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conjugate transposed of the corresponding matrix, 

SU  is a unitary matrix and   is a diagonal matrix 

with the first N k  diagonal entries equal to 1 and 

the remaining entries equal to zero, we obtain: 

 
2 2*

2 2 2* *

2 2 2
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N k

y U U Ax n

U U n U n n

n n n





   

     

     

 

in which each element of vector 
*
Sn U n   is an 

i.i.d random variable with distribution 
2(0, )N  . 

Thus 
2

2

1
SAG y


   is a chi-square random 

variable with N k  degrees of freedom. 

Again, by multiplying both sides of the observation 

model by 
Ŝ

A
 , we get  

ˆ ˆS S
A Ay Ax n    . By 

substitution 
ˆ

*
ˆ ˆ

S
A S S

U U   , in which 
Ŝ

U  is a 

unitary matrix and the first N k  diagonal entries 

of diagonal matrix   are equal to 1 and the 

remaining entries are equal to zero, we get: 
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where, ia  is the i -th column of matrix A . For all 

ˆ\i S S , vector 
*
ˆi iS

a U a   has i.i.d entries each 

with distribution (0,1)N , and vector 
*

Ŝ
n U n   

has i.i.d entries, each with distribution 
2(0, )N  . 

Consequently, iz  has also i.i.d entries each with 

distribution 
2
1(0, )N   such that 

22 2
ˆ1 \ qq S S
x 


   Again, 

ˆ

2

2
1

1ˆ
S

AG y


   

is a chi-square random variable with N k  

degrees of freedom. For 0  , consider the 

following two error probabilities: 
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2

21
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N k
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                (9) 
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We have: 
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           (11) 

in which  1,h k . When 1h  , the zero-one 

error metric is considered. As it can be inferred 

from (11), 1h   means that the error is computed 

for all non-zero positions that are estimated 

incorrectly, and in the summation, their appropriate 

error events are taken into account, whereas 

h k  means that the error is computed when the 

number of non-zero positions that are incorrectly 

estimated exceeds a certain amount, k . The first 

term in the right hand side is probability of event 
C
SE , which is occurrence of the complement of the 

true support set. The second term comprises all 
Ŝ

E  

events that occur when y and Ŝ  are   jointly 

typical or when S  and Ŝ  overlap in q < k indices. 

  is the distortion parameter. Here, we have 

assumed that  2 2
minmin ,x  . 

  

3.2. Results 

Theorem 1- From the k-sparse signal 
Mx R  with 

the support (2), a linear noisy observation 

y Ax n   is generated. Elements of 
N MA R   

are drawn from standard Gaussian distribution 

(0,1)ija N , and 
2(0, )N Nn N   is the 

additive Gaussian noise. Assume that 

( )Srank A k  and for any set  1,2,...,T M  

with T k , let ( ( ) ) 0TP rank A k  . For 

0   the probability of support recovery error is 

bounded above according to the following 

equation: 

eDP U                                                             (12) 

where, 1 2 3U A A A   , and 1A , 2A  and 3A  are 

as follow: 
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(15) 

in which: 

1
3 2 61

8 1 4 1 1
2 2 2 100

N k N k N k
G

        
                   

 , 

2 2 2
1,min minqx   , 

and min mini S ix x . h  is 1 for zero-one error 

metric and k  for error metric 2. 

Theorem 2- From the k-sparse signal 
Mx R  with 

support (2), a linear noisy observation y Ax n   

is generated. Elements of 
N MA R   are drawn 

from standard Gaussian distribution (0,1)ija N , 

and 
2(0, )N Nn N   is additive Gaussian noise. 

Assume that ( )Srank A k  and for any 

 1,2,...,T M  with cardinality 𝑘, let 

( ( ) ) 0TP rank A k  . The sufficient condition 

for an exact support recovery in the high-

dimensional setting is as follows: 

22
min

2 2
min

max , .
x

N k
x



  

    
    

      
              (16) 

In fact, theorem 2 gives the condition on the 

number of observations such that 0eDP   as k  

and consequently, M  and N  grow large. 

 

 

 

4.  Proofs 

In what follows, two sub-sections, proofs and 

further discussions, are provided. 

 

4.1.Proof of theorem 1 
As it was mentioned in Section 3, 

2

2

1
SAG y


   is a chi-square random variable 

with N k  degrees of freedom. Using the 

probability distribution function of a chi-square 

random variable, we have: 

 

 

 

 

 

 

1

2

2
2

2

2

2

12

0

1

2

1

1
exp
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 (17)  

in which: 

,
2

N k
z


  

1 2
,

N
c N k




    

2 2
.

N
c N k




       

Since we are assuming that 1 0c  , we have: 

2

2

N

k




 
 


                                            (18) 

We put an upper bound on the right hand side of 

(17) and show that it tends to zero as the problem 

dimensions grow large. We know that the first and 

second integrals in (17) are the lower and upper 

incomplete gamma functions, respectively. 

We use the following lemmas, which applies to any 

gamma, lower incomplete gamma, and upper 

incomplete gamma functions to upper bound the 

integrals [25-27]. 
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Lemma 1. Let 1u   and real; then: 
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Lemma 2. For 1

2

c
z , the following inequality 

holds: 
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Lemma 3. For 1x  , 1B   and ( 1)
1

B
y x

B
 


 the 

following inequality holds: 

     1 1exp , expx xy y x y By y         (18)  

 

The first integral in the right hand side of (17) can 

be bounded using the lower bound of the gamma 

function in (19) and the upper bound of the lower 

incomplete gamma function of (20). The second 

integral can be bounded using the lower bound of 

the gamma function in (19), and the upper bound 

of the upper incomplete gamma function in (21). 

Thus we get: 
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Similarly, we know that 
ˆ

2

2
1

1ˆ
S

AG y


   is a chi-

square random variable with N k  degrees of 

freedom. Thus we have: 
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where 
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and consequently: 
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                              (24) 

where, for the zero-one error metric and error 

metric 2, h is 1 and k , respectively. 

4.2. Proof of theorem 2 

In order to prove that 0eDP   asymptotically, it 

is sufficient to show that the upper bound of (24) 

tends to zero as k  grows large. Since the linear 

regime is assumed, we have ,( 2)M k    and 
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also we assume that ,( 1)N k   . It is 

straightforward to show that 1A  and 2A  tend to 

zero asymptotically. We write:   
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where, M  and N  are written in terms of k . Using 

(18), one can show that the first term in the right 

hand side converges. For the second term to 

converge, it suffices to show: 
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we have: 
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(28) 

To get rid of summation, we obtain the maximizer 

of (28) in terms of q . We replace q  with a 

continuous counterpart  1,x k . Consider the 

function below, which is part of 3A  that contains 

x : 

exp 2 log

( )

z
a b b

x
x x c x c

g x
b

z
x c

     
           
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                (29) 

in which: 
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One can show that ( )g x  is strictly ascending 

when: 

2
min

2
min

x

x






                                                         (30) 

3A  reaches its maximum value when q k . 

Therefore, it is easy to show that the right hand side 

of (28) tends to zero as k  tends to infinity. For 

error metric 2, the expression must tend to zero for 

k  larger than h . This result is also applied for the 

error metric 2. Considering (18) and (30), the 

sufficient condition is derived. 

In the previous similar work [20], an assumption 

was considered for 
2
minx , where: 

 

2
min

log

kx
as k

k
   

The reason for accepting this condition is that in the 

noisy setting, when elements of x are arbitrarily 

small, a perfect recovery is not possible. 

Furthermore, condition (30) does not conflict with 

this outcome since one can result this condition 

from (30). 

 

5.  Simulation results 

In this section, a simulation is provided, which 

shows the efficiency of the proposed method. 

Settings of the problem parameters is such that 

condition (18) is satisfied. A comparison is made 

between our results and the previous similar work 

[20]. The upper bound of the error probability 

derived in [20] is denoted by V . In Figure 2, U  is 

the proposed upper bound. For the zero-one error 

metric U  is depicted as a function of k  for three 

different values of   and it is compared with V . 

It is shown that the convergence rate of U  is more 

than that of  V . As it is expected, for k  sufficiently 

large, U  is a sharper upper bound for the error 

probability compared with V . To achieve a pre-

defined distortion level, a stricter upper bound 



Shaeiri et al./ Journal of AI and Data Mining, Vol 8, No 1, 2020. 
 

22 

 

results in obtaining fewer number of measurements 

for the support recovery. Obviously, using a sharp 

upper bound does lead to a considerable 

improvement in the sufficient condition. Another 

worth mentioning issue that can be inferred from 

Figure 2 is that U  shows more sensitivity to 

changing   than V . A very small increase in   

decreases U  somehow but has no significant effect 

on V . Sensitivity to   which means sensitivity to 

the number of measurements, is an expected 

property for a good upper bound. Thus U  provides 

a more exact value for   than V  does. In Figure 

3, U  and V  are plotted versus k  while 2  

decreases. Decreasing 
2  makes both U  and V  

to decrease, which is expected. Again, it can be 

seen that sensitivity of U  to changing 
2  is more 

than that of V . This featuree is not an 

improvement itself but it is not very important 

since for a sufficiently large k , U  is negligible 

against V .  

Totally, the simulation results show that using the 

proposed approach enhances the sufficient 

condition for the support recovery. In fact, the 

previous upper bound V  imposes the need for 

some additional measurements. Since this bound is 

derived based on chi-square tail bounds and it is 

very loose, it cannot provide a near to exact 

sufficient condition (required number of 

measurements). It can only give an approximation 

of the sufficient number of measurements for 

sparsity recovery. However, as it is confirmed by 

simulations, since the proposed upper bound U  is 

very close to the exact error probability, it results 

in increasing the accuracy in sufficiency proof.   

Figure 2. Upper bound of the error probability as a 

function of 𝑘 for three different values of 𝛽. It is shown 

that the convergence rate of U and also its sensitivity to 

changing 𝛽 are more than those of V. For a desired 

distortion level, using U as the upper bound of the error 

probability results in a smaller 𝛽 than using V.

Figure 3. Upper bound of the error probability as a 

function of 𝑘 for two different values of 𝜎2. 

6. Conclusion 

In this work, we examined the sufficient condition 

for the sparsity pattern recovery. The analyses were 

based on a joint-typicality decoder. Considering 

the linear regime, when the sensing matrix 

contained i.i.d. normal random entries and the 

noise was Gaussian, we computed an upper bound 

on the probability of error. It was shown 

analytically and also using simulations that the 

derived upper bound was tighter than the previous 

loose upper bounds, which were derived based on 

the chi-square tail bounds. Based on the proposed 

upper bound, a sufficient number of measurements 

for an exact sparsity pattern recovery was obtained. 

It was shown that the sufficient number of 

measurements for an exact support recovery 

depends on the noise variance, the minimum 

nonzero entry of the unknown sparse vector, and 

the sparsity level, and it was shown to improve the 

existing results [20]. This work can further be 

extended to arbitrary sensing matrices. 
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