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Abstract 

In this paper, a high-performance optimal fractional emotional intelligent controller is proposed for an 

Automatic Voltage Regulator (AVR) in a power system using the Cuckoo optimization algorithm (COA). 

AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous 

generator at a specified level. The proposed control strategy is based upon brain emotional learning, which is 

a self-tuning controller so-called brain emotional learning-based intelligent controller (BELBIC), and is 

based on the sensory inputs and emotional cues. The major contribution of this paper is the use of the merits 

of the fractional order PID (FOPID) controllers; an FOPID controller is employed to formulate the stimulant 

input (SI) signal. This is a distinct advantage over the papers published in the literature, in which a PID 

controller has been reported to be used to generate the SI signal. Another remarkable feature of the proposed 

approach is that it is a model-free controller. The proposed control strategy can be a promising controller in 

terms of simplicity of design, ease of implementation, and less time-consumption. In addition, in order to 

enhance the performance of the proposed controller, its parameters are tuned by COA. COA is a novel 

advanced optimization algorithm proved to have a high efficiency. In order to design a BELBIC controller 

for an AVR system, a multi-objective optimization problem including overshoot, settling time, rise time, and 

steady-state error is formulated. The simulation studies confirm that the proposed controller, compared to the 

classical PID and FOPID controllers introduced in the literature, shows a superior performance regarding the 

model uncertainties. Having applied the proposed controller, the rise time and the settling time were found to 

be improved by 47% and 57%, respectively. 

 

Keywords: Brain Emotional Learning-based Intelligent Controller, Cuckoo Optimization Algorithm, 

Fractional Order PID, Automatic Voltage Regulator. 

1. Introduction 

Unlike the DC generators, “alternators cannot be 

compounded to alter the voltage-load 

characteristic” [1]. Moreover, due to changes in 

the load power factor, the output voltage 

variations are increased. That is why the 

automatic voltage regulators (AVRs) are generally 

used with alternators [1]. In addition, for the 

damping power system oscillations, power system 

stabilizers (PSSs) can be used. The reference 

voltage of an AVR system is modified using the 

PSS output signal, and then AVR defines the 

primary voltage regulation of synchronous 

machines [2]. Therefore, The AVR system plays a 

decisive role in the industries to maintain the 

constant terminal voltage in the synchronous 

generator under all the conditions. However, due 

to the high inductance of the generator field 

windings and load variation, achieving a desired 

response is difficult [3]. Therefore, it is important 

to improve the AVR performance and ensure a 

stable and efficient response to transient changes 

in terminal voltage. That is why an optimal 

controller in an AVR system is required [4]. 

So far, various control methods have been 

proposed for the AVR systems. One of the 

preferable controllers proposed in the literature is 

the proportional plus integral plus derivative 

(PID) controller because of its simple structure. 

Therefore, many optimization algorithms 

including particle swarm optimization (PSO) [5], 
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harmony search algorithm (HSA) [6], and 

artificial bee colony algorithm (ABC) [7, 8] have 

been employed to regulate the PID gains of the 

AVR systems.  

Recently, in order to improve the performance of 

the PID controller, fractional calculus has played 

an important role in many control applications. 

The fractional order PID (FOPID) controllers are 

known “as a generalization of a standard PID 

controller” introduced by Podlubny [9, 10]. It 

should be noted that the FOPID controllers in 

many control applications have shown a “better 

control performance than a standard integer order 

PID controller due to extra degrees of freedom” 

[10]. Compared to the PID controller, the FOPID 

controller has two extra parameters [11]. This 

means that it is characterized by five parameters 

[12]. However, the selection of the values for its 

parameters is still a challenging task. So far, 

several intelligent techniques have been proposed 

for an efficient tuning of the FOPID controller. 

Such algorithms include Particle swarm 

optimization (PSO) [10, 13, 14], Genetic 

Algorithm (GA) [14, 15], fruit fly optimization 

algorithm [16], and Cuckoo Optimization 

Algorithm (COA) [17]. In the literature, it has 

been stated that the FOPID controller has been 

employed for controlling a practical AVR as well. 

Zhang [5] has suggested the PSO approach for the 

optimum design of the FOPID controller in the 

AVR system. The results obtained using this 

method have been compared with the 

conventional PID controller. Zhang et al. [7] have 

used the Artificial Bee Colony (ABC) algorithm 

to optimize the parameters of the FOPID 

controller for an AVR system. The results 

obtained have been compared with PSO and GA, 

indicating that the proposed controller has a better 

performance. Yinggan et al. [12] have employed 

the Chaotic Ant Swarm (CAS) optimization 

algorithm to regulate the parameters of the FOPID 

controller. The results obtained have indicated 

that the proposed FOPID controller is robust to 

model uncertainties.  

Recently, a new evolutionary algorithm called 

COA has been proposed [18]. The comparison of 

COA with the standard versions of PSO and GA 

have revealed the superiority of COA in terms of 

fast convergence and accuracy [18, 19]. 

Therefore, COA has been used for the 

optimization of the FOPID parameters for the 

AVR system [17]. In this state-of-the-art research 

work, it has been shown that the proposed 

optimized controller provides a more improved 

dynamic performance compared to the other 

existing techniques. 

Despite the great efforts devoted to AVR control, 

many of the theoretical results cannot be directly 

applied to the practical AVR system. The reason 

is that this system includes model non-linearity 

and model uncertainties. Recently, intelligent 

techniques including neural networks [20] and 

fuzzy systems [21, 22] have been introduced to 

overcome these issues. The reason for the fact that 

in the academic filed the application of intelligent 

control has been increased is that they are model-

free control methods [23]. This means that a 

perfect dynamic model is not required. Therefore, 

some researchers have employed intelligent 

techniques in order to control the AVR system. 

For example, in [24], the fuzzy controller has been 

used for the AVR system.  

Recently, the brain emotional learning controller 

has been introduced as a new intelligent controller 

[25]. Brain emotional learning is based upon a 

computational model of a limbic system in the 

human brain [23]. Specifically, BELBIC “is 

essentially an action generation mechanism based 

on sensory inputs (SIs) and emotional cues 

(ECs)”, and the most interesting concept of 

BELBIC is the flexibility in definition of SI and 

EC depending on the control problem [25]. So far, 

BELBIC has been used in many industrial 

applications such as washing machines [26, 27], 

power system applications [27-30], aerospace 

launch vehicle [31], and micro-heat exchanger 

[32]. The mentioned papers have indicated that 

BELBIC has a good robustness and performance 

[33]. Since the parameters to be tuned in BELBIC 

are less that neural networks and fuzzy systems, 

BELBIC has a simple structure. 

As mentioned earlier, most of the proposed 

controllers for AVR are based upon the 

optimization algorithms. It should be noted that 

“in real power systems, this search process takes a 

long time” [34]. In addition, by considering the 

structured and unstructured uncertainties, the 

dynamic behaviors of real power systems are 

different [34]. Therefore, the PID or FOPID 

controllers “optimized by off-line search 

algorithms may not have a good performance 

under these conditions” [34]. The main objective 

of this paper was to address these issues.  

The main contribution of this work is to propose a 

novel emotional intelligent controller as the main 

controller of the AVR system, in which, to use the 

merits of the FOPID controllers, an FOPID 

controller is used to formulate the stimulant input 

signal. One advantage of the proposed controller 

is that it is a self-tuning controller. This means 

that depending on the operational conditions of 

the AVR system, its behavior is modified. The 
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second contribution of this work is that COA is 

employed to optimize the control design 

parameters and enhance the performance of the 

control system. Since the number of parameters of 

COA is less than the parameters used in the other 

meta-heuristic techniques, this fact results in a fast 

convergence of the BELBIC parameters. In order 

to design a BELBIC controller for an AVR 

system, a multi-objective optimization problem 

including the overshoot, settling time, rise time, 

and steady-state error was formulated. 

To the best of our knowledge, this is the first time 

that this structure has been presented. This is a 

distinct advantage in comparison to the papers 

published in the literature. The great merit of the 

proposed control strategy is that it is superior to 

the fuzzy and neural network systems in terms of 

simplicity of design, ease of implementation, and 

less time-consumption. In addition, it is a model-

free controller. This means that it does not require 

any information from the system dynamics. The 

performance of the proposed controller was 

compared with some PID and FOPID controllers 

introduced in the previous research works. Also 

uncertainties in the AVR parameters were taken 

into account to show the robustness of the 

proposed controller.  

The remaining part of this paper is organized as 

what follows. In Section 2, the AVR system is 

described. In Section 3, the fractional PID 

controllers are briefly introduced. The description 

of the cuckoo search algorithm is discussed in 

Section 4. Section 5 briefly describes the brain 

emotional learning. In Section 6, the simulation 

results are presented. Finally, Section 7 concludes 

the paper. 

 

2. AVR system model 

“To maintain the terminal voltage magnitude at a 

constant specified level in synchronous 

generators, the AVR system is used” [3, 35]. The 

AVR system consists of four main components, 

namely amplifier, exciter, sensor, and generator 

[3]. “For mathematical modeling and the transfer 

function of the four components, these 

components must be linearized, which takes into 

account the major time constant and ignores the 

saturation or other non-linearities” [5]. From a 

practical viewpoint, by ignoring the saturation or 

other non-linearities, the PID and FOPID 

controllers may not give a good performance in 

practical applications. That is why in this work, a 

self-tuning controller called BELBIC was 

developed to deal with the uncertainties. The 

transfer function of the mentioned components 

can be represented as what follows [3, 5, 12].  

The transfer function representation of amplifier is 

as follows:  

(1)  

where, the amplifier gain ( ) and time constant     

( ) are given as and 

 

The transfer representation of the exciter model is 

as follows:  

(2)  

where, the exciter gain ( ) and time constant (

) are given as   and  

, respectively. 

The transfer function representation of the 

generator is given as follows: 

(3)  

where, the exciter gain ( ) and time constant (

) are given as  and , 

respectively. 

The transfer function representation of the sensor 

model is as follows:  

(4)  

where, the feedback gain ( ) and time constant 

(𝜏𝑆) are given as  and 

 , respectively. 

The block diagram of the AVR system 

components including BELBIC is shown in figure 

1. Figure 2 shows the voltage response of the 

AVR system without considering the controller. 

As seen, it exhibits high oscillations with 

. In 

the steady state condition, the system terminal 

voltage 𝑉𝑡 deviates from the nominal value of 

0.01. In a power system with a high operating 

voltage, this response is completely undesirable 

[36]. For this reason, a controller is required to be 

incorporated in the AVR system.  
 

3. Fractional PID controller 

The “fractional calculus is a name of the theory of 

integrations and derivatives of arbitrary order” 

[37]. The FOPID controller is a fractional order 

structure, which provides more flexibility 

compared with the PID controller [38]. So far, 

FOPID has been applied for control purposes [3, 

7, 12, 37]. 
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Figure 1. Block diagram of an AVR system with controller. 

 

 
Figure 2. Step response of an AVR system without 

controller.  

 
Figure 3. Graphical representation of FOPID controller 

[17]. 

Generally, the FOPID controller is given as:  

(5)  

 

where, and are the proportional, 

integral, and derivative gains, respectively. In the 

meanwhile,  is the fractional orders of the 

integral part and   is the fractional orders of the 

derivative part of the FOPID controller. Figure 3 

shows the graphical representation of the FOPID 

controller. As seen, depending upon the values for 

λ and μ, the conventional P, PI, PD, and PID 

controllers can be obtained from the FOPID 

controller. 

 

4. Cuckoo optimization algorithm (COA) 

Recently, a novel evolutionary algorithm called 

COA has been introduced, “which is inspired by 

the life of cuckoo” [18, 39]. “Like the other 

evolutionary algorithms, COA starts with an 

initial population of cuckoos called habitat” [18]. 

To solve the optimization problem, a candidate 

habitat matrix of size must be 

generated. Meanwhile,  “is the maximum 

number of cuckoos that can live at the same time” 

and  is the number of parameters to be 

optimized. Further, “each cuckoo laying eggs 

within a distance called the egg laying radius 

(ELR) is defined based upon the following 

equation” [18, 40]: 

(6)  

 

where,  is the upper limit and is the 

lower limit of variables. In the meanwhile,  is an 

integer, defined to handle the maximum value of 

ELR.  “Each cuckoo starts laying eggs randomly 

in some other host bird’ nests within her ELR” 

[41]. The new egg-laying process can be defined 

as follows:  

(7)  
 

where,  and  are the position and the motion 

coefficient, respectively. The pseudo-code of the 

COA algorithm can be found as in [18]. To 

evaluate the performance of the AVR system, an 

objective function must be defined. Therefore, in 

this paper, a time domain performance criterion is 

defined as [5]: 
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(8)  

where,  is the weighting factor, and , 

and  denote the maximum overshoot, steady 

state error, settling time, and rise time, 

respectively. It should be noted that in this 

objective function, the time response 

specifications are included.  
 

5. Brain emotional learning-based intelligent 

controller (BELBIC) 

As shown in figure 4, “the main components of 

the limbic system involved in emotional processes 

are amygdala, orbitofrontal cortex, thalamus, 

sensory cortex, hypothalamus, and hippocampus” 

[30]. learning [42]. This model is shown in figure 

5. The emotional learning takes place mostly in 

the amygdala. In fact, “the amygdala is 

responsible for long-term memory and emotional 

stimuli. It receives signals from the sensory cortex 

and is in interaction with the orbitofrontal cortex” 

[23].  

As seen in figure 5, BELBIC has two states for 

each sensory input. Figure 6 shows the 

computational model of emotional learning in 

more details as well. As seen in this figure, the 

vector S shows the stimuli inputs to the system. 

There is a node for each stimulus S. Suppose the 

 sensory input as .  

 
Figure 4. The limbic system of the brain [28]. 

 
Figure 5. Block diagram of the presented 

computational model of human brain learning 

mechanism. 

As seen,  is an input to the amygdala part, 

which is the maximum of stimuli inputs (SIs), 

given by [43].  

(9)  

In the meanwhile, the weight is updated 

according to the following equation:  

(10)  
 

where, is the learning step. In addition, the 

amygdala and orbitofrontal cortex outputs are, 

respectively, given by:  

(11)  

(12)  
 

where,  and  are two states that are updated 

according to the following equations [43]: 

(13)  

(14)  

 

where,   and  are the learning steps in the 

amygdala and orbitofrontal cortex, respectively 

[44].  

 

 
Figure 6.  Graphical depiction of the BEL process [42]. 

 

Eventually, the model outputs (MOs) or output 

nodes  and  are given as: 

(15)  

(16)  

 

It should be noted that the weights   in Eq. (13) 

cannot be decreased. It can be concluded that the 

information in the amygdala part is not forgotten. 

In this paper, to improve the performance of the 

proposed approach, the thalamus is also modeled 

by Eq. (10). As a result, different learning steps 

are considered in Eqs. (10) and (13). 
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Table 1. Searching range of parameters. 
Parameter 𝒌𝒑 𝒌𝒊  𝒌𝒅 𝝀  𝝁  𝒌𝟏 𝒌𝟐 𝒌𝒕𝒉 𝒂𝒄𝟏

 𝒂𝒄𝟐
 𝒂𝒄𝟑

 𝒎𝒂 𝒎𝒐 𝒎𝒕𝒉 

Min. value 0 0 0 .001 .001 0 0 0 0 0 0 0 0 0 

Max. value 2 1 1 2 2 1 1 5 40 40 40 1 1 1 

 

 
Figure 7. Block diagram of the proposed structure. 

6. Proposed BELBIC 

“The sensory input (SI) is a kind of control signal 

that in BELBIC is reinforced or punished based 

on an emotional cue so it should be chosen as a 

function of error, just like a PID controller” [32]. 

In most of the published papers, the researchers 

have utilized the PID controller to form the 

stimulant input signal [32, 34]. For simplicity, this 

is named as PID-BELBIC. In the present paper, as 

a novelty, owing to the value and high 

performance of self-tuning FOPID controllers, a 

FOPID controller is employed to formulate the 

stimulant input signal, as given by (17). For 

simplicity, this is named as FOPID-BELBIC. 

(17)  

 

where, , and are the proportional, 

integral, and derivative gains, respectively. In the 

meantime, and  are not integers. The 

stimulant input signal in the time domain is: 

(18)  

In addition, the emotional signal (EC) generally 

must show the closed-loop system performance. 

Therefore, EC “can be written as a weighted 

combination of primary/secondary objectives in 

the application domain”, as follows [34]: 

 (19)  
 

where, is given in Eq. (15) and  is the 

difference between the reference voltage and 

measured output voltage, namely . In 

the meanwhile, , and are the weight 

coefficients to be determined. The block diagram 

of the proposed structure is shown in figure 7. 

 

 

7. Simulation results and discussion 

In this section, the proposed controller was tested 

in controlling the AVR system.                                 

To this end, to evaluate the performance and 

efficacy of the proposed controller, a practical 

high order automatic voltage regulator was 

considered with the following specifications:  

 

The block diagram of the control system is 

presented in figure 1. The number of parameters 

to be optimized by COA is 14, namely 

and  

. Note that and  are the initial 

conditions of the memory used in (13), (14), and 

(10), respectively. In addition, the range of these 

parameters are given in table 1. Further, the 

parameters of COA are given as the maximum 

number of eggs for each cuckoo, 10; minimum 

number of eggs, 5; maximum number of cuckoos 

that live at the same time, 20;  and . 

The maximum number of iterations was also set to 

50 as a stopping criterion. In the objective 

function,  was set to 1.5. In our simulations, two 

scenarios were conducted to confirm the 

effectiveness of the proposed approach. 

Scenario 1: In this case, parametric uncertainties 

were not considered. Both FOPID-BELBIC and 

PID-BELBIC were optimized. As a result of 

applying COA, the step responses of AVR are 

depicted in figure 8. As seen, the performance of 

the proposed controller (FOPID-BELBIC) was 

better than PID-BELBIC. One reason is that the 

number of parameters to be tuned in FOPID-

BELBIC is 14, whereas the number of parameters 

to be tuned in PID-BELBIC is 12. FOPID-

BELBIC has the advantage over the PID-BELBIC 

in that it has greater degrees of freedom in the 

controller parameters. These extra degrees of 

freedom can help to enhance the performance of 

the proposed approach. To have a better 

comparison, the values for the performance 

criteria for different controllers are summarized in 

table 2. The results obtained confirm that FOPID-

BELBIC has a better performance in terms of all 

four indices. Figure 9 shows the convergence of 
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objective function at each generation. As seen, 

COA is well-convergent.   

  

Table 3. Comparative performance of the controllers. 
Type of controller 𝒌𝒑 𝒌𝒊 𝒌𝒅 𝝀 𝝁 𝑴𝒑% 𝒕𝒔 𝒕𝒓 𝒆𝒔𝒔 

MOEO-FOPID [10] 2.9737 0.9089 0.5383 1.1446 1.3462 3.2038 0.1800 0.1300 0 

CS-FOPID [17] 2.515 0.1629 0.388 0.97 1.38 0 0.4507 0.1042 0 

 

  

 
Figure 8.  Step response of the AVR system using FOPID-

BELBIC and PID-BELBIC. 

Table 2. Comparison of FOPID-BELBIC and PID-

BELBIC. 
Type of controller 𝑴𝒑% 𝒕𝒔 𝒕𝒓 𝒆𝒔𝒔 

FOPID-BELBIC 0 0.11 0.19 0 

PID-BELBIC 0 0.26 0.36   0.0018 

 

 
Figure 9.  Objective function versus iteration. 

 

It was observed that COA converged to 0.0001 in 

an around 19 iterations. In addition, the 

corresponding control parameter trajectories of SI 

parameters regarding the optimization algorithms 

is shown in figure 10, which indicates the 

convergence of the solution. To further 

demonstrate the effectiveness of the proposed 

FOPID-BELBIC, we gave the comparative 

performance of FOPID-BELBIC with different 

optimized FOPID controllers recently published 

in the literature such as MOEO-FOPID [10] and 

CS-FOPID [17]. The results obtained are given in 

table 3 and the corresponding step response is also 

shown in figure 11. According to the presented 

results, the results obtained indicate that the AVR 

system exhibits a better performance, as compared 

with the other well-known controllers available in 

the literature.  

Scenario 2: In this case, to test the robustness and 

powerfulness of the proposed controller, 

parametric uncertainties were considered. To save 

space, the uncertainties of the AVR model were 

given in terms of variations in the exciter 

generator. The variation range of the time constant 

was chosen to be ±50% of its nominal value with 

a 25% step size.  

The results obtained are depicted in figure 12. As 

can be observed in this figure, the deviation of 

response curves. (±50% and ±25%) from the 

nominal response for the selected time constant 

parameter is within a small range. This can ensure 

the robustness of the proposed controller against 

such large variations. To have a better view, the 

step responses of the AVR system by considering 

50% deviation in exciter generator as a result of 

applying proposed controller and MOEO-

FOPID/PID are shown in figure 13. As seen, the 

proposed controller gives a better response. The 

system response using BELBIC is rather faster 

with less overshoot, even in the face of 

uncertainty. To sum up, from Scenarios 1 and 2, it 

can be concluded that the proposed controller 

outperforms others FOPID controllers with 

parameter variation in the AVR model. 

 

 
Figure 10. Corresponding control parameter trajectories 

of SI parameters versus iteration. 
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Figure 11. Comparison of unit step response of AVR 

system with different controllers. 

 
Figure 12.  Comparison of unit step response of AVR 

system by considering uncertainty in exciter. 

 
 8. Conclusion 

In this paper, a self-tuning controller based on 

brain emotional learning has been presented. The 

proposed approach involves an FOPID controller 

to generate an SI signal. This is the unique feature 

of the proposed controller. Application of this 

method to a practical AVR system shows that the 

developed control scheme outperforms the PID 

and FOPID controllers. To enhance the 

performance of control system, COA was used to 

tune the control design parameters. In addition, to 

show the robustness of the proposed controller, 

model uncertainties were also considered.   

The simulation results confirmed that, compared 

to the PID and FOPID controllers, the proposed 

controller had more robust stability and 

performance characteristics. Having applied the 

proposed controller, compared to PID-BELBIC, 

the rise time and settling time were improved by 

about 47% and 57%, respectively. In addition, 

compared to the CS-FOPID method presented in 

[17], the settling time was improved by about 

75%. 

In particular, the proposed scheme could be a 

promising controller in terms of simplicity of 

design, ease of implementation, and less time-

consumption. It is worthy of note that from the 

simulation results it could be concluded that the 

theoretical results obtained had a potential in 

applications.  

 
Figure 13. Step response of proposed controller and 

MOEO-PID/FOPID by considering uncertainty in 

exciter. 

The practical implication of the proposed method 

is a part of our future works. 
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