

Journal of AI and Data Mining

Vol 8, No 1, 2020, 67-82. DOI: 10.22044/JADM.2019.7207.1854

 Segmentation Assisted Object Distinction for Direct Volume Rendering

A. Azimzadeh Irani* and R. Pourgholi

School of Mathematics and Computer Science, Damghan University, Damghan, Iran.

Received 25 June 2018; Revised 12 August 2018; Accepted 07 April 2019

*Corresponding author: a.azimzadeh@du.ac.ir (A. Azimzadeh Irani).

Abstract

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital

applications in medical and biological imaging. Nevertheless, it is inherently open to the cluttered classification

results. It suffers from the overlapping transfer function values and lacks a sufficiently powerful voxel parsing

mechanism for object distinction. In this work, we propose an image processing-based approach towards the

enhancing ray casting technique for the object distinction process. The rendering mode is modified to

accommodate masking information generated by a K-means-based hybrid segmentation algorithm. An

effective set of image processing technique is creatively employed in the construction of a generic

segmentation system capable of generating object membership information.

Keywords: Hybrid Image Segmentation, Volume Rendering, Enhanced Visualization Effect.

1. Introduction

Given the great dependency of human analysis and

judgment abilities on realistic and sensible

visualization, appropriate volume rendering

techniques for effective visualization may be

deemed fundamental. Most of the currently

available direct volume rendering methods such as

ray casting, shear-warp, splatting, and texture

mapping employ basic transfer function(s) for

object distinction. However, a major drawback of

using these methods is that all voxels of a

volumetric dataset are treated in an identical

manner without using any priori information that

specifies object membership on a per-voxel basis

[1]. Inability to properly distinguish among

multiple objects of interest solely based on transfer

function is often the case. Segmentation is a

formidable approach for handling this problem. It

infers object membership information for each

object of interest, yielding a tag for each voxel in

the volume. In this context, explicit and implicit

designs have been introduced by different research

works. The former is concerned with technicality

of adapting readily available object membership

information into a particular rendering mode or

combination of rendering modes, while the latter

summons its own set of object membership

information via a carefully designed segmentation

system, giving peculiar emphasis on integration

issues. So far, consideration of an integrated

visualization framework that could enable the

adaption of a viable segmentation design into a

particular rendering architecture has been an open

domain for creative solutions. The literature

present on segmentation-based volume

visualization suggests significantly exclusive

approaches, yielding a gap for generic solutions

with reasonable outcome for handy visualization

tasks.

1.2 Problem statement
The first question that comes to the mind of a

person who intends to enhance or improve a

particular technique may be what the shortcomings

of that technique are. Only by knowing the

shortcomings or weaknesses of a technique, one

could propose a relevant solution. In order to

highlight or demonstrate the overall problem that

we are going to solve within this work, we have

divided the weakness of ray casting technique into

three main groups, which are cluttered

classification, cumbersome transfer function

design, and ambiguity/wasted resources. In ray

casting, classification is basic. It is directly based

on the raw data. A distinct range of values or, in

http://dx.doi.org/10.22044/jadm.2018.6311.1746

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

68

other words, intensity is assigned to each particular

object. However, it often occurs that an object does

not entirely fall within its pre-defined range. Thus

occupying or overlapping other object(s) ranges

that leads to a poor classification. Since the transfer

function design is based on classification, a poor

classification leads to an imprecise transfer

function design. On the left side of figure 1, we

have air, fat, soft tissue, and bone as the four

overlapping objects, and on the right side of the

figure, we have their relevant transfer function

design that evidently mixes the relevant colors and

opacities of distinct objects. Performing

consecutive interpolations and compositions

throughout the volume, as a whole, without a sense

of direction not only consumes graphic resources

but also reduces the level of details for the objects

we are actually interested in. As it may be noticed

in figure 2, in ray casting, an ambiguous situation

occurs when four elemental vector values at each

cubical vertex are used to carry out interpolation.

Interpolating all of these parameters at once leads

to serious visual artifacts.

Figure 1. (a) Overlapping classification (b) Imprecise

transfer function design.

Figure 2. An ambiguous interpolation result

originates from multiple vector parameters.

1.3 Objectives

The main objective of this work is to achieve

enhanced visualization effect through amendment

of ray casting based direct volume rendering. In

general, direct volume rendering process involves

classification, transfer function formulation and

rendering as its three respective and interdependent

phases. Thus, in order to improve a particular phase

one may need to modify its prerequisite phase(s).

Our main objective could therefore be broken into

three parts. First, adaptation of a segmentation

algorithm instead of the basic classification module

of ray casting. Second, establishment of

representative transfer functions that properly

manifest classification. Third, adjustment of the

rendering pipeline for optimum implementation of

transfer functions.

2. Literature review

Hessian-based line filters and fast marching active

contour were used to segment coronary arteries and

pericardial cavity respectively [2]. Explicit

segmentation information was utilized as a main

contributing factor to the rendering pipeline. Each

object is separated by an ID at voxel level [3]. Two

level volume rendering approach allows

combination of local per object compositing mode

with global direct volume rendering (DVR) [3]. For

instance, non-photorealistic rendering and

maximum intensity projection (MIP) could be used

in combination with DVR to enable higher quality

results [3]. In the context of GPU based volume

rendering where no actual ray exists, conceptual

ray should be able to combine the contributions of

different compositing modes. Local and global

buffers are used to track the current composition

mode for each pixel. The status of each pixel is

switched between local and global buffers [3].

Figure 3 demonstrates the idea. As can be noticed,

MIP, NPR and DVR are used for different objects

along a global pass. Thus, each object utilizes the

mode most suitable for it. A semi-automatic

volume segmentation algorithm (skeleton-cut)

based on skeleton topology is presented. Complex

structures could be simplified by appropriately

representative descriptors [4]. Skeletons are

utilized to provide meaningful clues for object

distinction. Skeletons are identified by initially

extracting coarse boundaries and then Euclidean

transformation between the foreground and

background voxels [4]. Once identified, skeletons

are connected to their neighbors to form a graph

[4]. The weights among the nodes are assigned

based on intersection area of the cells, intensity

means and radii of inscribed spheres [4]. The min-

cut / max-flow operations induce the graph

outcome [4].

Figure 3. Two conceptual levels of volume rendering [3].

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

69

Currently, design of transfer functions that

successfully associate data values with visual

properties is a difficult and “non-intuitive” task [5].

DVR is naturally open to ambiguous classification

and may require segmentation based masking to

get occlusion free view of the desired objects [5].

There is however, a risk of erroneous masking or

unintentional assignment of background to object

(s) of interest. This may lead to fatal

misinterpretations, especially in sensitive medical

fields [5]. For instance, an error may rise in

volumetric measurement of a tumor. An

uncertainty (risk) assessment of volume

segmentation is performed and a formidable risk

reduction and control system is proposed. The

proposed system demonstrates a close interplay

with user [5]. Its four main phases are probabilistic

random walker segmentation to produce

segmentation results with estimable uncertainty

level, risk analysis, guiding user to the regions

which are possibly prone to error and identification

of error by user and insertion of desired fixing to

initial segmentation parameters [5]. Nero Trace is

presented as a semiautomatic volume segmentation

and visualization system for neural processing of

nervous organ(s) [6].It consists of preprocessing,

multiphase level set segmentation and 3D tracking

and a special ellipse based rendering method for

electron microscopy (EM) data visualization. Prior

to segmentation, volume rendering is used to

search the input volume (volume constructed from

raw EM data) for a region of interest (ROI) [6].

User can select center of ROI (desired set of neural

cells) on an arbitrary 2D plane using volumetric

view [6]. There have been Many attempts (ranging

from simple to advance) to improve transfer design

with no or little reference to segmentation. For

instance, in a simple case, trial and error methods

are introduced to generate numerous transfer

functions and perform rendering based on each of

them. Then pick the one with most suitable

rendering outcome [7]. Advance cases however

introduce the multidimensional concept of transfer

function design [8], which involves extracting one

or more representative features from dataset and

adding them to the singular feature space of a one

dimensional transfer function.

Figure 4. An overall view of the integrated

visualization design.

2.1 An integrated visualization design

So far, the weaknesses of ray casting, in particular,

and other direct volume rendering techniques, in

general, were identified. As it may be noticed in

figure 4, this section provides an integrated

framework, based on which the aforementioned

weaknesses could be handled in a creative manner.

In Phase 1 of figure 4, K-means-based hybrid

segmentation algorithm is performed on our input

images in order to extract objects or, in other

words, produce object membership information.

The goal of this phase is to boost the ray casting’s

classification ability. As mentioned earlier, ray

casting originally possesses overlapping or, in

other words, inferior classification ability. In Phase

2 of figure 4, the object membership information

generated in Phase 1 is adapted into an enhanced

ray casting architecture via ID tags. Table 1

compares our proposed solution with the standard

ray casting technique.

Table 1. Comparison between ray casting and this work.

Distinctive features Ray casting [9] This work

Sampling rate arbitrary arbitrary

Sampling nature point point

Interpolation tri-linear N. N. approx /

 optimized tri-linear

Kernel linear linear

Exceptionality - multiple rendering modes

Selected voxels all segmented

Acceleration early ray termination ID-based space skipping

As it can be noticed from the interpolation field in

table 1, none of the other direct volume rendering

techniques and particularly standard ray casting has

the option of using more than one interpolation

method because they lack the means for separating

complex voxels from simple voxels. Here, by

complex voxels, we mean voxels that represent

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

70

more than one object, and by simple voxels, we

mean voxels that represent only one object.

However, since our proposed rendering design uses

ID tags, it can easily distinguish between the

simple and complex voxels, and therefore, employ

a suitable interpolation method for each of them.

Furthermore, in contrast to standard tri-linear

interpolation used by ray casting, the tri-linear

interpolation method is optimized so that it can

avoid edge ambiguity, particularly when

interpolation inputs are from more than one object.

Exceptionality field refers to exceptional

characteristics of each technique. These

exceptional characteristics could be a strength and

advantage as is the case for our proposed solution.

In the case of our proposed solution multiple local

rendering traversals that are embedded within a

single global traversal enable two important tasks,

which are localization of transfer function design

and depth-based manipulation of interpolation and

composition operations. Acceleration refers to the

mechanism a technique uses to speed-up its overall

rendering process. In standard ray casting, early ray

termination is used as a way of controlling

perceptual details. It is used to stop composition at

a particular depth before the ray reaches the end of

volume. In our proposed solution, the notion of ID

tags focuses on the rendering process. Thus

pushing non-tagged (anonymous) regions of the

volume to the context or, in other words, out of

rendering process. There are other fields in table 1

such as sampling rate, kernel, and sampling nature.

Sampling rate refers to the interval based on which

volume is sampled. More frequent sampling leads

to smoother outcome. Sampling interval usually

determines the number of interpolations we are

required to perform. Most direct volume rendering

technique kernels are linear. This work particularly

employs tri-linear interpolation and nearest

neighbor approximation, both of which have a

linear nature. However, splatting technique for

instance employs Gaussian interpolation due to

radial complexity of its kernel. Sampling nature

depends on the kernel and interpolation

characteristics of a particular technique.

3. Proposed solution

In this work, we propose an image processing-

based approach towards enhancing ray casting the

technique object distinction process. The ray

casting architecture is modified to accommodate

object membership information generated by a K-

means-based hybrid segmentation algorithm.

Object membership information is assigned to

cubical vertices in the form of ID tags. An intra-

object buffer is devised and coordinated with inter-

object buffer, allowing the otherwise global

rendering module to embed multiple local

(secondary) rendering processes. A local rendering

process adds two advantageous aspects to the

global rendering module: first, depth oriented

manipulation of interpolation and composition

operations that lead to freedom of interpolation

method of choice based on the number of available

objects in various volumetric depths, improvement

of LOD (level of details) for desired objects, and

reduced number of required mathematical

computations; Second, localization of transfer

function design that enables the utilization of

binary (non-overlapping) transfer functions for

color and opacity assignment. A set of image

processing techniques are creatively employed in

the design of K-means-based hybrid segmentation

algorithm. Pre-processing methods such as high

pass/low pass filters and histogram equalization are

optionally used for noise removal and harmony

rectification. An unsupervised neural network is

used to initialize cluster centers and improve the

clustering accuracy. Few rounds of K-means

clustering are performed to identify preliminary

groups. Fisher discriminant ratio is used to convert

preliminary groups into optimum segments

representative of inherent color and formation

characteristics. Edge detection is used to exempt

important boundary/pattern information from

irrelevant recombination. Recombination and

epsilon tolerance factor are used for spatial tuning.

3.1 K-means-based hybrid segmentation design

Figure 5 provides a flow chart representative of our

segmentation architecture. A sub-numbering

scheme is used in order to indicate the connection

between figure 5 and phase 1 of figure 4. Following

the flow chart, we initially have the input image

that could include either a gray scale or color

image. Next, we have Phase 1.1, which is an

optional phase. It has a role to play only when the

input data is low in quality (ex. has considerable

noise or overall intensity imbalance). Its job is to

improve the resolution of important features in a

low-quality input image. Such improvement helps

toward increasing the overall segmentation

precision. As it may be evident in figure 5, the input

of each phase is dependent on its pre-requisite

phase. Therefore, the output of phase 1.1 is passed

to phase 1.2 as input.

In phase 1.2, a neural network is used to generate

cluster centers. K-means clustering, which is

performed in Phase 1.3, requires initial cluster

centers or seed points to carry out clustering.

However, it is known that allowing K-means to

generate its own initial cluster centers at random

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

71

without any sense of direction or rational may lead

to local optima convergences. To be more specific,

by local optima converge, we mean the clustering

result that is not representative of the entire image.

In order to avoid local optima convergence and

ensure a globally optimum clustering, we used a

neural network that spread the initial cluster centers

based on the relevant color and spatial properties of

the image at hand.

Figure 5. K-means-based hybrid segmentation design.

In phase 1.3, a few rounds of K-means clustering is

performed in order to generate only coarse or

preliminary clusters. The reason for why only few

iterative rounds of K-means algorithm is performed

is that we have dedicated the refinement task to a

superior statistical algorithm (particularly, fisher

discriminant ratio) that could produce a much

better refinement than K-means algorithm only in

few rounds.

In phase 1.4, the goal is to avoid formation of too

large or too small clusters via statistical refinement.

The preliminary clusters produced in phase 1.3 are

refined such that both intra-homogeneity (the

homogeneity inside each cluster) and inter-

heterogeneity (the heterogeneity of each cluster

with other clusters) increase. Figure 6 demonstrates

the relationship between phases 1.3 and 1.4. It

briefly highlights the evolution of clusters from

coarse to fine.

Figure 6. Interrelationship between phases 1.3 and

1.4.

In phase 1.5, edge detection is performed in order

to improve the precision of Phase 1.6’s

recombination task. During recombination, the

spatial neighborhood of each pixel is searched in

order to ensure the homogeneity with respect to

neighborhood majority. If a particular pixel, for

instance, has a different value from the majority of

its neighbors, its value should change to the value

of the majority unless it is an edge pixel. It is only

natural for an edge pixel to have a different value

from its neighbors because edges are usually

defined as sharp turns among objects. In phase 1.6,

apart from recombination, which was explained

above, we have an epsilon spatiality factor that is

basically a tolerance factor. Its job is to ensure a

logical spatial distance among objects. For

instance, if we have mistakenly classified two

objects that have similar color and texture

properties but irrelevant spatial properties under

the same group, we can make a correction via the

epsilon factor.

3.1.1 Pre-processing

Low-quality images are the specific target of this

optional phase. Prior to the actual segmentation

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

72

operations such as histogram, equalization and

noise removal via readily available filters could

take place in order to highlight the otherwise vague

but important features. As it may be noticed from

an instance in Chapter four, an appropriate early

amendment such as histogram equalization could

boost feature resolution and ensure an enhanced

segmentation result.

3.1.2 Unsupervised neural map for cluster

center initialization

Unguided cluster center initializations often

mislead the overall clustering task. Inability to

determine the spread and number of possible

clusters may often trigger imprecise and locally

optimum solutions. An enhanced unsupervised

neural network is used to help identify the required

numbers and spatial locations of potential cluster

centers. Automation and approximation are the two

important reasons for why a self-contained neural

network was used. As compared to the back-

propagation technique, in which manual feedback-

oriented training rounds are required to reach a

reasonably accurate result, a self-organized

network could impulsively produce useful

approximation suitable for cluster center

initializations.

Figure 7. (a) Network initialization (b) Neighborhood

adjustments.

Figure 7 demonstrates a typical 4×4 self-contained

network with three inputs. Here, the three RGB

color bands form the input values (gray level values

could also be represented by elemental blend). The

network is established such that each map node

includes three feature vectors and is only connected

to the input nodes. Prior to training, the range of

RGB colors available within the image is obtained.

As indicated in figure 8, in order to define a range,

the smallest (lower bound) and largest (upper

bound) color values available within the image are

found and their difference is calculated. Then an

interval is calculated. Feature vectors for each map

node are initialized by traversing from a lower

bound to an upper bound based on interval (please

take note of figure 7 part (a)). To make the pseudo-

code (figure 8) clear, it is explained from top to

bottom. First, the product of map width and length

is calculated in order to obtain the total number

nodes we need to initialize. Next, the smallest and

largest color values available within the image at

hand are calculated. Next, an interval by evenly

dividing the available color values among map

nodes is obtained. Last, initialize each map node by

assigning color values based on the previously

obtained interval.

Figure 8. Pseudo-code of an interval computation for

map node initialization.

After initialization, training starts by randomly

selecting pixels from all over the image, storing

their spatial positions and passing them to input

nodes one by one in order to decide the best match

unit. BMU is the map node that is most similar to

the input values as compared to other nodes. As it

can be seen in figure 7 part (b), once the best

matching node is selected, its feature vectors and

neighborhood are adjusted to most closely

resemble the input values. The amounts of

adjustments are determined by the learning rate and

neighborhood size factors in two stages. In the first

stage, the learning rate begins at 0.9 and gradually

reduces to 0.1, and the neighborhood size begins by

half of the map size and gradually decreases to 1.

The second stage is more of a refinement. At this

stage, the feature vectors of the nodes are stabilized

and would further be refined by a learning rate of

0.01. The neighborhood size remains at 1, meaning

that only the BMU node is adjusted. For ease of

calculations, the feature vectors are normalized

PROCEDURE NeuralMapInitialization:

CalculateInterval () {

NumberofMAPNodes = multiply (map_width,

map_length)

SmallestAvailableColorValue = get (min (R, G, B))

LargestAvailableColorValue = get (max(R, G, B))

Range = subtract (LargestAvailableColorValue,

SmallestAvailableColorValue)

Interval = divide (Range, subtract (Numberof

MapNodes, 1)
}

initialize (CurrentMapNodeValue,

SmallestAvailableColorValue)

For each (MapNode) {CurrentMapNodeValue =

CurrentMapNodeValue + Interval }

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

73

from [0, 255] to [-1, 1]. Upon the end of training

and convergence numbers, locations and values

that cluster centers should possess are

approximated. Equation 1 formulates a model for

node adjustment.

 𝑤𝑣(𝑠 + 1) = 𝑤𝑣(𝑠) + 𝜃(𝑢, 𝑣, 𝑠)𝛼(𝑠)(𝐷(𝑡) −

𝑤𝑣(𝑠))

(1)

𝑊𝑣, 𝑠, 𝑢, 𝑣, 𝑡, 𝛼(𝑠), and 𝐷(𝑡) refer to the

weight vector, step index, BMU index for 𝐷(𝑡),

neurons, training sample index, monotonically

decreasing learning coefficient, and input vector,

respectively. 𝜃(𝑢, 𝑣, 𝑠) is the neighborhood

function. It is calculated based on the lattice

distance between BMU (𝑢) and neuron 𝑣.

3.1.3 K-means clustering

K-means is a statistical clustering algorithm.

Equation 2 formulates how K-means commonly

works. 𝑥, 𝑚, 𝑑2, and 𝑚𝑖𝑛 refer to the data point

(pixel), average of a data points set (cluster center),

Euclidian distance, and minimum value,

respectively.

1

𝑛
∑ [𝑚𝑖𝑛 𝑑2 (𝑥𝑖 , 𝑚𝑗)]𝑛

𝑖=1

(2)

A homogenous cluster is identified when a

particular cluster center possesses the minimum

distance (mean squared error) to several data points

as compared to other cluster centers. In this work,

few rounds of K-means clustering were used to

produce the preliminary classification results or, in

other words, elementary clusters. The initial cluster

centers required by K-means algorithm are

provided by Phase 1.2. At this stage, to avoid the

ambiguity caused by compromise over features, the

dimensions are limited to merely three color bands

and a diagonal busyness factor (DF). DF is used to

probe texture around each pixel. Texture is an

intrinsic property of virtually all surfaces. It relays

senses such as regularity, coarseness, fitness,

directionality, and granularity. Textures, in

general, grant a directional sense to the spatial

tendency of image intensities. It helps in clarifying

ambiguous situations. For instance, hatches of a

brownish chair could be used to tell it apart from its

brown background. As it may be noticed in

Equation 3, DF is calculated as the sum of color

differences among the central and diagonal pixels.

𝐶 and 𝑥 denote the central and diagonal pixels,

respectively. Figure 9 demonstrates the diagonal

directions around a central pixel.

Figure 9. Diagonal directions including top left, top

right, bottom left, and bottom right.

 𝐷𝐹 = ∑ |𝐶 − 𝑥𝑖|4
𝑖=1 (3)

3.1.4 Statistical optimization

Fisher discriminant ratio is used for the refinement

of preliminary and coarse clusters produced in the

previous phase. K-means clustering originally

requires many iterative rounds for a valid

clustering outcome. However, a Fisher

discriminant ratio could perform a stable clustering

using only few iterative rounds. In contrast to K-

means, a Fisher discriminant ratio enables

uniformity across the entire space. A balanced

distribution of homogeneous clusters is obtained by

including variances within ratio calculations.

Equation 4 formulates how Fisher discriminant

ratio works. 𝐽𝑝, 𝑚, 𝑎𝑛𝑑 𝑣 refer to ratio, mean, and

variance, respectively. The discriminant ratio is

calculated as the sum of differences in means over

sum of variances. Larger differences in means or

smaller variances obviously lead to a higher ratio.

𝐽𝑝 =
∑ ∑ (𝑚𝑖𝑝 − 𝑚𝑗𝑝)

𝑇
(𝑚𝑖𝑝 − 𝑚𝑗𝑝)𝑘

𝑗>𝑖
𝑘
𝑖=1

(∑ 𝑣𝑖𝑝
𝑇 𝑣𝑖𝑝

𝑘
𝑖=1)

(4)

Figure 10. Graphical representation of ratio’s

nominator.

In an iterative round, each pixel (data point) is

temporarily removed from its home cluster and

assigned to each one of the other clusters one by

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

74

one. Every time a temporary assignment occurs,

the differences in means and variances are renewed

and the discriminant ratio is recalculated. Figure 10

indicates the routes among the four clusters

required for calculation of differences in means. A

pixel is permanently detached and reassigned to

another cluster only if such reassignment causes an

increase in ratio, thus promoting a larger inter-

cluster distance and a smaller intra-cluster distance.

Statistical optimization ends when ratio alteration

becomes ignorable.

3.1.5 Edge detection and analysis

In this section, edge treatment is considered as a

prerequisite to recombination (performed in

Section 3.1.6). It directs the spatial recombination

task by discerning potential object boundaries that

may be undermined during spatial recombination if

not specifically exempted. The sobel algorithm is

used to identify and filter important edge pixels.

Long and continues edges are extracted, while

short and discrete edges are ignored. In the cases

where there are multiple discrete and short but

closely adjacent edges, an aggregation operation is

performed in order to produce a wholesome and

continues edge. As it can be noticed from

Equations 5 and 6, two 3  3 masking kernels are

employed to approximate the derivatives along the

horizontal and vertical directions. Throughout the

image masking, kernels perform convolution

operations and highlight the edge pixels.

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] × 𝐴
(5)

𝐺𝑦 = [
−1 −2 −1
0 0 0

−1 2 1
] × 𝐴

(6)

Horizontal and vertical masks are denoted by

matrices at 𝐺𝑥 and 𝐺𝑦, respectively. The

multiplication operation with A represents

convolution. The values used in masking kernels

are not limited to Equations 5 and 6. They could be

changed depending on the image at hand. Diverse

images may require different filter values.

Equations 7 and 8 formulate gradient magnitude

and gradient direction calculations in the sobel

algorithm. The parameters such as 𝐺𝑥 and 𝐺𝑦 are

derived from Equations 5 and 6.

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (7)

 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦

𝐺𝑥
) (8)

3.1.6 Spatial adjustment
Often few irrelevant fragments remain within

clusters even upon multiple rounds of refinement.

In order to reduce these artifacts, spatial

recombination is employed. To carry out

recombination, the image is traversed from top to

bottom, and each pixel is scanned in eight

connected directions. For each pixel, the cluster to

which the majority of pixels in the eight connected

neighborhood belong is determined. If the central

pixel (pixel whose neighborhood is being scanned)

belongs to the same cluster as the majority of its

eight connected neighborhood pixels, its cluster

will not change; otherwise, its cluster will change

to the cluster that the majority of its eight connected

neighborhood pixels belong. As it can be noticed in

figure 11 part (a), the majority of pixels around the

central pixel are classified under cluster number 4.

Consequently, the central pixel’s cluster is changed

to 4 (figure 11 part (b)). Given the nature of color

and texture-based clustering, the objects with

similar color and pattern characteristics but

dissimilar spatial properties may be classified

under the same group, rendering them impossible

to be distinguished. To tackle this problem, an

optional tolerance-oriented spatiality factor

referred to as epsilon is devised. If the sum of

spatial distances of pixels belonging to a particular

cluster is greater than the epsilon value, then those

pixels that are further away are identified, and if

their density is great enough, they are grouped

under a different cluster.

Figure 11. (a) A 33 neighborhood before

recombination (b) After recombination.

3.2 An enhanced rendering architecture

Figure 12 provides a flow chart, representative of

this work’s rendering architecture. A sub-

numbering scheme is used in order to indicate the

connection between figure 12 and phase 2 of figure

4.

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

75

Figure 12. An enhanced rendering architecture.

Figure 13. A typical object set array.

Following the flow chart, in phase 2.1, the object

membership information generated by the K-

means-based hybrid segmentation algorithm is

used to produce a unique ID tag for each particular

object. An ID tag is accompanied by an array of

object depth and position. Depending on the axis

along which projection takes place, the depth

properties are subject to change. However,

volumetric position is indifferent to any changes.

As it may be evident in figure 12, the input of each

phase is dependent on its prerequisite phase.

Therefore, the output of phase 2.1 is passed to

phase 2.2 as the input. In phase 2.2, a rendering

focus is made possible by assigning the ID tags

produced in phase 2.1 to the desired cubical voxels.

The non-tagged regions are set to anonymous and

moved to the context. In phase 2.3, global

rendering is performed in a manner different from

the original ray casting technique. In ray casting,

sampling and composition are carried out from the

very beginning to the end at a constant pace.

However, in our proposed method, global

rendering is simplified. The global module starts

traversal, and does not perform any composition

until it reaches a particular volumetric depth, where

there is an object of interest. Upon reaching an

object, global module is suspended, and instead, a

local module is activated. The local module’s job

is to perform the interpolation and composition

tasks and generate an interim rendering result.

Once the local module is finished, global module

takes over again, and by performing only a single

composition operation, incorporates the interim

rendering result into its buffer. Thus the above-

mentioned loop continues until the global module

reaches the end of volume. In phase 2.4, we

demonstrate how an interpolation task is handled

within the local rendering process. The choice of

the interpolation method depends on the number of

objects available. If there is only one object, then

the nearest neighbor approximation method is

used. The nearest neighbor approximation is a

primitive method and does not require calculations.

It merely picks the sample value from any of the

vertices of the representative cubical voxel(s).

Now, if there is more than one object, then tri-linear

interpolation along with threshold considerations

form a mechanism for distinctive sample value

generation. In standard ray casting, tri-liner

interpolation is performed after texture assignment,

which leads to vector-based ambiguity. However,

in our proposed solution, tri-linear interpolation is

performed using IDs prior to texture assignment

that in combination with threshold considerations

lead to clear and distinctive results.

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

76

Figure 14. IDs 1 and 2 represent two objects at the

same depth, while IDs 3 and 4 represent two objects at

different depths.

In phase 2.5, the texture assignment task within the

local rendering process is demonstrated. Texture

assignment takes place based on a one to one

lookup table. The lookup table is actually a

simplified and precise transfer function that has

come about thanks to ID tags. A sample uses its

unique ID to search for the lookup table for a

relevant texture (color and opacity) value.

3.2.1 Directed objects set construction

Directed object set construction in its brief and

simple form refers to building an array of voxels

representing an object. It is directed because the

position and membership ID of voxels are

determined at vertex level on each 2D slab by a K-

means-based hybrid segmentation system (please

refer to Section 3.1). As demonstrated in figure 13,

an object set should at least include an array of

membership ID, position, and depth along the

viewing plane. Depth information is crucial in

identifying the order with respect to which an

object is rendered as compared to other objects in

volumetric space. For instance, if two objects are

equal in depth, they stand in the same place on the

rendering queue; otherwise, the object in front

would have the primitive turn in a typical front to

back composition. Figure 14 demonstrates a case in

which the viewing plane is along the X axis, and

composition is in front to back order. Following the

ray traversal (depicted by crossing arrows), objects

1 and 2 coexist at the same depth, while objects 3

and 4 are located at different depths. Objects 1 and

2 should, therefore, be grouped under the same

object set array, while objects 3 and 4 should each

be grouped under different arrays.

3.2.2 Focus/context separation

Inspired with the empty space skipping technique,

an effective solution is proposed. Directed or

guided rendering could accomplish focus on the

desired regions of the volume dataset by assigning

IDs only to preferred voxels, leaving the

remaining/contextual voxels unassigned. Transfer

function texture assignment is denied to

anonymous set of voxels. In other words, unwanted

areas are removed, assisting effective management

of LOD required for fine and correct visualization

results. The overall interpolation and composition

efficiency are also improved since fewer voxels are

naturally less exhaustive.

Figure 15. Double rendering design.

3.2.3 Global composition mode

Ray casting is a direct volume rendering technique.

As it may be noticed in figure 15, ray casting is

broken into a global traversal and local traversals

as two complementary rendering components.

Starting by a global traversal, as the casted ray

traverses the volume, it updates (renders) the

projection plane buffer (global buffer) only after

passing through an object and not during the

intersection course. Instead, intra-object rendering

is handled locally. Occurrence of an intersection is

determined by the depth at which the ray is

traversing and whether there are any objects

available at this depth on the object set list. Upon

intersecting an object, a secondary but complete

rendering process is initiated; this time is given a

temporary local buffer. Given the ID(s) of the

intersected object(s), a relevant interpolation

solution is carried out (please refer to Section

3.2.4), and the local buffer is updated. The contents

of the local buffer are then summed into the

projection plane buffer as part of the overall

composition mode.

3.2.4 Interpolation design and high resolution

boundaries

First, selection of an appropriate interpolation

technique depends on the number of objects a local

ray casting process ought to render. If there is only

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

77

one object, no ambiguity could be imposed by

other objects, and, therefore, a fast nearest neighbor

approximation should be used to yield an

unsurprisingly precise sample value. However, if

there are more than one objects, then a tri-linear

interpolation is used. Second, interpolation takes

place based on object IDs rather than RGBA

values. This is to reduce errors raised from blended

color bands. IDs provide a single representative

value for each vertex, while RGBA is an elemental

factor of four values per vertex that could lead to

an obscured interpolation outcome. Therefore,

interpolation is initially performed in terms of IDs

and only then mapped to relevant textures for

rendering. Third, having more than one object at

the same depth necessitates tri-linear interpolation

among two or more objects. Combination among

the boundaries’ voxels and reduced visualization

resolution may be inevitable in this situation. A

threshold value solution could be set to separate

two object borders clearly such that the mixed

points in between are reassigned to either one of the

objects. However, extending this solution to three

or more objects is not readily possible because one

could not set a single threshold value for iso-

separation of more than two object IDs. To resolve

this issue, a down scaling mechanism is used to

produce a universal threshold. As it can be noticed

in figure 16, all IDs could be normalized to the [0,

1] range. The universal threshold could then be set

as 0.5, and voxels above and below threshold could

be distinctively reassigned to relevant IDs.

Equation 9 provides a typical normalization

formulation. In a case where we use the values

given in figure 16 as the Equation 9 parameters,

𝑀𝑎𝑥, 𝑀𝑖𝑛, 𝑎, 𝑏, 𝑎𝑛𝑑 𝑥 refer to the actual upper

limit (7), actual lower limit (5), lowest normalized

value (0), highest normalized value (1), and actual

value that has to be normalized (5.4, 5.8, and so

on), respectively.

Figure 16. Universal threshold composition.

𝑓(𝑥) =
(𝑏 − 𝑎)(𝑥 − 𝑀𝑖𝑛)

𝑀𝑎𝑥 − 𝑀𝑖𝑛
+ 𝑎

(9)

3.2.5 Texture assignment and local rendering

The standard volume rendering techniques use

global and single dimensional transfer functions for

the object distinction process. However, due to the

existing complexity and twist within volumetric

datasets, even global and multi-dimensional

(dimension refers to distinguishing factors) transfer

functions are not entirely enough for a proper voxel

classification. This work develops the notion of

local and singular transfer functions. A lookup

table is constructed to assign the texture values

(color and opacity) to interpolated points (IDs) for

the local rendering process prior to global

composition. As it can be noticed in figure 17, there

is a one to one relationship between ID and texture

such that for each group of voxels that form an

object, a local transfer function is allocated.

Figure 17. Texture assignment table. Each number

and its respective dashed rectangle represent an object ID

and its relevant RGBA values.

4. Experimental results

In this section, two experimental cases are

presented, one signifying the segmentation solution

of this work, and the other illustrating the

combined solution.

4.1 Generic segmentation case

This work offers rather a handy generic

segmentation solution that could be used

independently. To validate the segmentation

outcome, a comparative demonstration is provided.

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

78

Figure 18. (a) Original image (b) This work’s

segmentation (c) Reference 10’s segmentation.

Figure 19. (a) Original image (b) This work’s

segmentation (c) Reference 10’s segmentation.

Figure 20. (a) Original image (b) This work’s

segmentation (c) Reference 10’s segmentation.

4.2 Chest and abdomen – pelvis case

This sub-section allows a comparison between the

solution proposed in this work and the standard ray

casting technique. Figure 21 presents segmentation

of chest and lung. Here, chest is pseudo-colored in

light blue, lung in red, surrounding tissue in yellow,

air way tissue in green, and skin in dark blue. A

visual indication of neural map construction for

cluster center initialization is provided as well.

Figure 22 deems pre-processing as an important

preliminary step for an effective segmentation. It

infers how ineffective could the segmentation

result for low-quality slabs turn out to be if no pre-

processing is performed. Figure 22 parts (a) and (c)

use histograms to clarify this claim by comparing

the harmonic balance of intensities with respect to

the pixel density. The horizontal axis refers to

intensities (small bins correspond to larger

intensity intervals) and the vertical axis refers to

pixel congestion.

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

79

Figure 21. Chest and lung gray level slabs and their

corresponding segmentations. A representative

segmentation along with its 14 × 14 neural map.

Figure 22. (a) Raw MRI data and its histogram

before pre-processing (b) Segmentation of part a (c) Raw

MRI data and its histogram after pre-processing (d)

Segmentation of part c.

Figures 23 and 24 both represent the volumetric

visualization of the same raw dataset. Figure 23 is

based on figure 21, while figure 24 is merely

produced by standard ray casting. At first glance, it

seems that figure 24 offers more detailed

visualization outcome compared to figure 23,

which is true, but such advantage is limited to

simple slabs (in this case, chest and lung), which

originally possess fine intensity distinction

between the different organs. Please notice that

even in a perfect situation such as figure 24, there

is still edge artifacts within the narrow object

regions. Figure 25 compares figures 23 and 24 at a

magnified level. As it can be noticed, in figure 25

part (a), the ribs are mixed and there is no clear

edge distinction among them, while in figure 25

part (b), ribs are clearly distinguished.

Figure 23. Volumetric visualization of chest and lung

based on Figure 21.

Figure 24. Volumetric visualization of chest and lung

via standard ray casting.

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

80

Figure 25. Chest and lung at 600% magnification (a)

Ray casting (b) this work.

Figure 26 follows a similar path with figure 21 in

the sense that segmentation is performed over

several slices and distinct details of the desired

organs are produced. Such distinctions are then

utilized by rendering pipeline to generate

volumetric tags. Figure 27 further clarifies the

limitation of ray casting and justifies the

importance of a tagged mechanism for complex

slabs. As it may be noticed, compared with part (a),

in part (b), kidney is properly identified, and there

is a clear visualization of relevant tissues. In part

(a), there are many overlapping fragments, leading

to unnecessary clutter and obstructed visualization.

Thus such overlaps are due to rudimentary transfer

function design of the ray casting technique.

Figure 26. Kidney and liver gray level slabs and their

corresponding segmentations. A representative

segmentation along with its 14 × 14 neural map.

Figure 27. Bone and liver at 600% magnification (a)

Ray Casting (b) This work.

Figure 28 compares the tri-linear interpolation

method used by ray casting with our proposed

interpolation method. As it may be noticed, the

average of relative errors for this work is relatively

lower for an equivalent number of randomly

selected samples. Given the scalar value for each

vertex, one could perform a tri-linear interpolation

to obtain a representative sample for each voxel. In

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

81

the case of our method, we used an ID value at each

vertex. Then we performed interpolation based on

IDs. A comparison between the tri-linear

interpolation method and our interpolation method

is based on the relative error. Since a sample point

is interpolated using values of eight cubical

vertices, we can calculate the relative error between

each vertex and the interpolated point with:

𝐸 =
|𝐴−𝐵|

|𝐵|
 (10)

where 𝐴, 𝐵, and 𝐸 refer to the interpolated value,

vertex value, and relative error, respectively. Now,

in order to obtain a single measurement of error for

all vertices of a voxel, we can calculate an average

error as:

𝐴 =
∑ 𝐸𝑖

𝑛
𝑖=1

𝑛
× 100 (11)

where 𝐴, 𝒏, and 𝐸 refer to the average of relative

errors, number of vertices, and relative error,

respectively.

Figure 28. Ray casting’s interpolation error verses

this work’s interpolation error. The horizontal axis refers

to samples (multiples of hundred) and the vertical axis

refers to average relative errors.

Figure 29. (a) Skeleton-based segmentation [4] (b)

Manual and explicit dissection [1] (c) and (d) Heart

visualization after fast marching active contour

segmentation.

Figure 30. (a) This work’s skin visualization (b) This

work’s heart visualization (c) This work’s abdomen

visualization.

As it may be noticed, figure 30 insinuates the

implementation of the methodology of this work.

Figure 29, on the other hand, enables a comparison

by demonstrating the results from other articles.

Depending on the application (inclusive/exclusive)

at hand, the nature of segmentation and the relevant

rendering design may differ. For instance, in figure

29 part (a), an implicit segmentation design takes

advantage of the skeletal structure to visualize

abdomen section. Organs closer to main bones are

identified clearly. In figure 30 part (c), organs are

Azimzadeh & Pourgholi/ Journal of AI and Data Mining, Vol 8, No 1, 2020.

82

less cluttered. In figure 29 part (b), the

segmentation aspect is insignificant but an

elaborate rendering pipeline is proposed. The blue

skin area is comparable to figure 30 part (a). Figure

29 parts (c) and (d) focus on the segmentation, and

perform the rendering task via a rather openly

available package, while figure 30 part (b)

undertakes both segmentation and rendering in

detail.

References
[1] Hadwiger, M. Berger, C. & Hauser, H. (2003). High-

quality two-level volume rendering of segmented data

sets on consumer graphics hardware. International

conference on visualization, USA, pp. 301-308.

[2] Mueller, D. & Oshea, P. (2007). Tagged volume

rendering of the heart. International conference on

medical image computing and computer assisted

intervention, pp. 194-201.

[3] Hauser, H. Morz, L. Bischi, G. I. & Groller, M. E.

(2001). Two level volume rendering. International

conference on visualization and computer graphics, pp.

242-252.

[4] Xiang, D. Tian, J. Yang, F. Yang, Q. Zhang, X. Li,

Q. & Liu, X. (2011). Skeleton cuts-an efficient

segmentation method for volume rendering. Journal of

visualization and computer graphics, vol. 17, no. 9, pp.

1295-1306.

[5] Prassni, J. Ropinski, T. & Hinrichs, K. (2010).

Uncertainty aware guided volume segmentation. Journal

of visualization and computer graphics, vol. 16, no. 6,

pp. 1358-1365.

[6] Jeong, W. Beyer, J. Hadwiger, M. Vazquez, A.

Pfister, H. & Whitaker, R. T. (2009). Scalable and

interactive segmentation and visualization of neural

processes in EM datasets. Journal of visualization and

computer graphics, vol. 15, no. 6, pp. 1505-1514.

[7] Pfister, H. Lorensen, B. Bajaj, C. Kindlmann, G.

Shroeder, W. Avila, L. Raghu, K. Machiraju, R. & Lee,

J. (2001). The transfer function bake-off. Journal of

computer graphics and applications, vol. 21, no. 3, pp.

16-22.

[8] Kniss, J. Kindlmann, G. & Hansen, C. (2002). Multi-

dimensional transfer functions for interactive volume

rendering. Journal of visualization and computer

graphics, vol. 8, no. 3, pp. 270-285.

[9] Meissner, M. Huang, J. Bartz, D. Mueller, K. &

Crawfis, R. (2000). A practical evaluation of popular

volume rendering algorithms. International conference

on volume visualization, pp. 81-90.

[10] Luo, M. Fei, Y. Hong, M. Jiang. & Zhang. (2003).

A spatial constrained k-means approach to image

segmentation. International conference on information,

communication and signal processing, Singapore, pp.

738-742.

[11] Shafiee, A. M. & Latif, A. M. (2014) Modified

CLPSO-based fuzzy classification System: Color Image

Segmentation. Journal of AI and datamining, vol. 2, no.

2, pp.167-179.

http://jad.shahroodut.ac.ir/article_356.html
http://jad.shahroodut.ac.ir/article_356.html
http://jad.shahroodut.ac.ir/article_356.html

 و داده کاوی نشریه هوش مصنوعی

 سازی نمایش سه بعدی اشیاء به کمک تکنیکهای پردازش تصویر بهینه

 *رضا پورقلی و آرش عظیم زاده ایرانی

 .ایران، دامغاندانشگاه دامغان، ، دانشکده ریاضی و علوم کامپیوتر

 07/04/2019 پذیرش؛ 12/08/2018 بازنگری؛ 25/06/2018 ارسال

 چکیده:

سه بعدی ست که برای نمایش ستقیم مکعب ا ستینگ یک روش رنگ آمیزی م ستفاده میری ک صاویر شودا . این روش کاربردهای مهمی در زمینه ت

شکی و بیولوژیکی دارد. سه پز ضعف این روش مکانیزم کلا ست. نقطه ضعیف آن ا ستتوابع تیدیل در این بندی شیاء را بدر شته و ا شانی دا ی روش همپو

 جدا نمیکنند. ما یک روش بر اساس تکنیکهای پردازش تصویر ارائه میکنیم که این نقصان را بر طرف کرده و یک مکانیزم بهینه ارائه میکند.

 سازی نمایش.ن هیبرید، رنگ آمیزی مکعب، بهینهروش سگمنتیش :کلمات کلیدی

