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Abstract 
The record of human brain neural activities, namely electroencephalogram (EEG), is known to be non-

stationary in general. In addition, the human head is a non-linear medium for such signals. In many 

applications, it is useful to divide the EEGs into segments in which the signals can be considered stationary. 

Here, Hilbert-Huang Transform (HHT), as an effective tool in signal processing is applied since unlike the 

traditional time-frequency approaches, it exploits the non-linearity of the medium and nonstationarity of the 

EEG signals. In addition, we use Singular Spectrum Analysis (SSA) in the pre-processing step as an effective 

noise removal approach. By using synthetic and real EEG signals, the proposed method is compared with 

Wavelet Generalized Likelihood Ratio (WGLR) algorithm as a well-known signal segmentation method. The 

simulation results indicate the performance superiority of the proposed method. 

Keywords: EEG Signal Segmentation, Time-Frequency Approach, Empirical Mode Decomposition (EMD), 

Singular Spectrum Analysis (SSA), and Hilbert-Huang Transform (HHT).  

1. Introduction 

Nonstationarity of the signals can be quantified by 

measuring some statistics of the signals, such as 

mean and variance, at different time lags. The 

signals can be deemed stationary if there is no 

considerable variation in such statistics. In general, 

the signals are stationary if their distributions do 

not vary with time. Often it is necessary to label the 

electroencephalogram (EEG) signals by segments 

of similar characteristics that are particularly 

meaningful to clinicians and for evaluation by 

neurophysiologists. Within each segment, the 

signals are considered statistically stationary, 

usually with similar time or frequency 

distributions. For example, an EEG recorded from 

an epileptic patient may be divided into three 

segments of preictal, ictal, and postictal with 

variable durations [1]. 

The segmentation may be fixed or adaptive. 

Dividing the signals into fixed (rather small) size 

segments is easy and fast. However, it cannot 

precisely follow the epoch boundaries [2,3]. On the 

other hand, in adaptive segmentation the 

boundaries are accurately and automatically 

followed [2]. Many adaptive segmentation 

methods have been suggested by researchers in the 

field such as those in [4-10]. 

In order to increase the accuracy of the 

classification in EEG signals, Kosar et al. [6] have 

proposed to use the segmentation method as a pre-

processing step. It was done by a dividing signal to 

segments of different lengths that are stationary. In 

this method two characteristics were used that are 

based on estimation of average frequency in the 

segment and the value of mean amplitude in the 

window.  

Azami et al. have proposed a method to segment a 

signal in general and real EEG signal in particular 

using the standard deviation, integral operation, 

Discrete Wavelet Transform (DWT), and variable 

threshold [2]. In this paper we have illustrated that 

the standard deviation can indicate the changes in 

amplitude and/or frequency [2]. To remove the 

effect of shifting and smooth the signal, the integral 

operation has been used as a pre-processing step. 
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However, the performance of the method is 

entirely dependent on the level of noise 

components. 

In Generalized Likelihood Ratio (GLR) method to 

obtain the boundaries of signal segments, it has 

been suggested to use two windows that slide along 

the signal. The signal within each window of this 

method is modelled by an autoregressive (AR) 

process. For the signals within such windows the 

statistical properties donôt change; in other words 

AR coefficients remain approximately constant 

and equal. However, when the sliding windows fall 

in the different segments, the AR coefficients 

change and the boundaries are detected [11]. In 

[12] Lv et al. have suggested using wavelet 

transform for decreasing the number of false 

segments and reducing the computation load. This 

method has been named Wavelet GLR (WGLR) 

[12]. 

Azami et al. for the first time have proposed an 

adaptive signal segmentation approach using DWT 

and Higuchiôs Fractal Dimension (FD) [5]. In order 

to obtain a better multi-resolution representation of 

a signal which is very valuable in detection of 

abrupt changes within that signal, the DWT has 

been used. The changes in the Higuchiôs FD refer 

to the underlying statistical variations of the signals 

and time series including the transients and sharp 

changes in both amplitude and frequency. The 

performance of the method is still dependent on the 

noise components. 

Since Time-Frequency Signal Analysis and 

Processing (TFSAP) exploits variations in both 

time and frequency, most of the brain signals are 

decomposed in the time-frequency domain. 

Because the instantaneous energy depends on the 

frequency of the signal, in this article, using Time-

Frequency Distribution (TFD) for signal 

segmentation has been proposed [13].  

A recent contribution to signal processing is named 

Hilbert-Huang Transform (HHT) that is 

combination of the Empirical Mode 

Decomposition (EMD) and the Hilbert Transform 

(HT) [14,15]. Fourier transform, wavelet 

transform, and HHT can be used to discuss the 

frequency characteristics of stationary signals and 

system linearity, the time-frequency features of 

non-stationary signals and outputs of non-linear 

systems, respectively. Since EEG signals are non-

stationary, HHT is most suitable process for 

analyzing them [14]. 

Moreover, since noise can significantly decrease 

the performance of the segmentation methods, first 

we use Singular Spectrum Analysis (SSA) as a 

filter. SSA is becoming an effective and powerful 

tool for time series analysis in meteorology, 

hydrology, geophysics, climatology, economics, 

biology, physics, medicine, and other sciences 

where short and long, one-dimensional and multi-

dimensional, stationary and non-stationary, almost 

deterministic and noisy time series are to be 

analyzed [16]. 

The rest of the paper is organized as follows: The 

proposed adaptive method as well as brief 

explanations of SSA and HHT is explained in 

Section 2. The performance of the proposed 

method is evaluated in Section 3. The last section 

concludes the paper. 

2. Proposed Adaptive Segmentation 

First, we use a powerful tool, SSA, to reduce the 

noise sources. The SSA is much faster than 

previous widely used filters or smoothers like the 

DWT. A brief description of the two SSA stages 

together with the corresponding mathematics is 

given. At the first stage, the series is decomposed 

and at the second stage we reconstruct the original 

series and use the reconstructed series (which is 

without noise) to predict new data points [17,18]. 

1) Decomposition: This stage is composed of two 

sequential steps including embedding and SVD. In 

the embedding step, the time series s is mapped to 

k multidimensional lagged vectors of length l as 

follows: 

i 1 2x [ , ,..., ] ,      1T

i i i ls s s i k- + -= ¢ ¢                  (1) 

where - 1k r l= +, l is the window length (

1 l r¢ ¢ ), and []T denotes the transpose of a 

matrix. An appropriate window length totally 

depends on the application and the prior 

information about the signals of interest. The 

trajectory matrix of the series s is constructed by 

inserting each xi as the ith column of an l×k matrix, 

i.e. 
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Note that the trajectory matrix X is a Hankel 

matrix, i.e. for all the elements along its diagonals 

i+j=constant. 

In the SVD sub-stage, the SVD of the trajectory 

matrix is computed and represented as the sum of 

rank-one biorthogonal elementary matrices. 

Consider the eigenvalues and corresponding 

eigenvectors of 
T=S XX  are 1 2, ,..., ll l land 
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1 2, ,..., le e e, respectively. If /T

i i il=v X e , then 

the SVD of the trajectory matrix can be written as 

1 2 ... d= + + +X X X X                                         (3) 

where argmax { 0}i id l= >  and T

i i i il=X e v . 

The ith eigentriple of the SVD decomposition 

comprises of vi, ei, and li. Projecting the time series 

onto the direction of each eigenvector yields the 

corresponding temporal principal component 

[17,18]. 

2) Reconstruction: This stage has two steps: 

grouping and diagonal averaging. The grouping 

step divides the set of indices {1, 2, ..., d} to m 

disjoint subsets I1, I2, ..., Im. For every group 

1 2{ , ,..., }j j j jpI i i i= , we have 

1 2
{ , ,..., }.

j j j jpI i i iX X X=X  Grouping the 

eigentriples and expanding all matrices 
jIX , (3) 

can be written as 

1 2
{ , ,..., }

mI I I=X X X X                                         (4) 

There is no general rule for grouping. For each 

application, the grouping rule depends on the 

special requirements of the problem and the type of 

the contributing signals and noise. 

b) Diagonal averaging: In the final stage of 

analysis, each group is transformed into a series of 

length r. For a typical l k³  matrix Y, the qth 

element of the resulted time series, gq is calculated 

by averaging the matrix elements over the diagonal 

2i j q+ = +, where i and j are the row and column 

indices of Y, respectively [17,18]. 

The concept of separability is an important part of 

the SSA methodology. Assume that s is the sum of 

two series s1 and s2, i.e., 1 2s = s + s . Separability 

means that the matrix terms of the SVD of the 

trajectory matrix of X can be divided into two 

disjoint groups, such that the sums of the 

termswithin the groups result in the trajectory 

matrices X1 and X2 of the time series s1 and s2, 

respectively [17,18]. A necessary condition for 

separability of the sources is disjointedness of their 

frequency spectrum. It is also worth mentioning 

that exact separability cannot be achieved for real-

world signals; hence, only approximate 

separability can be considered.  

The eigentriples resulting from the SSA also 

contain information about the frequency content of 

the data. If there is a periodic component in the 

data, it will be reflected in the output of the SSA as 

a pair of (almost) equal eigenvalues [17,18]. 

Moreover, the highest peaks in the Fourier 

transform of the corresponding eigenvectors are 

related to the frequency of the periodic component. 

These features of the SSA are used to construct 

data-driven filters. 

After employing the SSA, we use the combination 

of EMD and Hilbert transform, namely HHT. EMD 

is a powerful and new method applied to 

decompose the Intrinsic Mode Functions (IMFs) 

from a complex time series. This decomposition, 

sifting process, uses the mean of the upper and 

lower envelopes [19-22]. The sifting process must 

be repeated until every component satisfies two 

conditions: 

1. The number of extrema and the number of zero-

crossings must either be equal or differ at most by 

one. 

2. At any point, the mean value of the two 

envelopes defined respectively by local maxima 

and local minima must be zero. 

For an arbitrary time series x(t), the sifting 

process can be summarized as follows: 

1) Identify all the local extrema (maxima or 

minima) of signal x(t), and then connect all the 

local maxima by a cubic spline line (upper 

envelope) 

2) Repeat similarly all the local minima (lower 

envelope).  

3) The mean of the upper and lower envelopes is 

designated as m(t). The difference between the 

data and m(t) is the first component as follows: 

1( ) ( ) - ( )h t x t m t=                                        (5) 

4) Suppose h1(t) as the new original signal and 

repeat above steps. 

Generally, this process must be repeated until 

the last h1(t) has at most one extrema or becomes 

constant. However in many cases, it is not a 

suitable criterion. In this paper we use the criterion 

applied in [19]. 

The second step of HHT, definition of 

instantaneous frequency, is to compute the 

instantaneous frequency by using the Hilbert 

transform [20-22]. Hilbert transform of a given 

time series x(t) can be computed as: 

1 ( )
( ) [ ( )]

x
y t HT x t PV d

t

t
t

p t

+¤

-¤

= =
-ñ

                  (6) 

which PV illustrates the principal value of the 

singular integral [20-22]. x(t) and y(t) can be 

represented as a complex number z(t) as follows: 
( )( ) ( ) ( ) ( ) i tz t x t iy t a t eq= + =                            (7) 
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where i is the imaginary unit, 

2 2 0.5( ) [ ( ) ( ) ]a t x t y t= +  and 
( )

( )
( )

y t
t arctg

x t
q

ë û
= ì ü

í ý
. 

In other words, a(t) and ( )tq  are the instantaneous 

amplitude and phase, respectively [20-22]. 

Moreover, instantaneous frequency can be defined 

as follows: 

1
( )

2

d
f t

dt

q

p
=                                                     (8) 

3. Simulation Results 

In order to assess the performance of the suggested 

method, two kind signals including the synthetic 

data and a real EEG signal are utilized. The 

synthetic signal includes the following seven 

epochs: 

Epoch 1: 3.5cos(2ˊt) + 4.5cos(6ˊt), 

Epoch 2: 3.5cos(3ˊt) + 5.5cos(10ˊt), 

Epoch 3: 4.5cos(2ˊt) + 5.5cos(8ˊt), 

Epoch 4: 3cos(2ˊt) + 7cos(6ˊt) + 2cos(7ˊt), 

Epoch 5: 4cos(2ˊt) + 5cos(10ˊt), 

Epoch 6: 4cos(3ˊt) + 7.5cos(9ˊt), 

Epoch 7: 2cos(4ˊt) + 7cos(8ˊt) + 3cos(3ˊt). 

In Figures 1.a and 1.b the synthetic data described 

above and the filtered signal by SSA with window 

length 2 are shown, respectively. As can be seen, 

the filtered signal is smoother than the original 

signal. After filtering the signal by SSA to 

decompose the IMFS of the signal EMD is 

employed. In Figure 2, the result of decomposition 

performed by EMD of the filtered synthetic signal 

is depicted. This figure illustrates that the first 

mode has a higher frequency than the second mode 

where modes are ordered from the highest 

frequency to the lowest. 

As mentioned previously, the reason for using 

EMD is that HT can be better computed. HHT of 

the synthetic signal is shown in Figure 3. As we can 

see in this figure, all seven segments boundaries are 

shown accurately. 

To demonstrate the emphasis of this algorithm, in 

Figure 4, the output of the WGLR method is 

shown. Figure 4.a and Figure 4.b show respectively 

the original signal the same as Figure1.a and the 

decomposed signal using wavelet transform. Here, 

the DWT with Daubechies wavelet of order 8 is 

used. Note that the WGLR parameters for this 

paper are attained by considering many trials. In a 

general manner, the decomposed signal indicates 

the slowly and rapidly changing features of the 

signal in the lower frequency and higher frequency 

bands, respectively. As can be seen in Figure 4.c, 

there are some false boundaries selected by the 

WGLR. Comparing the last two figures, it has been 

shown that the proposed method has a superior 

performance compared with WGLR for signal 

segmentation. Although, as mentioned before, 

there are several advantages in combining HHT 

and SSA, the computation time for the proposed 

method is not as intensive as that of the WGLR 

method. 

As described before, signal segmentation is a pre-

processing step for EEG signal analysis. In this part 

one epoch of a real newborn is shown in Figure 5.a. 

Firstly, for smoothing the EEG signal, we use SSA 

as a fast and powerful pre-processing step. The 

result of using SSA is shown in Figure 5.b. The 

SSA used for this real signal has window length 

equal to 20 that is selected with trial and error. 

After using SSA, the combination of EMD and HT 

named HHT is applied on the filtered signal in 

Figure 6 and Figure 7, respectively. We can see the 

influence of this method on the achieved outputs in 

the both synthetic signals and real EEG signals. 

As can be seen in the result of the proposed method 

all three segments can be accurately segmented. In 

order to represent efficiency of the proposed 

method, in Figure 8, WGLR  is used  for  real 

newborn EEG signal  the same as  Figure  5.a. 

Output  of WGLR method  is  shown  in  Figure  

8.b. It should be mentioned that the DWT with 

Daubechies wavelet of order 8 is used. As can be 

seen in this figure, there are some false boundaries 

and one missed boundary. Therefore, for this 

application, WGLR is not a reliable method for 

signal segmentation. 
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Figure 1. Filtering the synthetic signal; (a) original signal, and (b) filtered signal by SSA. 

 

 

Figure 2. Components of the filtered synthetic signal by EMD. The first time series is the filtered signal by SSA. The 

decomposition yields 5 IMF and a residual. The IMFs are the time-frequency constituents or components of the synthetic 

signal. 
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Figure 3. Hilbert transform of the synthetic signal gather prepared using EMD(i.e. HHT of the synthetic signal); (a) the time 

series analyzed, and b) signal power plotted in time-frequency. 

 

Figure 4. Signal segmentation in synthetic signal, (a) original signal, (b) decomposed signal by DWT, and (c) output of the 

WGLR method. 

 

Figure 5. Filtering the real EEG signal; (a) original signal, and (b) filtered signal by SSA. 
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Figure 6. Components of the filtered real EEG signal by EMD. The first time series is the filtered signal. The decomposition 

yields 5 IMF and a residual. The IMFs are the time-frequency constituents or components of the EEG signal. 

 

Figure 7. Hilbert transform of the real filtered EEG signal gather prepared using EMD(i.e. HHT of the filtered EEG signal); 

(a) the time series analyzed, and b) signal power plotted in time-frequency domain.
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Figure 8. Signal segmentation in real EEG signal, (a) original signal, and (b) output of the WGLR method. 

4. Conclusion 

The objective of this work has been to investigate 

and demonstrate the ability of combination of the 

SSA, EMD and HT in segmenting the non-

stationary signals such as EEG. Unlike commonly 

used segmentation methods, the proposed time-

frequency approach has effectively exploited the 

nonstationarity of the signals and non-linearity of 

the medium. Since noise can significantly affect 

the performance of the segmentation methods, the 

SSA as a fast and powerful tool for mitigation of 

noise has been employed. After filtering the signal 

by SSA, HHT has been used for segmenting the 

signals. The integrity of the EMD is crucial to the 

ability of the HHT to outperform traditional 

Fourier-based techniques. The results have 

indicated superiority of the proposed method 

comparing with a well-known method, WGLR, for 

EEG signal segmentation. 
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