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Abstract 

Due to the abundant spectral information contained in the hyperspectral images, they are suitable data for 

anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly 

detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is 

proposed in this work, which utilizes the benefits of spatial features and local structures extracted by the 

morphological filters. The spectral-spatial hypercube has obtained high dimensionality. Thus, accurate 

estimates of the background statistics in small local windows may not be obtained. Applying conventional 

detectors such as local Reed Xiaoli (RX) to the high dimensional data is not possible. To deal with this 

difficulty, a non-parametric distance, without any need to estimate the data statistics, is used instead of the 

Mahalanobis distance. According to the obtained experimental results, the detection accuracy improvement 

of the proposed NSSD method compared to Global RX, Local RX, weighted RX, linear filtering based RX 

(LF-RX), background joint sparse representation detection (BJSRD), Kernel RX, sub-space RX (SSRX),  

and RX and uniform target detector (RX-UTD), on average, is 47.68%, 27.86%, 13.23%, 29.26%, 3.33%, 

17.07%, 15.88%, and 44.25%, respectively.  
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1. Introduction 

Many narrow and contiguous spectral bands are 

acquired by the hyperspectral imaging sensor 

from different portions of the spectrum (visible, 

near-infrared and mid-infrared) [1]. The spectral 

signature of each material in the ground surface 

operates as a fingerprint for it, which simplifies 

the discrimination between that material and 

others with high details [2]. This characteristic of 

the hyperspectral images makes them appropriate 

data for classification and target detection [3]-[8]. 

Target detection is actually a two-class 

classification problem. Providing an accurate 

target detection in the hyperspectral images has 

attracted lots of attention because of its 

importance in many civilian and military 

applications. Target detection can be done 

supervised when the spectral signature of the 

interested target is determined or unsupervised 

when there is no knowledge about the target. The 

second one is called anomaly detection, where the 

detector tries to find pixels with different spectral 

signatures with respect to the associated 

background [9]-[10]. Generally, in the anomaly 

detection problems, materials with a significantly 

different spectrum with respect to the surrounding 

pixels are known as anomalies. The background 

pixels generally compose the dominant portion of 

the image, while anomalies compose the minority 

of it.  

One of the well-known anomaly detection 

methods is the Reed-Xiaoli (RX) anomaly 

detector. RX, which uses the Mahalanobis 

distance, has been successfully used in many 

hyperspectral anomaly detection problems [11]. 

http://dx.doi.org/10.22044/jadm.2018.6311.1746
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The RX algorithm works based on the estimate of 

background statistics in a global or local manner. 

The mean vector and covariance matrix are 

globally estimated in the global RX detector while 

the mean vector is locally estimated in the local 

RX. The local RX detector assumes a multivariate 

normal distribution for data that is not valid in 

many complicated background data. A nonl-inear 

version of RX, called Kernel RX, has been 

proposed to reduce the high-order correlation 

between spectral channels and improves the 

anomaly detection performance in non-linear data 

[12]. 

In a RX detector, the anomalies and noisy signals 

may contaminate the background pixels, and so, 

cause a non-accurate estimate of the mean vector 

and covariance matrix. In order to deal with this 

difficulty, the weighted RX and the linear filtering 

based RX (LF-RX) have been introduced in [13]. 

The weighted RX method assigns larger weights 

to the pixels that belong to the background with 

higher probability. Thus, it estimates the 

background statistics with a higher accuracy. The 

LF-RX method does a similar duty with the 

filtering operator.  

Other different versions of RX have also been 

proposed. RX and uniform target detector (RX-

UTD) tries to remove noise and background for 

improvement of the RX detector performance 

[14]. The sub-space RX (SSRX) detector, by 

assuming that the background and target pixels 

can be represented in different sub-spaces, uses 

the eigenvectors associated with the largest 

eigenvalues of background covariance matrix for 

background feature extraction [15]. The sparse 

representation has also been proposed to model 

the background clutter in the background joint 

sparse representation detection (BJSRD) [16]. 

Most anomaly detection methods just use the 

spectral information of the hyperspectral image 

and ignore the valuable spatial information 

contained in the local neighborhood. With the 

contribution of neighboring pixels and 

incorporation of contextual information during 

anomaly detection, the performance of detection 

can be significantly improved. Although the 

spectral-spatial features have been used in many 

classification problems, they have been used 

seldom in the target and anomaly detection 

applications. 

In the pattern recognition applications domain, the 

parametric phrase is predicated to methods that do 

not use the data statistics such as mean vector (the 

first statistics) and covariance matrix (the second 

statistics). For instance, the local RX anomaly 

detector calculates the Mahalanobis distance 

containing the mean vector and covariance matrix. 

Therefore, local RX is called a parametric 

anomaly detector.  In contrast to parametric 

methods, there are non-parametric ones, where 

there is no need to estimate the data statistics. In 

this paper, a non-parametric spectral-spatial 

detector (NSSD) is proposed, which uses the 

benefits of the morphological profile (MP) [17]-

[20]. To utilize the contextual information, the 

extracted morphological features are added to the 

original spectral bands. Thus, the discriminability 

between anomaly and background pixels is 

significantly increased.  The local RX detector 

and its different versions use the mean vector and 

covariance matrix in the local windows. Actually, 

they utilize the representatives of each local 

region, and so miss some useful information. In 

contrast, the proposed NSSD method uses all the 

pixels contained in a local window instead of 

using the mean vector and covariance matrix. 

Thus, it utilizes the information of all pixels 

contained in the neighborhood region. Moreover, 

NSSD uses both the spectral and spatial features 

to separate the anomaly signals from the 

background clutter. Note that because of two 

reasons, the use of spectral-spatial features in a 

local RX detector is not efficient and reasonable: 

1- because of high dimensionality of the spectral-

spatial hypercube; the mean vectors and 

covariance matrices may not be accurately 

estimated, and the singularity problem may occur. 

2- Estimation of covariance matrices with 

increased dimensionality in each local window 

around each testing pixel significantly increases 

the computation time.  

The experiments done on a hyperspectral image 

acquired by Air-borne Visible/Infrared Imaging 

Spectrometer (AVIRS) shows the superior 

performance of NSSD compared with other 

anomaly detectors with a reasonable computation 

time.  
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2. NSSD 

Most anomaly detection methods just use the 

spectral signatures of data samples, and ignore the 

spatial information contained at the neighborhood 

locations. Spatial information consisting of 

geometrical features and local structures in a 

scene has a great importance for analyzing images 

acquired by remote sensors. The spatial 

information can be exploited for modeling, 

extraction, and detection of objects in the scene. 

Thus in an anomaly detection problem, the use of 

spatial information in addition to spectral one can 

significantly increase the discriminability between 

the anomaly and background pixels. Different 

methods have been proposed for extraction of 

spatial features in the hyperspectral images. The 

morphological transformations provide a multi-

scale decomposition of an image. They are known 

as one of the most efficient methods for spatial 

feature extraction in the hyperspectral images. 

Thus, in this paper, we add the spatial features 

extracted by the morphological filters to the 

original spectral bands.  

To provide the morphological profile (MP) from 

the hyperspectral images (HS), the opening and 

closing filters by reconstructions are applied to the 

first principal components (PCs) of data. The 

principal components of data are extracted by the 

principal component analysis (PCA) method and 

an MP is acquired from each PC. To this end, the 

covariance matrix of HS, Σ ,  is estimated. For 

extraction of n  PCs from HS, n  eigenvectors of 

Σ corresponding to the largest eigenvalues 

compose the PCA projection matrix. From each 

PC image, an MP is achieved. To this end, 𝑚 

opening and closing operators by reconstruction 

are applied to the obtained PC image to provide 

an MP with 2 1p m   spatial features, as 

follows:  
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where, 
*

  and  *   x  are the morphological 

opening and closing operators by reconstruction, 

respectively, and    is the structure element. By 

stacking the  ; 1, , m iMP PC i n   on the HS, 

the spectral-spatial cube of the hyperspectral 

image, denoted by MP+HS, is obtained. The 

dimensionality of the stacked MP+HS is high, and 

so, because of two reasons, applying local RX to 

it is not reasonable. First, because of an increased 

dimensionality, the accurate estimate of mean 

vectors and covariance matrix in the local 

windows containing a limited number of samples 

may not be obtained, and the singularity problem 

may occur. Secondly, because of the increased 

dimensionality of mean vectors and covariance 

matrices, the computation time increases 

significantly. To deal with these problems, the 

proposed NSSD method uses a non-parametric 

distance instead of the parametric Mahalanobis 

distance. NSSD uses all pixels of the local 

window instead of the background statistics (mean 

vector and covariance matrix), as follows: 
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where, s  is the number of pixels in the local 

window and ijx  is the 𝑗th neighbor of sample 

under test ix . The samples ix  and ijx   are the 

spectral-spatial feature vectors of MP+HS 

associated with the i th central pixel and j th 

neighbor of the 𝑖th central pixel, respectively. In 

this way, the information of all pixels of data, 

instead of just their representatives, i.e., mean 

vector and covariance matrix, are used to model 

the local background. Thus, the performance of 

anomaly detection is improved. The benefits of 

the proposed NSSD method can be represented as 

follows: 

1-NSSD uses both the spectral and spatial 

information in the hyperspectral images for 

anomaly detection. 

2-Estimation of mean vector and covariance 

matrix, in a small local window may not be 

accurate. Thus, NSSD uses all pixels of the local 

window instead of statistics estimate. It benefits 

from the information of all samples in the local 

region instead of just their representatives (mean 

vector and covariance matrix). 
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3-NSSD does not need to estimate the mean 

vectors and covariance matrices for each local 

window around each pixel under test. Thus, it is 

much faster than many other detectors such as 

local RX. 

Generally, the spectral and spatial features 

contained in MP+HS allows more discrimination 

between background and anomaly pixels than the 

spectral information contained in HS.  

 

3. Experiments 

The performance of the NSSD method was 

evaluated compared to global RX, local RX, 

weighted RX, LF-RX, BJSRD, Kernel RX, 

SSRX, and RX-UTD. MATLAB R2014a installed 

on a Laptop with windows 7 containing 64 bit 

operation system with Intel Core ™ i5 and 4 GB 

Memory was used for doing the experiments. The 

receiver operating characteristic (ROC) curve and 

area under the curve (AUC) were used to  

 

quantitatively assess the performance of anomaly 

detection [21]. To qualitatively assess anomaly 

detectors, the detection maps were also illustrated. 

To assess the performance of the anomaly 

detectors, the detection maps were compared with 

the target maps. By counting the correct and false 

detected samples, the false alarm rate (FAR) and 

the probability of detection (PD) were calculated 

as follows: 

 

 ,  
fd cd

t

N N
FAR PD

N N
   

 

(3) 

 

where, N is the number of all hyperspectral 

pixels, tN  indicates the total number of anomaly 

samples, fdN  and cdN  are the number of falsely 

detected anomalous pixels and the number of 

correctly detected ones, respectively.   
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Figure 2. The grey level image, target map, and spectral signatures of target and background in real AVIRIS image. 

 

Figure 1. The grey level image, target map, and the spectral signatures of target and background in synthetic image. 
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Table 1. Performance of NSSD and other anomaly detectors in terms of AUC and computation time in real AVIRIS image. 

AUC is area under ROC curve, where a higher value for AUC means a higher detection accuracy. 

 

 

 

 

 

 

 

Table 2. Performance of NSSD and other anomaly detectors in terms of AUC and computation time in synthetic image. AUC 

is area under ROC curve, where a higher value for AUC means a higher detection accuracy. 

 

 

 

 

 

Figure 3. ROC curves for NSSD and other anomaly detectors for real AVIRIS image and the synthetic dataset. The ROC 

curve of each method that is nearer to the top left corner illustrates a more detection accuracy.   

The ROC curve shows the relationship between 

FAR and PD. If an ROC curve is closer to the top 

left corner, it means that the detector has a more 

accuracy and a higher AUC value. Two 

hyperspectral datasets (a real data and a synthetic 

data) were used for evaluation of the anomaly 

detectors. The real hyperspectral image was 

acquired by AVIRS over San Diego, CA, USA 

which contained 224 spectral bands. The spectral 

channels with low SNR and also the water 

absorption bands were removed and 186 spectral 

bands were retained for doing the experiments. 

The wavelengths ranging within this hyperspectral 

image with spatial resolution of 3.5 m per pixel is 

from 0.37 to 2.51 um. The whole scene of image 

was 400×400 and a sub-image of it containing 

80×80 pixels was chosen for the experiments. The 

grey level illustration of band 19 of AVIRS 

hyperspectral image, the target map, and the 

spectral signatures of anomalous target and 

background are shown in figure 1. The synthetic 

dataset was generated based on a part of real 

hyperspectral image acquired by the AVIRS over 

San Diego with 186 spectral bands. A region with 

100×100 pixels was chosen to generate the 

synthetic data. For simulation of anomalous 

pixels, the target implantation method was used, 

where a linear mixing model was utilized [22]. To 

this end, a simulated anomaly pixel having 

spectrum z  was generated by implanting a 

desired anomalous spectrum in a background 

pixel [22]: 

 

    ·   1     · f f  z  t  b   
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Method Global 

RX 

Local 

RX 

Weighted 

RX 
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RX 

BJSRD Kernel 
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SSRX RX-
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NSSD 

AUC 46.33 68.71 81.66 65.84 87.44 86.02 80.17 48.24 93.53 

Computation 

time 
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RX 
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AUC 47.21 64.47 80.77 64.54 94.80 68.74 76.97 52.16 95.37 

Computation 
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Figure 4. Detection maps obtained by NSSD and other anomaly detectors for real AVIRIS image.

 

Figure 5. Detection maps obtained by NSSD and other anomaly detectors for synthetic image. 

where, f  determines the specified abundance 

fraction, and the spectrum of desired anomaly and 

background pixels are denoted by t  and b , 

respectively. In this work, the synthetic data was 

composed of implanting 16 anomalous pixels 

distributed in four rows and columns by the f

values of 0.05, 0.1, 0.2, and 0.4 for different rows, 

respectively where the anomalies were unchanged 

in the same row. The spectrum of the desired 

anomaly was chosen from a point of the San 

Diego hyperspectral image outside the selected 

area, corresponding to a plane. The image of band 

19 of generated synthetic data, its target map, and 

the spectral signatures of target and background 

are shown in figure 2.  

The AUC values and the computation time of 

NSSD and the other detectors are reported in 

tables 1 and 2 for the real AVIRIS hyperspectral 

image and the synthetic data, respectively. The 

ROC curves are shown in figure 3. The detection 

maps are also shown in figures 4 and 5. The 

output of each anomaly detector is a measure of 

belonging the pixel to the anomalies. In each 

detection map, the output values are shown with 

colors in the range of blue to red. A color nearer 

to red indicates that the sample belongs to 

anomalous, while a color nearer to blue shows 

that the pixel belongs to background. According 

to figures 4 and 5, the anomalous targets available 

in the target maps were detected with a higher 

accuracy in the detection maps obtained by the  
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proposed NSSD method. As we can see in the 

obtained results, the following conclusions can be 

found: 

1) NSSD provides the highest AUC value. It 

detects anomalies with the lowest number of 

false detection points. The superior 

performance of NSSD is due to two reasons. 

First, it uses both the spectral and spatial 

information of the hyperspectral image instead 

of just using the spectral one. Second, instead 

of just using the representatives of each local 

window, i.e., the local mean vector and 

covariance matrix, it uses all pixels contained in 

the spatial neighborhood region. 

2) After NSSD, BJSRD, which utilizes the 

benefits of sparse representation, obtains the 

highest AUC value in both datasets. Moreover, 

Kernel RX, which increases the separation 

between non-linear background and anomaly 

signals, obtain a high AUC value in real 

AVIRIS data. Also the weighted RX, which 

removes the undesired effect of contamination 

of background with anomalous pixels through a 

weighting manner, provides a high AUC value 

in the synthetic dataset. 

3) The lowest AUC is acquired by global RX and 

RX-UTD because they miss the local 

background information for anomaly detection. 

4) Although BJSRD provides a good detection 

performance because of optimizing the sparse 

representation objective function, it needs a 

high computation time. The computations of 

kernel space also increase the running time of 

Kernel RX. 

5)  NSSD not only provides the highest AUC but 

also is a fast method compared to other 

detectors such as BJSRD, Kernel RX, weighted 

RX, LF-RX, and local RX. 

Thus, generally, NSSD is an efficient anomaly 

detector, which is simple and fast compared to 

many other popular and state-of-the-art anomaly 

detectors. Among the competitor anomaly 

detectors, BJSRD that uses the sparse 

representation uses the local information of other 

pixels. As shown in the experimental results, after 

the NSSD proposed method, BJSRD provides the 

best detection performance.  

For more analysis of the separation between 

anomalous targets and background, a separability 

diagram is used to illustrate the range of output 

anomaly detectors for both anomaly and 

background signals. Since different detectors 

result in a wide range of output detection values, 

the logarithm value of detectors outputs are 

plotted to do a better comparison between 

different separability diagrams. Individual boxes 

are used to show the output range of each detector 

for anomalous targets and background. These 

boxes enclose the main part of samples, where the 

smallest 10% and the biggest 10% are excluded. 

The lines at the top and bottom of each box are 

the extreme values. The middle line in each box is 

the mean of pixels, and the box encloses the 

middle 80% of main pixels. The position of boxes 

with respect together reflects the compactness and 

tendency of pixels distributions in each detector. 

In other words, they reflect the separability of 

anomaly and background pixels. The separability 

diagrams for AVIRIS and synthetic datasets are 

shown in figure 6. As we can see, the boxes of 

anomaly target and background in the proposed 

NSSD method are well-separated from each other. 

This means the good ability of NSSD in 

discrimination between target and background. 

   

4. Conclusion 

A nonparametric spectral-spatial anomaly detector 

is proposed in this paper. The proposed NSSD 

method extracts the local structures and spatial 

features of the hyperspectral images and adds 

them to the original spectral ones. The spectral 

and spatial features are given to a nonparametric 

distance measure to obtain the detection output. 

The proposed NSSD does not compute the mean 

vector and covariance matrix of data in each local 

region. Thus, it has two main advantages. First, it 

does not encounter the singularity problem. 

Second, it runs relatively fast. The better 

performance of NSSD compared to several 

anomaly detectors is shown on both the real and 

synthetic hyperspectral images in terms of ROC 

curve, AUC value, computation time, and 

detection maps. The fused spectral and spatial 

features in addition to using a non-parametric 

distance for calculating distances in high 

dimensional MP+HS hypercube provide the 

superior performance of NSSD.  
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Figure 6. Separability diagrams for AVIRIS and synthetic datasets (Individual boxes show the output range of each 

detector for anomaly targets and background). 
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 مکانی غیرپارامتریک-آشکارسازی نابهنجاری طیفی

 

 مریم ایمانی

 .دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران

 02/03/2019 پذیرش؛ 31/08/2018 بازنگری 13/01/2018 ارسال

 چکیده:

لاعاات طیفای تصاویر ابرطیفی ناشی از اطلاعات طیفی فراوانشان برای آشکارسازی اهداف نابهنجار مناسب هستند. استفاده از اطلاعات مکانی علاوه بر اط

رامتریاک مکاانی ییرپا -یاک آشکارسااز نابهنجااری باه نااا آشکارسااز طیفایکناد. به بهبود کارایی آشکارساز نابهنجاری در تصاویر ابرطیفی کمک می

(NSSD) ولوژی بهاره های مکانی و ساختارهای محلی استخراج شده بوسیله فیلترهای مورفدر این کار پیشنهاد شده است. این آشکارساز از فواید ویژگی

ارگاان مبعاد بااییی دارد. بناابراین تخماین دآیا  آ ،های طیفیهای مکانی بر روی ویژگیسازی ویژگیمکانی حاصل از انباشته -برد. ابرمکعب طیفیمی

به داده با بعاد افایایش  Local RX. به عبارت دیگر، اعمال آشکارسازهای معمولی از آبیل باشدامکان پذیر نمیهای محلی کوچک پیش زمینه در پنجره

تخمین آمارگان داده ندارد، به جای فاصاله ماهااینوبیا اساتفاده  ی ییرپارامتریک که نیازی بهیافته ممکن نیست. برای مقابله با این مشکل، یک فاصله

، Global RX ،Local RX ،weighted RXدر مقایساه باا آشکارساازهای  NSSDها، بهبود دآت آشکارساز پیشانهادی طب  نتایج آزمایششده است. 

LF-RX ،BJSRD ،Kernel RX ،SSRX  وRX-UTD  ،17.07، %3.33، %29.26، %13.23، %27.86، %47.68به طور متوسا،، باه ترتیاب% ،

 گیارش شده است.  %44.25و  15.88%

 مکانی، آشکارسازی نابهنجاری، تصویر ابرطیفی، پروفایل مورفولوژی. -اطلاعات طیفی :کلمات کلیدی

 


