of X  in the entire 

database and  , qu X T  is the real utility of X  in 

the transaction   qT ; assume that XA  is the set of all 

items that are larger than all items of X  in AUUB 

order and also have a utility value greater than the 

average utility of X , that is: 

The maximum average utility of an itemset X  in a 

transaction qT  is denoted as    ,   qmau X T ,  and is 

calculated as: 

To achieve '  XA , XA  is arranged in the ascending 

order of utility values in qT  and then items of XA  

are added to 
'

XA  from the largest utility to the least 

until the average utility decreases. 

  Definition 16 (maximum average-utility of an 

itemset X in a database D): similar to formula 14, 

if the    ,   qmau X T  value for all transactions that 

contain X is summed-up, the maximum average-

utility of an itemset X is obtained in the entire 

database. 

  Theorem 1:    ,   qmau X T  is greater than or 

equal to  ,   qau X T  (average utility of X). 

PROOF:  

 
   '

'
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    ,   ,  q qmau X T au X T  ■ 

 

  Theorem 2: MAU has downward closure property 

PROOF: Suppose that X z  is one of the X  

supersets. If mau has a downward closure property, 

 ,   qmau X T  should be greater than or equal to 

the mau of all of its supersets (

   X z,   X,  q qmau T mau T  . Based on the 

utility of the new added item ( z ), two modes 

happen:  

First mode: the utility of z  in   qT  is equal to or 

greater than the average utility of X in qT ; in other 

words,  ( , ) au X,q qu z T T . Accordingly, 

Xz A and the average utility of X z  is greater 

than or equal to  au X, qT . Hence, 

X z XA z A   , thus    X z Xmau mau   

( ) )}

{ |    &    

, ( ,

X q

q q

A a a T b X

a b u a T au X T

   

   
 

(15) 
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Second mode: the utility of the element z in qT is 

less than the average utility of X ; in other words, 

 ( , ) au X,q qu z T T . In this case, X zA   is 

defined as: 

 
 

    

X z      &    ,

    &    &  , ,  

M

X

N

q q

A a a A a z

a a X a z u a T au X T

   

  

6 4 4 4 7 4 4 4 8

6 4 4 4 4 4 4 4 7 4 4 4 4 4 4 4 8
 

Suppose that M   and N  are sub-sets of M  and 

N , for which the maximum utility of X zA   is 

achieved. The average utility of the items of N  is 

less than  , qau X T  and the average utility of the 

items of M   is greater than  , qau X T .  
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Since X  is a sub-set of  X z , the transactions 

containing  X z  are subsets of transactions that 

contain X . Moreover, mau is a positive value; 

hence: 
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 
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
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   X zmau mau X   ■ 

At the mining step, all itemsets are expanded 

according to the search space shown in figure 4. As 

the X  set is extended, the transaction data is 

accessed based on the TID list and its real average-

utility is obtained. If this value is greater than the 

threshold, X  is added to the list of high average-

utility itemset. Then, mau is calculated for all 

itemsets, whether they have a high utility or not. If 

( )mau X is less than the threshold, since 

( )mau X is the upper bound of average-utility that 

a superset X  can have, it is not possible to find a 

superset in the search space whose average utility 

is more than the threshold. Therefore, the subtree 

of the X  itemset in the search space is pruned. 

Reducing search space generates fewer candidate 

itemsets and thus reduces the memory and time 

required to create TIDs and calculate the real 

average-utility. 

Figure 4. Search space base on the modified 

database in Table 5. 

Since in the new pruning method uses the real value 

of utilities instead of using the maximum utility, 

the estimation is closer to reality, which makes the 

search space more pruned than the previous 

methods. 

 

5. Evaluation 

In this section, the proposed method has been 

compared in terms of runtime, memory 

consumption and candidate count with two state-

of-the-art algorithms (EHAUPM and MHAI 

algorithms [17], [18] ).  

The code for the EHAUPM algorithm is taken from 

the SPMF package [28]. In this package, more than 

150 algorithms are implemented in the field of data 

mining, frequent pattern mining, and association 

rules in Java. We have implemented the MHAI 

algorithm and the proposed algorithm in Java as 

well. All experiments are carried out on a computer 

with Windows 10, Intel Corei3, 2.40GHz, 4GB 

RAM. In order to compare the performance of the 

proposed algorithm with the existing algorithms, 

three real datasets and 5 synthetic datasets are used. 

Information about these datasets is presented in 

table 6. It should be noted that the execution of the 

EHAUPM algorithm on the Connect database had 

out of memory error, and information about this run 

is not provided in the comparisons.  

Table 6. Parameter of the databases. 

Database Transaction Count 
Unique 

Item Count 

Average 

Transaction 

Length  

accident 340183 468 33.8 

Chess 3196 75 37 

Connect 67557 129 43 

T35 I100D|X|K X×1000 (x=1 to 5) 100 35 

 

5.1. Memory usage 

In this sub-section we investigate memory 

consumption of the algorithms (the proposed 
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algorithm, EHAUPM, and MHAI). The peak 

memory consumption of the algorithms has been 

measured by utilizing the standard Java API. The 

results obtained are shown in figure 5 and table 7. 

Accordingly, with increasing minUtil (TU  ), 

memory consumption decreases. The reason is that 

by increasing the minUtil, the minimum average-

utility will also increase and the search space is 

likely to be reduced due to the more pruning. Thus 

less memory space is required. 

As it can be seen in figure 5, the memory 

consumption in the proposed algorithm is far less 

than the other algorithms. In comparison to 

EHAUPM and MHAI, the proposed method can 

reduce memory consumption by up to 10 and 6 

times, respectively. This reduction has two reasons; 

firstly, the proposed method optimizes the list 

structure, and secondly, it chooses a better strategy 

for pruning, which reduces memory consumption. 

Moreover, although EHAUPM, in some situation, 

can prune more candidate itemsets, storing 

ECAUPS structure causes a memory overhead of 

 2o m . 

 

5.2. Runtime 

Figure 5 and table 7 show the runtime of the 

algorithms for different minimum average utility 

thresholds. Note that, runtime, here, means the total 

time used for running the algorithms, which is the 

period between input and output. As the minimum 

average utility increases, the number of itemsets 

whose utilities are greater that minimum threshold 

are decreased and runtime decreases as well.  

According to figure 5, the performance of the 

proposed algorithm is far better than EHAUPM 

and MHAI. More specifically, it is 5-14 times 

faster than MHAI and 15-367 times faster than 

EHAUPM. The reason is that our proposed 

approach can prune more unpromising candidate 

itemsets compared to EHAUPM and MHAI, and it 

does not require to perform the costly join 

operation for creating the supersets of these pruned 

candidate itemsets.  MHAI uses the maximum 

remaining items and remaining maximal utility to 

estimate maximum average remaining utility of an 

itemset X . It assumes that all transactions 

approximately have the same length and it stores 

only one mn  value for X  (maximum number of 

items that appear after the last item of  X in all 

transactions containing X ). Also assumes that the 

item utilities in a transaction approximately are the 

same and only stores the remaining maximal utility 

for each transactions in the AU-lists. Since the 

maximum average utility for X  is calculated 

based on these values, the difference between the 

estimated and actual value, may become high; 

especially when the difference in length of 

transactions or item utilities is high, the MAU 

estimation will become very high, which causes to 

generate many candidate itemsets. Furthermore, 

EHAUPM needs to construct ECAUPS (Estimated 

Average-Utility Co-Occurrence Matrix) that stores 

the AUUB values of all 2-itemsets. If l  is the 

average length of each transaction, there will be 
2l  

pair of items in each transaction whose utilities 

should be evaluated for calculating the auub  

value. Hence, the time complexity overhead of   

ECAUPS construction is  2 O l n ; in 

consequence, it is expected that, in comparison to 

the MHAI and the proposed approach, EHAUPM 

does not perform well in dense and large datasets. 

 

5.3. Number of candidate itemsets 

As described earlier, in each step of the HAUIM 

algorithms, the search space is explored and the 

candidate itemsets is generated. For each candidate 

itemsets, AU-list structure should be constructed to 

verify that the candidate itemset is HAUI or not.          

Accordingly, as the number of candidate itemsets 

increases, the algorithm slows down and its 

memory consumption increases.   Hence, it is an 

important factor for comparing HAUI mining 

algorithms. The number of generated candidates is 

displayed in figure 5 and table 7. Due to the tighter 

pruning strategies, the proposed algorithm 

generates much less candidate itemsets than the 

other two algorithms.  
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Table 7. Memory consumption, runtime, and candidate count for various average utility thresholds. 

 Connect Accidents Chess 

  

δ  

The 

Proposed 

Algorithm 

MHAI 
 

δ  

The 

Proposed 

Algorithm 

EHAUPM MHAI 
 

δ  

The 

Proposed 

Algorithm 

EHAUPM MHAI 

M
e
m

o
ry

 

(M
B

) 

0.045 332 747 0.041 486 729 669 0.047 112 292 300 

0.046 258 762 0.043 498 687 656 0.051 67 298 237 

0.047 266 775 0.045 457 707 705 0.056 44 284 162 

0.048 289 753 0.047 413 701 638 0.060 36 269 201 

0.049 255 762 0.049 372 693 675 0.065 28 291 176 

0.050 255 748 0.051 360 681 537 0.069 112 292 300 

R
u

n
ti

m
e
 (

S
) 0.045 14.5 192.3 0.041 14.4 207.2 41.5 0.047 1 288.5 4.8 

0.046 10.5 139.8 0.043 10.6 164.6 27.6 0.051 0.4 150.6 2.1 

0.047 10.5 109.2 0.045 10.6 128 16.1 0.056 0.2 75.2 1 

0.048 8.8 86.6 0.047 9.7 102.2 16.5 0.060 0.1 40.5 0.6 

0.049 6.8 68.6 0.049 10.6 68.1 14.6 0.065 0.09 20.7 0.4 

0.050 5 51.7 0.051 7.3 49.9 12.5 0.069 0.06 10.8 0.2 

C
a

n
d

id
a

te
 

C
o

u
n

t 

0.045 693 46810 0.041 167 4456 705 0.047 919 1214999 27691 

0.046 571 36048 0.043 72 3363 449 0.051 468 604849 13564 

0.047 514 28405 0.045 72 2554 322 0.056 203 304258 7172 

0.048 435 22300 0.047 60 1882 266 0.060 98 152331 3572 

0.049 314 17327 0.049 54 1320 225 0.065 43 75924 2061 

0.050 215 13406 0.051 41 941 215 0.069 25 37833 1018 

 

5.4. Scalability assessment 

In this section, we compare the scalability of the 

compared algorithms in terms of runtime, memory 

usage, and candidate itemset counts. The 

algorithms are performed on several synthetic 

datasets. For creating the synthetic datasets, we use 

the database generator tool [28]. We generate 5 

datasets with 100 items. Each transaction has up to 

50 items, and the number of transactions varies 

from 100,000 to 500,000 transactions. We indicate 

this datasets by T35I100D|X|K, in which X  varies 

from 100 to 500 using an increment of 100(K) 

transactions. The minimum high average threshold 

is set to 0.01TU   for all datasets. Figure 6 shows 
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Figure 5. Memory consumption, runtime, and candidate count for various average utility thresholds. 
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the runtime and memory consumption of the 

compared algorithms on the five synthetic datasets 

mentioned above. Besides, for a better illustration, 

the candidate itemset counts are represented in the 

bar graph format in figure 7. As shown in this 

figure, since the data distribution is constant in 

these datasets, the number of high average utility 

and also the number of candidate itemsets are 

approximately equal in all datasets regardless of 

dataset size. The results obtained show that the 

proposed method generates much less candidate 

itemsets than EHAUPM and MHAI.  

Although the number of AU-Lists (number of 

candidate itemset counts) are approximately equal 

in all datasets but the size of AU-Lists is different  

because as the number of dataset transactions 

increases, the number of entries in each AU-list 

also increases, and accordingly, the time required 

for joint operations becomes higher. This causes a 

significant reduction in the runtime of the proposed 

method in comparison with the other approaches 

due to the much lower candidate itemset count 

(which is illustrated in Figure 6). 

Furthermore, figure 6 reveals that the memory 

usage of EHAUPM and AHIM is raised as the 

number of transactions is increased. However, 

since our proposed approach has a more compact 

AU-Lists (it only store TIDs), dataset size does not 

influence much in its memory usage. Accordingly, 

we can determine that the proposed algorithm has 

the highest scalability performance among the 

compared algorithms. 

Moreover, as shown in figure 5, the proposed 

algorithm runtime for real datasets increases 

linearly by decreasing the minimum average utility 

threshold. However, it is non-linear in other 

algorithms, which confirms the scalability of the 

proposed algorithm. 

 

6. Conclusion 

In this paper, a new list-based algorithm has been 

proposed for high average-utility itemset mining 

task. In the proposed algorithm, an optimal 

structure was introduced to store the lists. 

Decreasing of the list size will reduce the memory 

consumption of the proposed algorithm. Besides, a 

new strategy has been proposed to prune the search 

space. Tighter pruning causes generation of less 

candidate itemsets and lists, which reduces the 

memory usage and increases the speed of the 

algorithm. Several experiments have been carried 

out to evaluate the proposed algorithm on real and 

synthetic datasets. The results obtained show that 

the proposed algorithm is more efficient than the 

state-of-the-art algorithms in terms of time, 

memory, and number of generated candidate 

itemsets; more specifically, in the performed 

experiments, the proposed method is 5-14 times 

faster than MHAI and 15-367 times faster than 

EHAUPM. Moreover, the peak memory usage of 

the proposed method is reduced by up to 10 times. 
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 روشی جدید جهت استخراج مجموعه اقلام با متوسط ارزش بالا
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 .گروه مهندسی کامپیوتر، دانشگاه بجنورد، بجنورد، ایران 1

 .قوچان، قوچان، ایراندانشگاه صنعتی مهندسی کامپیوتر ، گروه  2

 90/90/2900 پذیرش؛ 22/90/2900 بازنگری؛ 22/90/2902 ارسال

 چکیده:

 فای م ج فدر حوزه کاوی اسئئک کا با ع ک داشئئجر کاربردفای اراوا جدیدی از داده ی، شئئا ا(HUIM) وعا اق ام با ارزش بالاممسئئه ا اسئئج را  م 

آسجانا مورد نظر کمجر نباشد.  اقلفدف ایر مسه ا، یااجر تمام م موعا اق امی اسک کا ارزش آنها از حد .مورد توجا بسئااری از مقققا  قرار رراجا اسک

فایی با طول باشئئجر بالاتر  وافد بود؛ موعاشئئود. از آن ایا ا ارزش م رراجا نمیدر نظر فا م موعا، طول ، برای مقاسئئبا ارزش HUIMدر مسئئه ا 

ورژ  ، (HAUIM) مجوسط ارزش بالابا طول بالا تولاد  وافند کرد. مسئه ا اسج را  م موعا اق ام با  ،تعداد زیادی الگوی با ارزش HUIMالگوریجمهای 

اسک. الگوریجمهای مجعددی برای حل ایر مسئه ا اراها شده  رارد.آنها در نظر میفا را ناز در مقاسئبا ارزش اسئک کا طول م موعا HUIMجدیدی از 

کا از سئئا جار داده و  شئئده اسئئک، الگوریجم جدیدی اراها مجوسئئط ارزش بالاکشئئف م موعا اق ام با ی تققاق، برای سئئرعک ب شئئاد  با پروسئئادر ایر 

دفد کا روش نشئئا  می ،فای واقعی و مصئئنوعی ان ام شئئدهای مجعددی کا بر روی م موعا دادهکند. آزمایشئئهاسئئجرات ی فرج جدیدی اسئئج اده می

     ظر زما  اجرا و حااظا مصرای بهجر عمل کرده اسک.از ن HAUIM اع ی ک با روشهایپاشنهادی نسب

 .کاوی، الگوی پرت رار، الگوی با ارزش بالا، الگوی با ارزش مجوسط بالاداده :کلمات کلیدی

 


