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Abstract 

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital 

applications in medical and biological imaging. Nevertheless, it is inherently open to the cluttered classification 

results. It suffers from the overlapping transfer function values and lacks a sufficiently powerful voxel parsing 

mechanism for object distinction. In this work, we propose an image processing-based approach towards the 

enhancing ray casting technique for the object distinction process. The rendering mode is modified to 

accommodate masking information generated by a K-means-based hybrid segmentation algorithm. An 

effective set of image processing technique is creatively employed in the construction of a generic 

segmentation system capable of generating object membership information. 
 

Keywords: Hybrid Image Segmentation, Volume Rendering, Enhanced Visualization Effect.                    

1. Introduction 

Given the great dependency of human analysis and 

judgment abilities on realistic and sensible 

visualization, appropriate volume rendering 

techniques for effective visualization may be 

deemed fundamental. Most of the currently 

available direct volume rendering methods such as 

ray casting, shear-warp, splatting, and texture 

mapping employ basic transfer function(s) for 

object distinction. However, a major drawback of 

using these methods is that all voxels of a 

volumetric dataset are treated in an identical 

manner without using any priori information that 

specifies object membership on a per-voxel basis 

[1]. Inability to properly distinguish among 

multiple objects of interest solely based on transfer 

function is often the case. Segmentation is a 

formidable approach for handling this problem. It 

infers object membership information for each 

object of interest, yielding a tag for each voxel in 

the volume. In this context, explicit and implicit 

designs have been introduced by different research 

works. The former is concerned with technicality 

of adapting readily available object membership 

information into a particular rendering mode or 

combination of rendering modes, while the latter 

summons its own set of object membership 

information via a carefully designed segmentation 

system, giving peculiar emphasis on integration 

issues. So far, consideration of an integrated 

visualization framework that could enable the 

adaption of a viable segmentation design into a 

particular rendering architecture has been an open 

domain for creative solutions. The literature 

present on segmentation-based volume 

visualization suggests significantly exclusive 

approaches, yielding a gap for generic solutions 

with reasonable outcome for handy visualization 

tasks.    

 

1.2 Problem statement  
The first question that comes to the mind of a 

person who intends to enhance or improve a 

particular technique may be what the shortcomings 

of that technique are. Only by knowing the 

shortcomings or weaknesses of a technique, one 

could propose a relevant solution. In order to 

highlight or demonstrate the overall problem that 

we are going to solve within this work, we have 

divided the weakness of ray casting technique into 

three main groups, which are cluttered 

classification, cumbersome transfer function 

design, and ambiguity/wasted resources. In ray 

casting, classification is basic. It is directly based 

on the raw data. A distinct range of values or, in 
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other words, intensity is assigned to each particular 

object. However, it often occurs that an object does 

not entirely fall within its pre-defined range. Thus 

occupying or overlapping other object(s) ranges 

that leads to a poor classification. Since the transfer 

function design is based on classification, a poor 

classification leads to an imprecise transfer 

function design. On the left side of figure 1, we 

have air, fat, soft tissue, and bone as the four 

overlapping objects, and on the right side of the 

figure, we have their relevant transfer function 

design that evidently mixes the relevant colors and 

opacities of distinct objects. Performing 

consecutive interpolations and compositions 

throughout the volume, as a whole, without a sense 

of direction not only consumes graphic resources 

but also reduces the level of details for the objects 

we are actually interested in. As it may be noticed 

in figure 2, in ray casting, an ambiguous situation 

occurs when four elemental vector values at each 

cubical vertex are used to carry out interpolation. 

Interpolating all of these parameters at once leads 

to serious visual artifacts. 
 

 

Figure 1. (a) Overlapping classification (b) Imprecise 

transfer function design. 
 

 

 
Figure 2. An ambiguous interpolation result 

originates from multiple vector parameters. 

 

1.3 Objectives 

The main objective of this work is to achieve 

enhanced visualization effect through amendment 

of ray casting based direct volume rendering. In 

general, direct volume rendering process involves 

classification, transfer function formulation and 

rendering as its three respective and interdependent 

phases. Thus, in order to improve a particular phase 

one may need to modify its prerequisite phase(s). 

Our main objective could therefore be broken into 

three parts. First, adaptation of a segmentation 

algorithm instead of the basic classification module 

of ray casting. Second, establishment of 

representative transfer functions that properly 

manifest classification. Third, adjustment of the 

rendering pipeline for optimum implementation of 

transfer functions. 

 

2. Literature review 

Hessian-based line filters and fast marching active 

contour were used to segment coronary arteries and 

pericardial cavity respectively [2]. Explicit 

segmentation information was utilized as a main 

contributing factor to the rendering pipeline. Each 

object is separated by an ID at voxel level [3]. Two 

level volume rendering approach allows 

combination of local per object compositing mode 

with global direct volume rendering (DVR) [3]. For 

instance, non-photorealistic rendering and 

maximum intensity projection (MIP) could be used 

in combination with DVR to enable higher quality 

results [3]. In the context of GPU based volume 

rendering where no actual ray exists, conceptual 

ray should be able to combine the contributions of 

different compositing modes. Local and global 

buffers are used to track the current composition 

mode for each pixel. The status of each pixel is 

switched between local and global buffers [3]. 

Figure 3 demonstrates the idea. As can be noticed, 

MIP, NPR and DVR are used for different objects 

along a global pass. Thus, each object utilizes the 

mode most suitable for it. A semi-automatic 

volume segmentation algorithm (skeleton-cut) 

based on skeleton topology is presented. Complex 

structures could be simplified by appropriately 

representative descriptors [4]. Skeletons are 

utilized to provide meaningful clues for object 

distinction. Skeletons are identified by initially 

extracting coarse boundaries and then Euclidean 

transformation between the foreground and 

background voxels [4]. Once identified, skeletons 

are connected to their neighbors to form a graph 

[4]. The weights among the nodes are assigned 

based on intersection area of the cells, intensity 

means and radii of inscribed spheres [4]. The min-

cut / max-flow operations induce the graph 

outcome [4]. 
 

 
Figure 3. Two conceptual levels of volume rendering [3]. 
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Currently, design of transfer functions that 

successfully associate data values with visual 

properties is a difficult and “non-intuitive” task [5].  

DVR is naturally open to ambiguous classification 

and may require segmentation based masking to 

get occlusion free view of the desired objects [5]. 

There is however, a risk of erroneous masking or 

unintentional assignment of background to object 

(s) of interest. This may lead to fatal 

misinterpretations, especially in sensitive medical 

fields [5]. For instance, an error may rise in 

volumetric measurement of a tumor. An 

uncertainty (risk) assessment of volume 

segmentation is performed and a formidable risk 

reduction and control system is proposed. The 

proposed system demonstrates a close interplay 

with user [5]. Its four main phases are probabilistic 

random walker segmentation to produce 

segmentation results with estimable uncertainty 

level, risk analysis, guiding user to the regions 

which are possibly prone to error and identification 

of error by user and insertion of desired fixing to 

initial segmentation parameters [5]. Nero Trace is 

presented as a semiautomatic volume segmentation 

and visualization system for neural processing of 

nervous organ(s) [6].It consists of preprocessing, 

multiphase level set segmentation and 3D tracking 

and a special ellipse based rendering method for 

electron microscopy (EM) data visualization. Prior 

to segmentation, volume rendering is used to 

search the input volume (volume constructed from 

raw EM data) for a region of interest (ROI) [6]. 

User can select center of ROI (desired set of neural 

cells) on an arbitrary 2D plane using volumetric 

view [6]. There have been Many attempts (ranging 

from simple to advance) to improve transfer design 

with no or little reference to segmentation. For 

instance, in a simple case, trial and error methods 

are introduced to generate numerous transfer 

functions and perform rendering based on each of 

them. Then pick the one with most suitable 

rendering outcome [7]. Advance cases however 

introduce the multidimensional concept of transfer 

function design [8], which involves extracting one 

or more representative features from dataset and 

adding them to the singular feature space of a one 

dimensional transfer function. 
 

 
 

Figure 4. An overall view of the integrated 

visualization design. 

 

 

2.1 An integrated visualization design 

So far, the weaknesses of ray casting, in particular, 

and other direct volume rendering techniques, in 

general, were identified. As it may be noticed in 

figure 4, this section provides an integrated 

framework, based on which the aforementioned 

weaknesses could be handled in a creative manner. 

In Phase 1 of figure 4, K-means-based hybrid 

segmentation algorithm is performed on our input 

images in order to extract objects or, in other 

words, produce object membership information. 

The goal of this phase is to boost the ray casting’s 

classification ability. As mentioned earlier, ray 

casting originally possesses overlapping or, in 

other words, inferior classification ability. In Phase 

2 of figure 4, the object membership information 

generated in Phase 1 is adapted into an enhanced 

ray casting architecture via ID tags. Table 1 

compares our proposed solution with the standard 

ray casting technique. 
 

Table 1. Comparison between ray casting and this work. 
 

Distinctive features       Ray casting [9]         This work 

Sampling rate                    arbitrary                      arbitrary 

 

Sampling nature                  point                           point 

 

Interpolation                     tri-linear                N. N. approx /                                                                                         

                                                                        optimized tri-linear 

 

Kernel                                 linear                              linear 

 

Exceptionality                       -                multiple rendering modes 
 

Selected voxels                    all                             segmented 

 
Acceleration    early ray termination       ID-based space skipping 

 

 

As it can be noticed from the interpolation field in 

table 1, none of the other direct volume rendering 

techniques and particularly standard ray casting has 

the option of using more than one interpolation 

method because they lack the means for separating 

complex voxels from simple voxels. Here, by 

complex voxels, we mean voxels that represent 
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more than one object, and by simple voxels, we 

mean voxels that represent only one object. 

However, since our proposed rendering design uses 

ID tags, it can easily distinguish between the 

simple and complex voxels, and therefore, employ 

a suitable interpolation method for each of them. 

Furthermore, in contrast to standard tri-linear 

interpolation used by ray casting, the tri-linear 

interpolation method is optimized so that it can 

avoid edge ambiguity, particularly when 

interpolation inputs are from more than one object. 

Exceptionality field refers to exceptional 

characteristics of each technique. These 

exceptional characteristics could be a strength and 

advantage as is the case for our proposed solution. 

In the case of our proposed solution multiple local 

rendering traversals that are embedded within a 

single global traversal enable two important tasks, 

which are localization of transfer function design 

and depth-based manipulation of interpolation and 

composition operations. Acceleration refers to the 

mechanism a technique uses to speed-up its overall 

rendering process. In standard ray casting, early ray 

termination is used as a way of controlling 

perceptual details. It is used to stop composition at 

a particular depth before the ray reaches the end of 

volume. In our proposed solution, the notion of ID 

tags focuses on the rendering process. Thus 

pushing non-tagged (anonymous) regions of the 

volume to the context or, in other words, out of 

rendering process. There are other fields in table 1 

such as sampling rate, kernel, and sampling nature. 

Sampling rate refers to the interval based on which 

volume is sampled. More frequent sampling leads 

to smoother outcome. Sampling interval usually 

determines the number of interpolations we are 

required to perform. Most direct volume rendering 

technique kernels are linear. This work particularly 

employs tri-linear interpolation and nearest 

neighbor approximation, both of which have a 

linear nature. However, splatting technique for 

instance employs Gaussian interpolation due to 

radial complexity of its kernel. Sampling nature 

depends on the kernel and interpolation 

characteristics of a particular technique. 
 

3. Proposed solution 

In this work, we propose an image processing-

based approach towards enhancing ray casting the 

technique object distinction process. The ray 

casting architecture is modified to accommodate 

object membership information generated by a K-

means-based hybrid segmentation algorithm. 

Object membership information is assigned to 

cubical vertices in the form of ID tags. An intra-

object buffer is devised and coordinated with inter-

object buffer, allowing the otherwise global 

rendering module to embed multiple local 

(secondary) rendering processes. A local rendering 

process adds two advantageous aspects to the 

global rendering module: first, depth oriented 

manipulation of interpolation and composition 

operations that lead to freedom of interpolation 

method of choice based on the number of available 

objects in various volumetric depths, improvement 

of LOD (level of details) for desired objects, and 

reduced number of required mathematical 

computations; Second, localization of transfer 

function design that enables the utilization of 

binary (non-overlapping) transfer functions for 

color and opacity assignment. A set of image 

processing techniques are creatively employed in 

the design of K-means-based hybrid segmentation 

algorithm. Pre-processing methods such as high 

pass/low pass filters and histogram equalization are 

optionally used for noise removal and harmony 

rectification. An unsupervised neural network is 

used to initialize cluster centers and improve the 

clustering accuracy. Few rounds of K-means 

clustering are performed to identify preliminary 

groups. Fisher discriminant ratio is used to convert 

preliminary groups into optimum segments 

representative of inherent color and formation 

characteristics. Edge detection is used to exempt 

important boundary/pattern information from 

irrelevant recombination. Recombination and 

epsilon tolerance factor are used for spatial tuning. 

 

3.1 K-means-based hybrid segmentation design 

Figure 5 provides a flow chart representative of our 

segmentation architecture. A sub-numbering 

scheme is used in order to indicate the connection 

between figure 5 and phase 1 of figure 4. Following 

the flow chart, we initially have the input image 

that could include either a gray scale or color 

image. Next, we have Phase 1.1, which is an 

optional phase. It has a role to play only when the 

input data is low in quality (ex. has considerable 

noise or overall intensity imbalance). Its job is to 

improve the resolution of important features in a 

low-quality input image. Such improvement helps 

toward increasing the overall segmentation 

precision. As it may be evident in figure 5, the input 

of each phase is dependent on its pre-requisite 

phase. Therefore, the output of phase 1.1 is passed 

to phase 1.2 as input. 

In phase 1.2, a neural network is used to generate 

cluster centers. K-means clustering, which is 

performed in Phase 1.3, requires initial cluster 

centers or seed points to carry out clustering.  

However, it is known that allowing K-means to 

generate its own initial cluster centers at random 
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without any sense of direction or rational may lead 

to local optima convergences. To be more specific, 

by local optima converge, we mean the clustering 

result that is not representative of the entire image. 

In order to avoid local optima convergence and 

ensure a globally optimum clustering, we used a 

neural network that spread the initial cluster centers 

based on the relevant color and spatial properties of 

the image at hand. 
 

 
 
Figure 5. K-means-based hybrid segmentation design. 

 

In phase 1.3, a few rounds of K-means clustering is 

performed in order to generate only coarse or 

preliminary clusters. The reason for why only few 

iterative rounds of K-means algorithm is performed 

is that we have dedicated the refinement task to a 

superior statistical algorithm (particularly, fisher 

discriminant ratio) that could produce a much 

better refinement than K-means algorithm only in 

few rounds. 

In phase 1.4, the goal is to avoid formation of too 

large or too small clusters via statistical refinement. 

The preliminary clusters produced in phase 1.3 are 

refined such that both intra-homogeneity (the 

homogeneity inside each cluster) and inter-

heterogeneity (the heterogeneity of each cluster 

with other clusters) increase. Figure 6 demonstrates 

the relationship between phases 1.3 and 1.4. It 

briefly highlights the evolution of clusters from 

coarse to fine. 
 

 
 

Figure 6. Interrelationship between phases 1.3 and 

1.4. 
 

 

In phase 1.5, edge detection is performed in order 

to improve the precision of Phase 1.6’s 

recombination task. During recombination, the 

spatial neighborhood of each pixel is searched in 

order to ensure the homogeneity with respect to 

neighborhood majority. If a particular pixel, for 

instance, has a different value from the majority of 

its neighbors, its value should change to the value 

of the majority unless it is an edge pixel. It is only 

natural for an edge pixel to have a different value 

from its neighbors because edges are usually 

defined as sharp turns among objects. In phase 1.6, 

apart from recombination, which was explained 

above, we have an epsilon spatiality factor that is 

basically a tolerance factor. Its job is to ensure a 

logical spatial distance among objects. For 

instance, if we have mistakenly classified two 

objects that have similar color and texture 

properties but irrelevant spatial properties under 

the same group, we can make a correction via the 

epsilon factor.  

 

3.1.1 Pre-processing 

Low-quality images are the specific target of this 

optional phase. Prior to the actual segmentation 
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operations such as histogram, equalization and 

noise removal via readily available filters could 

take place in order to highlight the otherwise vague 

but important features. As it may be noticed from 

an instance in Chapter four, an appropriate early 

amendment such as histogram equalization could 

boost feature resolution and ensure an enhanced 

segmentation result.  

 

3.1.2 Unsupervised neural map for cluster 

center initialization 

Unguided cluster center initializations often 

mislead the overall clustering task. Inability to 

determine the spread and number of possible 

clusters may often trigger imprecise and locally 

optimum solutions. An enhanced unsupervised 

neural network is used to help identify the required 

numbers and spatial locations of potential cluster 

centers. Automation and approximation are the two 

important reasons for why a self-contained neural 

network was used. As compared to the back-

propagation technique, in which manual feedback-

oriented training rounds are required to reach a 

reasonably accurate result, a self-organized 

network could impulsively produce useful 

approximation suitable for cluster center 

initializations. 

 
Figure 7. (a) Network initialization (b) Neighborhood 

adjustments. 

 

Figure 7 demonstrates a typical 4×4 self-contained 

network with three inputs. Here, the three RGB 

color bands form the input values (gray level values 

could also be represented by elemental blend). The 

network is established such that each map node 

includes three feature vectors and is only connected 

to the input nodes. Prior to training, the range of 

RGB colors available within the image is obtained. 

As indicated in figure 8, in order to define a range, 

the smallest (lower bound) and largest (upper 

bound) color values available within the image are 

found and their difference is calculated. Then an 

interval is calculated. Feature vectors for each map 

node are initialized by traversing from a lower 

bound to an upper bound based on interval (please 

take note of figure 7 part (a)). To make the pseudo-

code (figure 8) clear, it is explained from top to 

bottom. First, the product of map width and length 

is calculated in order to obtain the total number 

nodes we need to initialize. Next, the smallest and 

largest color values available within the image at 

hand are calculated. Next, an interval by evenly 

dividing the available color values among map 

nodes is obtained. Last, initialize each map node by 

assigning color values based on the previously 

obtained interval. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 8. Pseudo-code of an interval computation for 

map node initialization. 

 

After initialization, training starts by randomly 

selecting pixels from all over the image, storing 

their spatial positions and passing them to input 

nodes one by one in order to decide the best match 

unit. BMU is the map node that is most similar to 

the input values as compared to other nodes. As it 

can be seen in figure 7 part (b), once the best 

matching node is selected, its feature vectors and 

neighborhood are adjusted to most closely 

resemble the input values. The amounts of 

adjustments are determined by the learning rate and 

neighborhood size factors in two stages. In the first 

stage, the learning rate begins at 0.9 and gradually 

reduces to 0.1, and the neighborhood size begins by 

half of the map size and gradually decreases to 1. 

The second stage is more of a refinement. At this 

stage, the feature vectors of the nodes are stabilized 

and would further be refined by a learning rate of 

0.01. The neighborhood size remains at 1, meaning 

that only the BMU node is adjusted. For ease of 

calculations, the feature vectors are normalized 

PROCEDURE  NeuralMapInitialization: 

 

CalculateInterval ( ) { 

 
NumberofMAPNodes = multiply (map_width,    

map_length) 

 
SmallestAvailableColorValue = get (min (R, G, B)) 

 

LargestAvailableColorValue = get (max(R, G, B)) 
 

Range = subtract (LargestAvailableColorValue,   

SmallestAvailableColorValue) 
 

Interval = divide (Range, subtract (Numberof  

MapNodes, 1) 
} 

initialize (CurrentMapNodeValue,  

SmallestAvailableColorValue) 

 

For each (MapNode) {CurrentMapNodeValue =  

CurrentMapNodeValue + Interval  } 
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from [0, 255] to [-1, 1]. Upon the end of training 

and convergence numbers, locations and values 

that cluster centers should possess are 

approximated. Equation 1 formulates a model for 

node adjustment. 

 

 𝑤𝑣(𝑠 + 1) = 𝑤𝑣(𝑠) + 𝜃(𝑢, 𝑣, 𝑠)𝛼(𝑠)(𝐷(𝑡) −

𝑤𝑣(𝑠)) 

(1) 

 

𝑊𝑣, 𝑠, 𝑢, 𝑣, 𝑡, 𝛼(𝑠), and 𝐷(𝑡) refer to the 

weight vector, step index, BMU index for 𝐷(𝑡), 

neurons, training sample index, monotonically 

decreasing learning coefficient, and input vector, 

respectively. 𝜃(𝑢, 𝑣, 𝑠) is the neighborhood 

function. It is calculated based on the lattice 

distance between BMU (𝑢) and neuron 𝑣. 

 

3.1.3 K-means clustering 

K-means is a statistical clustering algorithm. 

Equation 2 formulates how K-means commonly 

works. 𝑥, 𝑚, 𝑑2, and 𝑚𝑖𝑛 refer to the data point 

(pixel), average of a data points set (cluster center), 

Euclidian distance, and minimum value, 

respectively. 
 

  
1

𝑛
∑ [𝑚𝑖𝑛 𝑑2 (𝑥𝑖 , 𝑚𝑗)]𝑛

𝑖=1   

(2) 
 

A homogenous cluster is identified when a 

particular cluster center possesses the minimum 

distance (mean squared error) to several data points 

as compared to other cluster centers. In this work, 

few rounds of K-means clustering were used to 

produce the preliminary classification results or, in 

other words, elementary clusters. The initial cluster 

centers required by K-means algorithm are 

provided by Phase 1.2. At this stage, to avoid the 

ambiguity caused by compromise over features, the 

dimensions are limited to merely three color bands 

and a diagonal busyness factor (DF). DF is used to 

probe texture around each pixel. Texture is an 

intrinsic property of virtually all surfaces. It relays 

senses such as regularity, coarseness, fitness, 

directionality, and granularity. Textures, in 

general, grant a directional sense to the spatial 

tendency of image intensities. It helps in clarifying 

ambiguous situations. For instance, hatches of a 

brownish chair could be used to tell it apart from its 

brown background. As it may be noticed in 

Equation 3, DF is calculated as the sum of color 

differences among the central and diagonal pixels. 

𝐶 and 𝑥 denote the central and diagonal pixels, 

respectively. Figure 9 demonstrates the diagonal 

directions around a central pixel. 

 

 
 

Figure 9. Diagonal directions including top left, top 

right, bottom left, and bottom right. 

 
 

  𝐷𝐹 =  ∑  |𝐶 − 𝑥𝑖|4
𝑖=1  (3) 

 

 

3.1.4 Statistical optimization 

Fisher discriminant ratio is used for the refinement 

of preliminary and coarse clusters produced in the 

previous phase. K-means clustering originally 

requires many iterative rounds for a valid 

clustering outcome. However, a Fisher 

discriminant ratio could perform a stable clustering 

using only few iterative rounds. In contrast to K-

means, a Fisher discriminant ratio enables 

uniformity across the entire space. A balanced 

distribution of homogeneous clusters is obtained by 

including variances within ratio calculations. 

Equation 4 formulates how Fisher discriminant 

ratio works. 𝐽𝑝, 𝑚, 𝑎𝑛𝑑 𝑣 refer to ratio, mean, and 

variance, respectively. The discriminant ratio is 

calculated as the sum of differences in means over 

sum of variances. Larger differences in means or 

smaller variances obviously lead to a higher ratio.  
 

  

𝐽𝑝 =
∑ ∑ (𝑚𝑖𝑝 − 𝑚𝑗𝑝)

𝑇
(𝑚𝑖𝑝 − 𝑚𝑗𝑝)𝑘

𝑗>𝑖
𝑘
𝑖=1

(∑ 𝑣𝑖𝑝
𝑇 𝑣𝑖𝑝

𝑘
𝑖=1 )

 

 

 

(4) 

 

 

 
 

Figure 10. Graphical representation of ratio’s 

nominator. 

 

In an iterative round, each pixel (data point) is 

temporarily removed from its home cluster and 

assigned to each one of the other clusters one by 
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one. Every time a temporary assignment occurs, 

the differences in means and variances are renewed 

and the discriminant ratio is recalculated. Figure 10 

indicates the routes among the four clusters 

required for calculation of differences in means. A 

pixel is permanently detached and reassigned to 

another cluster only if such reassignment causes an 

increase in ratio, thus promoting a larger inter-

cluster distance and a smaller intra-cluster distance. 

Statistical optimization ends when ratio alteration 

becomes ignorable. 

 

3.1.5 Edge detection and analysis  

In this section, edge treatment is considered as a 

prerequisite to recombination (performed in 

Section 3.1.6). It directs the spatial recombination 

task by discerning potential object boundaries that 

may be undermined during spatial recombination if 

not specifically exempted. The sobel algorithm is 

used to identify and filter important edge pixels. 

Long and continues edges are extracted, while 

short and discrete edges are ignored. In the cases 

where there are multiple discrete and short but 

closely adjacent edges, an aggregation operation is 

performed in order to produce a wholesome and 

continues edge. As it can be noticed from 

Equations 5 and 6, two 3  3 masking kernels are 

employed to approximate the derivatives along the 

horizontal and vertical directions. Throughout the 

image masking, kernels perform convolution 

operations and highlight the edge pixels.  

 
 

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] × 𝐴         
(5) 

 
 

𝐺𝑦 = [
−1 −2 −1
0 0 0

−1 2 1
] × 𝐴         

(6) 

 
 

Horizontal and vertical masks are denoted by 

matrices at  𝐺𝑥 and 𝐺𝑦, respectively. The 

multiplication operation with A represents 

convolution. The values used in masking kernels 

are not limited to Equations 5 and 6. They could be 

changed depending on the image at hand. Diverse 

images may require different filter values.  

Equations 7 and 8 formulate gradient magnitude 

and gradient direction calculations in the sobel 

algorithm. The parameters such as 𝐺𝑥 and 𝐺𝑦 are 

derived from Equations 5 and 6. 
 

 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (7) 

 

    𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦

𝐺𝑥
)       (8) 

 

 

3.1.6 Spatial adjustment 
Often few irrelevant fragments remain within 

clusters even upon multiple rounds of refinement. 

In order to reduce these artifacts, spatial 

recombination is employed. To carry out 

recombination, the image is traversed from top to 

bottom, and each pixel is scanned in eight 

connected directions. For each pixel, the cluster to 

which the majority of pixels in the eight connected 

neighborhood belong is determined. If the central 

pixel (pixel whose neighborhood is being scanned) 

belongs to the same cluster as the majority of its 

eight connected neighborhood pixels, its cluster 

will not change; otherwise, its cluster will change 

to the cluster that the majority of its eight connected 

neighborhood pixels belong. As it can be noticed in 

figure 11 part (a), the majority of pixels around the 

central pixel are classified under cluster number 4. 

Consequently, the central pixel’s cluster is changed 

to 4 (figure 11 part (b)). Given the nature of color 

and texture-based clustering, the objects with 

similar color and pattern characteristics but 

dissimilar spatial properties may be classified 

under the same group, rendering them impossible 

to be distinguished. To tackle this problem, an 

optional tolerance-oriented spatiality factor 

referred to as epsilon is devised. If the sum of 

spatial distances of pixels belonging to a particular 

cluster is greater than the epsilon value, then those 

pixels that are further away are identified, and if 

their density is great enough, they are grouped 

under a different cluster.  
 

 
 

Figure 11. (a) A 33 neighborhood before 

recombination (b) After recombination. 

 

3.2 An enhanced rendering architecture 

Figure 12 provides a flow chart, representative of 

this work’s rendering architecture. A sub-

numbering scheme is used in order to indicate the 

connection between figure 12 and phase 2 of figure 

4.  
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Figure 12.  An enhanced rendering architecture. 

 

 

 
 

Figure 13. A typical object set array. 

 

Following the flow chart, in phase 2.1, the object 

membership information generated by the K-

means-based hybrid segmentation algorithm is 

used to produce a unique ID tag for each particular 

object. An ID tag is accompanied by an array of 

object depth and position. Depending on the axis 

along which projection takes place, the depth 

properties are subject to change. However, 

volumetric position is indifferent to any changes. 

As it may be evident in figure 12, the input of each 

phase is dependent on its prerequisite phase. 

Therefore, the output of phase 2.1 is passed to 

phase 2.2 as the input. In phase 2.2, a rendering 

focus is made possible by assigning the ID tags 

produced in phase 2.1 to the desired cubical voxels. 

The non-tagged regions are set to anonymous and 

moved to the context. In phase 2.3, global 

rendering is performed in a manner different from 

the original ray casting technique. In ray casting, 

sampling and composition are carried out from the 

very beginning to the end at a constant pace. 

However, in our proposed method, global 

rendering is simplified. The global module starts 

traversal, and does not perform any composition 

until it reaches a particular volumetric depth, where 

there is an object of interest. Upon reaching an 

object, global module is suspended, and instead, a 

local module is activated. The local module’s job 

is to perform the interpolation and composition 

tasks and generate an interim rendering result. 

Once the local module is finished, global module 

takes over again, and by performing only a single 

composition operation, incorporates the interim 

rendering result into its buffer. Thus the above-

mentioned loop continues until the global module 

reaches the end of volume. In phase 2.4, we 

demonstrate how an interpolation task is handled 

within the local rendering process. The choice of 

the interpolation method depends on the number of 

objects available. If there is only one object, then 

the nearest neighbor approximation method is 

used. The nearest neighbor approximation is a 

primitive method and does not require calculations. 

It merely picks the sample value from any of the 

vertices of the representative cubical voxel(s). 

Now, if there is more than one object, then tri-linear 

interpolation along with threshold considerations 

form a mechanism for distinctive sample value 

generation. In standard ray casting, tri-liner 

interpolation is performed after texture assignment, 

which leads to vector-based ambiguity. However, 

in our proposed solution, tri-linear interpolation is 

performed using IDs prior to texture assignment 

that in combination with threshold considerations 

lead to clear and distinctive results.  
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Figure 14. IDs 1 and 2 represent two objects at the 

same depth, while IDs 3 and 4 represent two objects at 

different depths.  

 

In phase 2.5, the texture assignment task within the 

local rendering process is demonstrated. Texture 

assignment takes place based on a one to one 

lookup table. The lookup table is actually a 

simplified and precise transfer function that has 

come about thanks to ID tags. A sample uses its 

unique ID to search for the lookup table for a 

relevant texture (color and opacity) value.  

 

3.2.1 Directed objects set construction 

Directed object set construction in its brief and 

simple form refers to building an array of voxels 

representing an object. It is directed because the 

position and membership ID of voxels are 

determined at vertex level on each 2D slab by a K-

means-based hybrid segmentation system (please 

refer to Section 3.1). As demonstrated in figure 13, 

an object set should at least include an array of 

membership ID, position, and depth along the 

viewing plane. Depth information is crucial in 

identifying the order with respect to which an 

object is rendered as compared to other objects in 

volumetric space. For instance, if two objects are 

equal in depth, they stand in the same place on the 

rendering queue; otherwise, the object in front 

would have the primitive turn in a typical front to 

back composition. Figure 14 demonstrates a case in 

which the viewing plane is along the X axis, and 

composition is in front to back order. Following the 

ray traversal (depicted by crossing arrows), objects 

1 and 2 coexist at the same depth, while objects 3 

and 4 are located at different depths. Objects 1 and 

2 should, therefore, be grouped under the same 

object set array, while objects 3 and 4 should each 

be grouped under different arrays.     
 

3.2.2 Focus/context separation 

Inspired with the empty space skipping technique, 

an effective solution is proposed. Directed or 

guided rendering could accomplish focus on the 

desired regions of the volume dataset by assigning 

IDs only to preferred voxels, leaving the 

remaining/contextual voxels unassigned. Transfer 

function texture assignment is denied to 

anonymous set of voxels. In other words, unwanted 

areas are removed, assisting effective management 

of LOD required for fine and correct visualization 

results. The overall interpolation and composition 

efficiency are also improved since fewer voxels are 

naturally less exhaustive. 
 

 
 

Figure 15.  Double rendering design. 

 

3.2.3 Global composition mode 

Ray casting is a direct volume rendering technique. 

As it may be noticed in figure 15, ray casting is 

broken into a global traversal and local traversals 

as two complementary rendering components. 

Starting by a global traversal, as the casted ray 

traverses the volume, it updates (renders) the 

projection plane buffer (global buffer) only after 

passing through an object and not during the 

intersection course. Instead, intra-object rendering 

is handled locally. Occurrence of an intersection is 

determined by the depth at which the ray is 

traversing and whether there are any objects 

available at this depth on the object set list. Upon 

intersecting an object, a secondary but complete 

rendering process is initiated; this time is given a 

temporary local buffer. Given the ID(s) of the 

intersected object(s), a relevant interpolation 

solution is carried out (please refer to Section 

3.2.4), and the local buffer is updated. The contents 

of the local buffer are then summed into the 

projection plane buffer as part of the overall 

composition mode.  
 

3.2.4 Interpolation design and high resolution 

boundaries   

First, selection of an appropriate interpolation 

technique depends on the number of objects a local 

ray casting process ought to render. If there is only 
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one object, no ambiguity could be imposed by 

other objects, and, therefore, a fast nearest neighbor 

approximation should be used to yield an 

unsurprisingly precise sample value. However, if 

there are more than one objects, then a tri-linear 

interpolation is used. Second, interpolation takes 

place based on object IDs rather than RGBA 

values. This is to reduce errors raised from blended 

color bands. IDs provide a single representative 

value for each vertex, while RGBA is an elemental 

factor of four values per vertex that could lead to 

an obscured interpolation outcome. Therefore, 

interpolation is initially performed in terms of IDs 

and only then mapped to relevant textures for 

rendering. Third, having more than one object at 

the same depth necessitates tri-linear interpolation 

among two or more objects. Combination among 

the boundaries’ voxels and reduced visualization 

resolution may be inevitable in this situation. A 

threshold value solution could be set to separate 

two object borders clearly such that the mixed 

points in between are reassigned to either one of the 

objects. However, extending this solution to three 

or more objects is not readily possible because one 

could not set a single threshold value for iso-

separation of more than two object IDs. To resolve 

this issue, a down scaling mechanism is used to 

produce a universal threshold. As it can be noticed 

in figure 16, all IDs could be normalized to the [0, 

1] range. The universal threshold could then be set 

as 0.5, and voxels above and below threshold could 

be distinctively reassigned to relevant IDs. 

Equation 9 provides a typical normalization 

formulation. In a case where we use the values 

given in figure 16 as the Equation 9 parameters, 

𝑀𝑎𝑥, 𝑀𝑖𝑛, 𝑎, 𝑏, 𝑎𝑛𝑑 𝑥 refer to the actual upper 

limit (7), actual lower limit (5), lowest normalized 

value (0), highest normalized value (1), and actual 

value that has to be normalized (5.4, 5.8, and so 

on), respectively.  
 

 
 

Figure 16. Universal threshold composition. 

 

𝑓(𝑥) =
(𝑏 − 𝑎)(𝑥 − 𝑀𝑖𝑛)

𝑀𝑎𝑥 − 𝑀𝑖𝑛
+ 𝑎 

 

(9) 

 

3.2.5 Texture assignment and local rendering 

The standard volume rendering techniques use 

global and single dimensional transfer functions for 

the object distinction process. However, due to the 

existing complexity and twist within volumetric 

datasets, even global and multi-dimensional 

(dimension refers to distinguishing factors) transfer 

functions are not entirely enough for a proper voxel 

classification. This work develops the notion of 

local and singular transfer functions. A lookup 

table is constructed to assign the texture values 

(color and opacity) to interpolated points (IDs) for 

the local rendering process prior to global 

composition. As it can be noticed in figure 17, there 

is a one to one relationship between ID and texture 

such that for each group of voxels that form an 

object, a local transfer function is allocated.  
 

 
 

Figure 17. Texture assignment table. Each number 

and its respective dashed rectangle represent an object ID 

and its relevant RGBA values. 

 

4. Experimental results 

In this section, two experimental cases are 

presented, one signifying the segmentation solution 

of this work, and the other illustrating the 

combined solution.   
 

4.1 Generic segmentation case 

This work offers rather a handy generic 

segmentation solution that could be used 

independently. To validate the segmentation 

outcome, a comparative demonstration is provided.  
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Figure 18. (a) Original image (b) This work’s 

segmentation (c) Reference 10’s segmentation. 

 

 

 
 

Figure 19. (a) Original image (b) This work’s 

segmentation (c) Reference 10’s segmentation. 

 

 

 

 

 
Figure 20. (a) Original image (b) This work’s 

segmentation (c) Reference 10’s segmentation. 

 

4.2 Chest and abdomen – pelvis case  

This sub-section allows a comparison between the 

solution proposed in this work and the standard ray 

casting technique. Figure 21 presents segmentation 

of chest and lung. Here, chest is pseudo-colored in 

light blue, lung in red, surrounding tissue in yellow, 

air way tissue in green, and skin in dark blue. A 

visual indication of neural map construction for 

cluster center initialization is provided as well. 

Figure 22 deems pre-processing as an important 

preliminary step for an effective segmentation. It 

infers how ineffective could the segmentation 

result for low-quality slabs turn out to be if no pre-

processing is performed. Figure 22 parts (a) and (c) 

use histograms to clarify this claim by comparing 

the harmonic balance of intensities with respect to 

the pixel density. The horizontal axis refers to 

intensities (small bins correspond to larger 

intensity intervals) and the vertical axis refers to 

pixel congestion.  
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Figure 21. Chest and lung gray level slabs and their 

corresponding segmentations. A representative 

segmentation along with its 14 × 14 neural map. 

 

 

 
 

Figure 22. (a) Raw MRI data and its histogram 

before pre-processing (b) Segmentation of part a (c) Raw 

MRI data and its histogram after pre-processing (d) 

Segmentation of part c. 

 

Figures 23 and 24 both represent the volumetric 

visualization of the same raw dataset. Figure 23 is 

based on figure 21, while figure 24 is merely 

produced by standard ray casting. At first glance, it 

seems that figure 24 offers more detailed 

visualization outcome compared to figure 23, 

which is true, but such advantage is limited to 

simple slabs (in this case, chest and lung), which 

originally possess fine intensity distinction 

between the different organs. Please notice that 

even in a perfect situation such as figure 24, there 

is still edge artifacts within the narrow object 

regions. Figure 25 compares figures 23 and 24 at a 

magnified level. As it can be noticed, in figure 25 

part (a), the ribs are mixed and there is no clear 

edge distinction among them, while in figure 25 

part (b), ribs are clearly distinguished. 

 

 
 

Figure 23. Volumetric visualization of chest and lung 

based on Figure 21. 

 

 

 
 
Figure 24. Volumetric visualization of chest and lung 

via standard ray casting. 
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Figure 25. Chest and lung at 600% magnification (a) 

Ray casting (b) this work. 

 

Figure 26 follows a similar path with figure 21 in 

the sense that segmentation is performed over 

several slices and distinct details of the desired 

organs are produced. Such distinctions are then 

utilized by rendering pipeline to generate 

volumetric tags. Figure 27 further clarifies the 

limitation of ray casting and justifies the 

importance of a tagged mechanism for complex 

slabs. As it may be noticed, compared with part (a), 

in part (b), kidney is properly identified, and there 

is a clear visualization of relevant tissues. In part 

(a), there are many overlapping fragments, leading 

to unnecessary clutter and obstructed visualization. 

Thus such overlaps are due to rudimentary transfer 

function design of the ray casting technique. 
 

 
 
Figure 26. Kidney and liver gray level slabs and their 

corresponding segmentations. A representative 

segmentation along with its 14 × 14 neural map.  

 

 
 

Figure 27. Bone and liver at 600% magnification (a) 

Ray Casting (b) This work. 

 

 

Figure 28 compares the tri-linear interpolation 

method used by ray casting with our proposed 

interpolation method. As it may be noticed, the 

average of relative errors for this work is relatively 

lower for an equivalent number of randomly 

selected samples. Given the scalar value for each 

vertex, one could perform a tri-linear interpolation 

to obtain a representative sample for each voxel. In 
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the case of our method, we used an ID value at each 

vertex. Then we performed interpolation based on 

IDs. A comparison between the tri-linear 

interpolation method and our interpolation method 

is based on the relative error. Since a sample point 

is interpolated using values of eight cubical 

vertices, we can calculate the relative error between 

each vertex and the interpolated point with: 

 

𝐸 =
|𝐴−𝐵|

|𝐵|
     (10) 

 
 

where 𝐴, 𝐵, and 𝐸 refer to the interpolated value, 

vertex value, and relative error, respectively. Now, 

in order to obtain a single measurement of error for 

all vertices of a voxel, we can calculate an average 

error as: 

 

𝐴 =
∑ 𝐸𝑖

𝑛
𝑖=1

𝑛
× 100   (11) 

 
 

where 𝐴, 𝒏, and 𝐸 refer to the average of relative 

errors, number of vertices, and relative error, 

respectively. 
  
 

 
 

Figure 28. Ray casting’s interpolation error verses 

this work’s interpolation error. The horizontal axis refers 

to samples (multiples of hundred) and the vertical axis 

refers to average relative errors. 

 

 

 

 

 
Figure 29. (a) Skeleton-based segmentation [4] (b) 

Manual and explicit dissection [1] (c) and (d) Heart 

visualization after fast marching active contour 

segmentation. 

 

 

 

Figure 30. (a) This work’s skin visualization (b) This 

work’s heart visualization (c) This work’s abdomen 

visualization. 

 

As it may be noticed, figure 30 insinuates the 

implementation of the methodology of this work. 

Figure 29, on the other hand, enables a comparison 

by demonstrating the results from other articles. 

Depending on the application (inclusive/exclusive) 

at hand, the nature of segmentation and the relevant 

rendering design may differ. For instance, in figure 

29 part (a), an implicit segmentation design takes 

advantage of the skeletal structure to visualize 

abdomen section. Organs closer to main bones are 

identified clearly. In figure 30 part (c), organs are 
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less cluttered. In figure 29 part (b), the 

segmentation aspect is insignificant but an 

elaborate rendering pipeline is proposed. The blue 

skin area is comparable to figure 30 part (a). Figure 

29 parts (c) and (d) focus on the segmentation, and 

perform the rendering task via a rather openly 

available package, while figure 30 part (b) 

undertakes both segmentation and rendering in 

detail. 
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 چکیده:

سه بعدی  ست که برای نمایش  ستقیم مکعب ا ستینگ یک روش رنگ آمیزی م ستفاده میری ک صاویر شودا . این روش کاربردهای مهمی در زمینه ت

شکی و بیولوژیکی دارد. سه پز ضعف این روش مکانیزم کلا ست. نقطه  ضعیف آن ا ستتوابع تیدیل در این بندی  شیاء را بدر شته و ا شانی دا ی روش همپو

 جدا نمیکنند. ما یک روش بر اساس تکنیکهای پردازش تصویر ارائه میکنیم که این نقصان را بر طرف کرده و یک مکانیزم بهینه ارائه میکند.

 سازی نمایش.ن هیبرید، رنگ آمیزی مکعب، بهینهروش سگمنتیش :کلمات کلیدی

 


