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Abstract 

Multi-label classification has gained significant attention during recent years, due to the increasing number 

of modern applications associated with multi-label data. Despite its short life, different approaches have been 

presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new 

strategy to multi-label learning by leveraging label-specific features. Label-specific features means that each 

class label is supposed to have its own characteristics and is determined by some specific features that are the 

most discriminative features for that label. LIFT employs clustering methods to discover the properties of 

data. More precisely, LIFT divides the training instances into positive and negative clusters for each label 

which respectively consist of the training examples with and without that label. It then selects representative 

centroids in the positive and negative instances of each label by k-means clustering and replaces the original 

features of a sample by the distances to these representatives. Constructing new features, the dimensionality 

of the new space reduces significantly. However, to construct these new features, the original features are 

needed. Therefore, the complexity of the process of multi-label classification does not diminish, in practice. 

In this paper, we make a modification on LIFT to reduce the computational burden of the classifier and 

improve or at least preserve the performance of it, as well. The experimental results show that the proposed 

algorithm has obtained these goals, simultaneously. 
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1. Introduction 

In traditional supervised learning problems, each 

instance in the dataset belongs to only one label 

iY  from a set of labels L. However, in some real-

world problems, each instance may belongs to a 

set of labels, LYi  , simultaneously. For 

example, an image might be annotated as ‘Sunset’ 

and ‘Beach’. Such prediction tasks are usually 

denoted as multi-label classification problems, 

and are used in an increasing number of modern 

applications such as, semantic image [1] and 

video [2] annotation, classification of protein 

functions [3] and genes [4], categorization of text 

[5] and emotions evoked by music [6], etc. 

Multi-label classification methods are mainly 

grouped into two categories: problem 

transformation and algorithm adaptation [7]. The 

first category of methods map the problem of 

multi-label classification into one or more single-

label classification problems where any state-of-

the-art single-label learning algorithm can be 

employed. Representative algorithms of this 

category are Label Powerset and Binary 

Relevance [8]. The second category of methods 

extend some popular learning algorithms to 

handle multi-label data, directly. Multi-label 

Naïve Bayes [9], multi-label lazy learning 

algorithm, ML-kNN [10] and adapting decision 

tree techniques [11], are some popular approaches 

of this group. 

One of the challenges of multi-label classification 

is the high number of features of multi-label 

datasets. This is especially true for images and 

texts, due to their rich semantics. The high 

dimensionality of data represents challenges such 

as poor performance, over-fitting and 

computational burden to classification analysis 

[12]. Many of these features are redundant and/or 
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irrelevant and do not play an important role in 

improving the discriminative ability of the 

classifier between classes [13]. On the other hand, 

sometimes, finding the values of a specific feature 

is so costly that it would be preferred to eliminate 

it in return for accepting more classification error. 

Therefore, the main objective of feature selection 

(FS) is to simplify a dataset by reducing its 

dimensionality and identifying relevant 

underlying features without degrading predictive 

accuracy [14]. Indeed, it is usually observed that 

the performance of the classifier also increases 

after feature selection.  

The FS approaches can generally be divided into 

three groups: filter, wrapper, and embedded 

approaches. The filter approaches operate 

independently of any learning algorithm. These 

methods rank the features by some criteria and 

remove those features that do not achieve a 

sufficient score. Filter methods have a relatively 

high speed and are suitable for high-dimensional 

datasets. These methods are mainly divided into 

two groups: univariate and multivariate. Methods 

of the first group, evaluate the quality of features, 

individually and do not consider possible 

association with other features. Information gain 

(IG) [15] and F-score [16] are categorized in this 

group. Multivariate approaches consider the 

dependencies between features, but they are 

computationally more expensive. Mutual 

information (MI), Relief [17] and fast correlation-

based filter [18] are some examples of this 

category [19]. 

On the other hand, wrapper methods select those 

features with high prediction performance 

estimated by a determined learning algorithm. The 

accuracy of wrapper methods is larger than filter 

methods, but the degree of its computational 

complexity is higher [13]. In the embedded 

model, feature selection is integrated into the 

process of training for a given learning algorithm. 

Therefore, embedded approaches can employ 

extra information of the cost function. These 

methods are much faster than wrapper; however, 

the performance also depends on the classifier. 

Similar to single-label feature selection, multi-

label approaches are divided into three groups 

with the same definitions: filter methods [12, 20-

22], wrapper methods [9, 23] and embedded ones 

[24, 25]. In most multi-label feature selection 

techniques, the multi-label dataset is first 

transformed to a single-label dataset, using a 

problem transformation technique such as Label 

Powerset (LP) or Binary Relevance (BR). Then, 

any single-label feature selection algorithm can be 

used to select salient features. Spolaor et al. [15] 

used LP and BR to transform the problem, and 

then employed IG and ReliefF for feature 

selection. Finally, the performance of these four 

multi-label feature selection methods were 

compared. Chen et al. [26] present a 

transformation strategy called Entropy-based 

Label Assignment (ELA). The authors firstly 

transform the multi-label data into single-label 

data, and then apply three single-label filter 

methods including IG, CHI and OCFS [27]. In 

Ref. [28] authors employed a pruned problem 

transformation (PPT) method introduced in [29] to 

transform multi-label dataset into single-label one. 

Then, a greedy feature selection procedure based 

on multidimensional mutual information is 

executed. A similar method is proposed in [22] 

which converts the multi-label problem to a 

single-label problem using PPT, and then utilizes 

the ReliefF algorithm for giving a weight to each 

feature. 

On the other hand, some multi-label feature 

selection algorithms which directly work with 

multi-label datasets are presented in some papers. 

Lee et al. [20] presented a multi-label feature 

selection method based on multivariate mutual 

information, which selects a prominent feature 

subset by maximizing the multivariate mutual 

information between the selected features and the 

labels. Different multi-label feature selection 

approaches are proposed in [22, 30, 31] by 

extending the single-label feature selection 

ReliefF algorithm. An extension of the well-

known FCBF method which is a filter method in 

single-label feature selection is proposed in [32]. 

This method uses a graphical scheme to indicate 

the relationship between features and labels. Lee 

et al. [25] proposed a memetic multi-label feature 

selection approach, which utilizes memetic 

procedures to redefine the feature subsets found 

through a genetic search. Ref. [33] employs 

evolutionary algorithms for feature selection. The 

authors firstly employ a filter method to eliminate 

irrelevant features. Then, an evolutionary 

algorithm like GSA is used to select the most 

salient features among the remained features. An 

incremental multi-label feature selection method 

based on max-dependency and min-redundancy 

criterion inspired by the well-known single-label 

filter method, mRMR, is proposed in [12]. Lin et 

al. [34] proposed a multi-label feature selection 

approach that selects salient features based on 

multi-label neighborhood mutual information. At 

first, all instances are granulated under different 

labels using the margin of instance, and three 

different neighborhood mutual information for 

multi-label learning are defined. Then, they 
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introduced an optimization objective function to 

measure the quality of candidate features. A 

comprehensive review on multi-label feature 

selection methods can be found in [35]. 

In this paper, we make a modification on LIFT 

algorithm which is a multi-label classification 

method, proposed by Zhang [36]. In this method, 

some features are constructed for each training 

instance based on its labels. In the performance 

phase, first, these features are constructed for the 

unseen sample. Then, the original features of that 

sample are ignored and the constructed features 

substitute them. Finally, classification task is done 

using these new features that are usually much 

fewer than the original ones. The problem of LIFT 

appears in the performance phase. Although, the 

number of constructed features is less than the 

original ones, the original features are necessary 

to obtain the new features. As a result, the 

mentioned problems associated with redundant, 

irrelevant and costly features still remain. In this 

paper, we propose to perform feature selection 

before employing LIFT algorithm, to make sure 

that only useful features are fed to LIFT. The 

results show that in addition to significant 

reduction of features, the performance of the 

algorithm remains relatively stable. 

The rest of this paper is organized as follows: 

Section 2 presents LIFT algorithm and a brief 

introduction to the used filter feature selection 

approaches. Our method for solving the problem 

of LIFT algorithm is presented in Section 3. 

Section 4 reports the results of comparative 

studies. Finally, our conclusions are given in 

Section 5.  

 

2. Fundamental concepts 

Suppose D be a dataset with N instances 

),...,1),,(( NiYxE iii  . Each instance is 

associated with a feature vector 

),...,,( 21 iMiii xxxx   characterized by M features 

MjX j ,...,1,  , and a label set 

},...,,{ 21 qyyyL    denotes the label space with 

q possible class labels. The task of multi-label 

learning is to predict the label subset of an unseen 

instance ?),(xE  , with an acceptable accuracy.  

Figure 1 shows this representation.  

In the following, three filter-based feature 

selection methods to be used in this paper and the 

LIFT algorithm are explained.  

 

2.1. Relief 

Relief [17] algorithm is a random search 

technique based on filter methods. It is a classical 

approach for feature estimation in single-label 

data, and is designed for binary class problems 

without missing values [22].  For m random 

samples from the training set, Relief acts as 

follows. 
 

L D  

yq
 

 y2
 y1

 
1X   1X  

1X   

0 1 1 0 x1M  x12 x11 
E1 

1 0 1 1 x2M  x22 x21 E2 

        
 

0 1 0 1 xNM  xN1 xN1 EN 

 

Figure 1.Multi-label data. 
 

First, it searches for the ‘nearest hit’ and ‘nearest 

miss’ of the selected sample i, which are 

respectively, the closest same-class instance and 

the closest different-class instance based on 

Euclidean distance. Then, it updates feature 

weights which were initialized by zero for all 

features. In weighting procedure, the quality of 

features are estimated according to how well a 

feature distinguishes two samples from the same 

classes and from different classes. A higher 

weight of a feature means that it has a better 

ability to identify the instances of a class from 

other classes [19]. 

 

2.2. Fast correlation-based filter (FCBF) 

FCBF is a multivariate filter approach presented 

in [18], which is especially designed for high-

dimensional data. It considers feature-class 

correlations as well as feature-feature correlations 

to find a subset of features which are highly 

correlated to the class but not highly correlated to 

the other features. It introduces a measure called 

Symmetrical Uncertainty (SU) as the ratio 

between the information gain (IG) and the entropy 

of two variables. First, it calculates the SU value 

for each feature and selects those features 

associated with SU values higher than a user-

defined threshold. Then, redundant features are 

removed from this subset, and a subset of relevant 

informative features remain.  

 

2.3. Information gain (IG) 

Information gain is a univariate filter method 

based on the concept of entropy in information 

theory. It measures the dependency between each 

feature of dataset D and the class label, as defined 

by (1). It ranks features base on their amount of 

information, such higher values of IG for feature 

iX  indicates stronger relationship between that 

feature and the class label [37]. 
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here, feature MiX i ...1,  , can take distinct 

values, and each subset DDv   consists of the 

set of examples where iX  has the value v . 

 

2.4. LIFT algorithm 

The LIFT algorithm works based on two main 

steps, i.e. construction of label-specific features 

and induction of classification models. First, LIFT 

aims to construct discriminative features which 

take the specific characteristics of each label to 

simplify its discrimination process. To this end, 

LIFT utilizes clustering techniques to get insights 

into the properties of data. It forms a set of 

positive training examples as well as the set of 

negative training examples with respect to each 

class label. In other words, for label li , i=1,…,q 

the ith positive and negative sets consist of the 

training examples with and without label li 

respectively. The well-known k-means algorithm 

is used to partition these sets into disjoint clusters. 

Here, both of positive and negative sets of each 

label are partitioned to the same number of 

clusters. The cluster centers which specify the 

main structure of the training examples in regard 

to li, can be used as prototypes for the construction 

of label-specific features. For each training 

example, LIFT calculates the Euclidean distance 

between that sample and the cluster centers of the 

positive and negative sets. For q labels of the 

multi-label dataset, this process repeats q times. 

Thus, at the end of this stage there are q training 

sets with 2m features where m is the number of 

cluster centers of positive (equal to negative) sets. 

At this step, q binary classifiers are trained with 

the produced label-specific features, one for each 

label. In the testing phase, new features are first 

constructed for each unseen instance based on its 

distances to the cluster centers of positive and 

negative sets, for each label. The labels of this 

instance are then predicted by the learned system. 

 

3. Proposed method 

As it was discussed before, the drawback of LIFT 

algorithm is the need to have all features for 

constructing the new features. As a result, the 

mentioned problems associated with redundant, 

irrelevant and costly features still remain. A 

simple idea can make the LIFT algorithm to be 

computationally efficient. The idea is to remove 

irrelevant and redundant features and feed salient 

features to LIFT. Undoubtedly, this idea will 

reduce the computational burden, and even if the 

performance deteriorates, slightly, removing 

costly features is preferred. However, the 

experimental results show the superiority of our 

method in most cases, compared to the original 

LIFT. 

Figure 2 shows the diagram of the proposed 

method. At first, the multi-label dataset is 

transformed to single-label dataset using the 

Binary Relevance (BR) approach. In the next step, 

an ensemble on n filter feature selection 

approaches suggest the best features, individually. 

The most salient features are then selected among 

these features in the aggregation phase. Finally, 

the selected features are fed to the LIFT 

algorithm. 

 

3.1. BR Transformation 

Binary Relevance approach is the most common 

transformation strategy which transforms the 

multi-label learning problem into q binary 

classification problems, where q is the number of 

possible labels. More precisely, for the jth label 

jy , BR first constructs a corresponding binary 

training set by considering the relevance of each 

training instance to jy . Then, a binary learning 

algorithm is employed to induce a binary 

classifier. Each binary classifier is responsible for 

predicting the association of instances to the 

corresponding label. For predicting the label set of 

a test instance, every binary classifier is asked to 

predict whether or not the test instance belongs to 

the corresponding label, and then the relevant 

labels are combined [38]. 

 

3.2. Ensemble 

When BR transforms the multi-label dataset into q 

binary single-label datasets, the ensemble on n 

filter feature selection methods is performed on 

these datasets. Three filter methods including 

FCBF, IG and ReliefF which are three well-

known single-label filter feature selectors are 

selected for this phase. Applying FCBF on each 

dataset, a binary vector of size M is created, where 

1 implies selecting and 0 implies deselecting the 

corresponding feature. At the end of this process, 

there are q binary vectors, and the final selected 

features are obtained by the OR operator, i.e. it 

returns the feature x as the output, if it is selected 

in at least one of the vectors. 

Similar process is done for Relief and IG 

methods. However, ReliefF and IG return a 

weight for each feature and do not specify 

selected and deselected features. To be fair, the 

number of features to be selected by these 
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methods are considered equal to the number of 

selected features, c, obtained by FCBF. Therefore, 

after summing the weights of q vectors for each 

feature, the first c features with the highest 

weights are selected. To determine the final 

feature set, the ensemble of Relief, IG and FCBF 

is utilized. ‘Ensemble feature selection’ is a new 

strategy which combines the outputs of several 

feature selectors to achieve better results. 

Generally, this strategy consists of two steps: in 

the first step, a number of feature selectors are 

considered, and the outputs of these base feature 

selectors are combined in step 2. Bolón et al. 

propose two models for ensemble feature 

selections which are shown in figures 3 and 4 

[39]. In this paper, the second model is selected. 

When the base feature selectors return their output 

features, the aggregation operation would start to 

determine the final feature subset. One of the 

fundamental challenges in ensemble strategy is 

how to combine the outputs of the base methods. 

In the literature, a number of combination 

approaches exist which are reviewed in [40]. 

Here, the simple ‘OR’ operation is utilized for 

aggregation, and the obtained features at this stage 

are fed to LIFT. Another crucial issue in ensemble 

strategy is to choose complementary base feature 

selectors. For example, if the base feature 

selectors use the same strategies for selecting 

features, the output of the ensemble method is 

similar to the outputs of the base parts.  

As in real-world life, that the opinions of several 

experts usually outperform the individual 

decisions, the proposed ensemble system is 

considered to act better. To verify this claim, 

several experiments are tested on different 

permutations of the three filter methods.  

 

 

  

Figure 2. The diagram of the proposed system 

 
Figure 3. Model 1 of ensemble feature selection strategy [39]. 

 
Figure 4. Model 2 of ensemble feature selection strategy [39]. 

 

 

Multi-label 

dataset 
Single-label 

datasets 

Filter 1 

Filter 2 

Filter 3 

BR 

transformation 
Ensemble LIFT 
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3.3. Pseudo code of the proposed method 

 

For more explanation, the pseudo code of the 

proposed method is given in Algorithm 1. 

 

 

Algorithm 1: the proposed method 
Input: Multi-label dataset D with M features, N samples and q labels 

Output: selected features F 

1: Transform D to q single-label datasets using BR 

2: for i = 1:q 

3:      Filter1 (i,:) = a binary vector of size  M which assigns 1 to selected and 0 to deselected features defined by  

         FCBF method.  

4:      Filter2 (i,:) = a vector of size M which assigns a weight to each feature using ReliefF method 

5:     Filter3 (i,:) =  a vector of size M which assigns a weight to each feature using IG method 

6:end 

7: 1v  sum the matrix Filter1 columns to form a vector of size  

8:  FCBF  = select features corresponding to non-zero values of 
1v  

9: length of FCBF. 

10: 2v sum the matrix  columns to form a vector of size  and sort it in descending order 

11: select the first  features of 
2v  

12: 3v sum the matrix  columns to form a vector of size  and sort it in descending order 

13: select the first  features of 
3v  

14:  
 

Table 1. Discerption of the datasets used in the experiments 
Dataset N M q Type LC LD Domain 

emotions 593 72 6 numeric 1.869 0.311 music 

genbase 662 1185 27 nominal 1.252 0.046 biology 

medical 978 1449 45 nominal 1.245 0.028 text 

enron 1702 1001 53 nominal 3.378 0.064 text 

image 2000 294 5 numeric 1.236 0.247 images 

scene 2407 294 6 numeric 1.074 0.179 images 

 

 

4. Experimental studies 

This section evaluates the performance of the 

proposed approach on 6 multi-label datasets from 

different applications. The results are then 

compared to the results of the original LIFT 

algorithm, ML-kNN, and some multi-label feature 

selection methods. 

4.1. Datasets 

In the experiments, 6 real multi-label datasets 

from different applications obtained from the 

Mulan repository1 were used. Table 1 summarizes 

the characteristics of these datasets including 

dataset name (Dataset); dataset domain (Domain); 

number of instances (N); number of features (M); 

number of labels (q=|L|); feature type (Type); 

label cardinality (LC), which is the average 

number of labels associated with each instance 

defined by (2) and label density (LD), which is the 

cardinality normalized by |L| defined by (3). 

                                                      

1 - http://mulan.sourceforge.net/datasets.html 
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4.2. Performance evaluation criteria  
To evaluate the improvement of the proposed 

approaches compared to the original LIFT 

algorithm, we employ several evaluation measures 

popularly use in multi-label tasks, including 

hamming loss, one-error, coverage, and ranking 

loss. In summary, these criteria evaluate the 

learning system’s performance on each test 

example and then return the mean value across the 

test set. Let  be a given 

test set where  is a correct label subset, and 

 be a predicted label set corresponding to 

. Also, let  denotes the score assigned to 
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label  for sample . These methods are defined in 

the following [38]: 

Hamming loss 

Hamming loss calculates the percentage of labels 

which are misclassified, i.e. the instance 

associated to a wrong label or a label belonging to 

the true sample which is not predicted [41]. 







||

1 ||

||

||

1
),(LossHamming 

D

i

ii

L

ZY

D
Dh  (4) 

where,  is the symmetric difference between two 

sets. Hamming loss computes the percentage of 

labels whose relevance is not predicted correctly. 

One error  

This measure counts the number of times that the 

top-ranked label is not relevant: 

])],(max[[arg
||

1
)(

||

1


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iiYy Yyxf
D

ferrorone
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Coverage 

It evaluates the average number of steps to move 

down in the list of ranked labels to cover all the 

relevant labels of a sample. 

1),(max
||

1
)(coverage 

||

1

 


 yxrank
D

f if

D

i

Yy
 

  (6) 

where, ),( yxrank if
denotes the rank of y in Y 

based on the descending order induced by f. 
 

Ranking loss 

Ranking loss counts the average fraction of 

reversely ordered pairs; i.e. an irrelevant label is 

ranked higher than a relevant label. 
 


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       (7) 

 

Average feature reduction 

Another parameter which is used for comparison 

is the average feature reduction, rF , to investigate 

the rate of feature reduction [13]. 

M

rM
Fr


                  (8) 

where, M is the total number of features and r is 

the number of selected features by the FS 

algorithm. The more it is close to 1, the more 

features are eliminated, which leads to lower 

classifier’s complexity. 

Smaller values show better performance for all 

criteria except average feature reduction. Also, all 

measures are normalized between 0 and 1 except 

for coverage. 

4.3. Justification 

A series of experiments were conducted in order 

to find the most effective combination of the three 

filter methods. Table 2 shows the comparison of 

these methods over several datasets in terms of 

hamming loss criterion. Numbers written in 

brackets are the ranks obtained by each algorithm 

among the others. According to this table, it is 

observed that the ensemble of the three methods, 

output the best results. Similar experiments were 

performed for other evaluation criteria, and the 

results proved the superiority of the last method, 

i.e. LIFT_RF_FCBF_IG over the other ones, in 

average. Therefore, this method is chosen for the 

feature selection. Among different aggregation 

strategies discussed in [40], two simple 

aggregation methods including the AND and OR 

operators were tested for combining the results of 

the three filter methods. The experiments on 

several evaluation criteria showed better results 

for the OR operator. 

The proposed system which is presented in figure 

2 with the three filter approaches including IG, 

FCBF and ReliefF methods in the ensemble phase 

and the OR operator as the aggregation strategy is 

called MLIFT, hereafter.  

4.4. Results and discussion 

During each experiment, 60% of samples were 

chosen randomly for training. Remaining 40% of 

samples were used for testing. Results are 

averaged over 20 independent runs in each dataset 

and by every algorithm. For implementing FCBF,  

IG and ReliefF, fspackage [42] is used, which is a 

package based on Weka [43] and is available to 

the community at http://featureselection.asu.edu/. 

LIFT [36]2 is employed with its default 

parameters, and for ML-kNN the number of 

nearest neighbours is set to 10. 

Table 3, illustrates the results of comparing 

algorithms including proposed MLIFT (LIFT- RF 

-FCBF- IG), LIFT, ML-kNN, and four multi-label 

feature selection methods including LP-RF, LP-

IG, BR-RF, and BR-IG presented in [15] over 6 

various-sized datasets. The best result among the 

comparing methods is highlighted in boldface. 

According to this table, the MLIFT and LIFT 

algorithms have the best results in all criteria 

except for Feature reduction. Of course, it should 

be noted that LIFT and ML-kNN are multi-label 

classifiers which are not expected to reduce the 

dimensionality of the datasets. Comparing the 

LIFT and MLIFT algorithms, this table shows that 

                                                      

2 - http://cse.seu.edu.cn/people/zhangml/Resources.htm#data 

http://featureselection.asu.edu/
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MLIFT obtains better results using a smaller 

feature set. For example, more than 96% of 

features are eliminated for genbase dataset, and 

the results remain relatively unchanged compare 

to the original LIFT algorithm. As mentioned 

before, even if the results deteriorate slightly for 

removal of a large number of features, feature 

selection is still justified. Table 4 shows the 

average ranks of the comparing algorithms 

through Friedman 1*N statistical test for each 

evaluation measure. The last column presents the 

sum of the ranks for each algorithm and the 

number written in brackets in the last column 

shows the total rank of each method. Lower sum 

of ranks for an algorithm indicates better average 

results against the others. 

The obtained p-values for each measure is also 

written in this table that shows significant results, 

as all of the p-values are less than 0.05.  

According to this table, MLIFT gets the first rank, 

LIFT is ranked second, ML-kNN is placed in the 

third position, LP-RF gets rank number 4, both of 

LP-IG and BR-IG get the fifth rank, and BR-RF is 

ranked last. Moreover, Zhang [36] proved the 

superiority of LIFT algorithm over four well-

established multi-label learning algorithms, 

including Bsvm [2], ML_kNN [10], BP_MLL [4] 

and ECC [44]. Thus, the superiority of the 

proposed methods over these approaches can also 

be concluded. 
 

 
Table 2. The comparison of different ensembles of the three feature selection methods in terms of hamming loss 

 
LIFT_RF 

LIFT_FCB

F 
LIFT_IG 

LIFT_RF

_FCBF 

LIFT_IG_FCB

F 

LIFT_IG_R

F 

LIFT_RF_F

CBF_IG 

emotions 0.2341[4] 0.2421[6] 0.2394[5] 0.2451[7] 0.2311[2] 0.2303[1] 0.2535[3] 

genbase 0.0035[6] 0.0029[2] 0.0034[5] 0.0030[3] 0.0033[4] 0.0027[1] 0.0033[4] 
medical 0.0124[6] 0.0116[1] 0.0119[2] 0.0120[3] 0.0122[4] 0.0123[5] 0.0119[2] 

image 0.1997[6] 0.1799[4] 0.2152[7] 0.1746[2] 0.1753[3] 0.1913[5] 0.1616[1] 

scene 0.1136[5] 0.0919[4] 0.1293[7] 0.0867[3] 0.0866[2] 0.1109[6] 0.0813[1] 

 
Table 3. Comparison of performance of the algorithms on 6 datasets. 

  
emotions genbase medical enron image scene 

Hamming loss  

 

MLIFT 0.2535 0.0033 0.0119 0.0467 0.1616 0.0813 

LIFT 0.2622 0.0033 0.0132 0.0467 0.1603 0.0815 

ML-kNN 0.2687 0.0054 0.0163 0.0533 0.8874 0.0905 

BR-RF 0.2655 0.0056 0.0149 0.0530 0.8974 0.0933 

BR-IG 0.2667 0.0057 0.0149 0.0590 0.8941 0.0915 

LP-RF 0.2654 0.0058 0.0185 0.0534 0.8917 0.0929 
LP-IG 0.2627 0.0051 0.0157 0.0626 0.8917 0.0927 

One error  

MLIFT 0.3609 0.0007 0.1626 0.2529 0.2836 0.2030 

LIFT 0.3738 0.0003 0.1820 0.2444 0.2839 0.2073 
ML-kNN 0.3867 0.0124 0.2758 0.3245 0.3324 0.2380 

BR-RF 0.3907 0.0100 0.2682 0.3190 0.3523 0.2462 

BR-IG 0.3890 0.0091 0.2313 0.3951 0.3496 0.2405 
LP-RF 0.3905 0.0113 0.4285 0.3214 0.3369 0.2462 

LP-IG 0.3992 0.0119 0.2583 0.4647 0.3392 0.2424 

Coverage  

MLIFT 2.1736 0.5284 2.0416 12.6290 0.8813 0.4094 

LIFT 2.2179 0.5284 2.2205 12.4910 0.8736 0.4209 
ML-kNN 2.3042 0.5775 3.0092 13.6460 0.9920 0.4953 

BR-RF 2.2861 0.6704 3.2309 13.5775 1.0519 0.5166 

BR-IG 2.2802 0.7221 4.8145 14.5877 1.0445 0.5039 
LP-RF 2.2688 0.6492 3.1313 13.4831 1.0070 0.5058 

LP-IG 2.1865 0.7211 3.2198 15.4910 1.0268 0.5090 

Ranking loss  

MLIFT 0.2374 0.0053 0.0292 0.0830 0.1516 0.0654 

LIFT 0.2453 0.0056 0.0326 0.0815 0.1514 0.0672 

ML-kNN 0.2632 0.0069 0.0481 0.0963 0.1817 0.082 

BR-RF 0.2632 0.0084 0.0523 0.0958 0.1932 0.0856 
BR-IG 0.2602 0.0098 0.0857 0.1091 0.1946 0.0839 

LP-RF 0.2590 0.0082 0.0502 0.0955 0.1842 0.0841 

LP-IG 0.2450 0.0104 0.0514 0.1190 0.1891 0.0840 

Feature reduction 

MLIFT 0.1319 0.9629 0.7696 0.7115 0.057 0.0215 

LIFT 0 0 0 0 0 0 

ML-kNN 0 0 0 0 0 0 
BR-RF 0.4575 0.9601 0.8669 0.0298 0.5694 0.2274 

BR-IG 0.2027 0.9789 0.9964 0.9977 0.1262 0.0264 

LP-RF 0.1545 0.9681 0.9365 0.0034 0.4844 0.2277 

LP-IG 0.1201 0.9763 0.9870 0.7255 0.2571 0.0219 
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Table 1. Average rankings of the algorithms obtained by each evaluation measure by performing Friedman test. 

Statistical Test method 

Hamming loss 

p-value = 
0.000607 

One error 

p-value = 
0.000481 

Coverage 

p-value = 
0.000278 

Ranking loss 

p-value = 
0.000309 

Feature 

reduction 

p-value = 

0.000209 

Sum of ranks 

Friedman 1*N 

MLIFT 1.3333[1] 1.3333[1] 1.4167[1] 1.3333[1] 4.3333[4] 8[1] 

LIFT 1.6667[2] 1.6667[2] 1.7500[2] 1.8333[2] 6.5000[5] 13[2] 

ML-kNN 4.5000[3] 4.5000[4] 4.0000[3] 3.9167[3] 6.5000[5] 18[3] 

BR-RF 5.0833[5] 5.2500[5] 5.8333[5] 5.7500[6] 2.8333[2] 23[6] 

BR-IG 5.2500[6] 4.3333[3] 5.8333[5] 5.8333[7] 2.0000[1] 22[5] 

LP-RF 5.5833[7] 5.2500[5] 4.0000[3] 4.1667[4] 2.8333[2] 21[4] 

LP-IG 4.5833[4] 5.6667[6] 5.1667[4] 5.1667[5] 3.000[3] 22[5] 

 

The obtained p-values for each measure is also 

written in this table that shows significant results, 

as all of the p-values are less than 0.05.  

According to this table, MLIFT gets the first rank, 

LIFT is ranked second, ML-kNN is placed in the 

third position, LP-RF gets rank number 4, both of 

LP-IG and BR-IG get the fifth rank, and BR-RF is 

ranked last. Moreover, Zhang [36] proved the 

superiority of LIFT algorithm over four well-

established multi-label learning algorithms, 

including Bsvm [2], ML_kNN [10], BP_MLL [4] 

and ECC [44]. Thus, the superiority of the 

proposed methods over these approaches can also 

be concluded. 

5. Conclusion 

This paper proposes a modification to LIFT [36] 

algorithm which is a multi-label learning strategy 

via label-specific features. More precisely, LIFT 

reduces the dimension of samples using the 

information of their labels. However, to construct 

the new features, the original features of each 

sample are needed. Therefore, the problems 

related to costly, irrelevant and redundant features 

still remain. To overcome this challenge, we 

suggest to remove irrelevant and redundant 

features before the LIFT algorithm. To do so, the 

ensemble strategy which is one of the promising 

techniques in single-label feature selection is 

employed to select the most salient features in 

multi-label data. Firstly, the multi-label data is 

transform into single-label data using the BR 

method. Then, the ensemble of three well-known 

single-label filter approaches, including IG, 

ReliefF and FCBF are employed and the results 

are aggregated using the OR operator. The 

experimental results show that in spite of 

eliminating a significant number of features, the 

proposed method has better performance 

compared to the LIFT algorithm and other 

comparing methods.  
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 نشریه هوش مصنوعی و داده کاوی
 

 

 

MLIFT :بند چند برچسبی با انتخاب ویژگی گروهی طبقه ارتقای 

  

 پورآبادیحسین نظام و *شیما کاشف

 .(، بخش مهندسی برق، دانشگاه شهید باهنر کرمانIDPLآزمایشگاه پردازش هوشمند داده )

 20/20/0202 پذیرش؛ 20/00/0202 بازنگری؛ 20/20/0202 ارسال

 چکیده:

بنری چنر برچساا،  جه ه بساایاری از طنققا  را به خهد ط،قه برچساا، ، های چنربه واساا ه ر اار راربردهای  ریر طربه  به داد  های اخیر،در ساال

بنر چنر یک ط،قه LIFTبرچسا،  اراهه  ر  اس.  بنری چنرهای طتعردی برای طسالهه ط،قهرغم عمر رهجا  این جنقیقات، روشعل  لب ررد  اسا.  

 های طختصرنر  وی   اسااتزاد  ط از یک راه،رد  ریر برای یاد یری چنر برچساا،   ،های طختص برچسااببرچساا،  اساا. ره با اسااتزاد  از وی   

ره بیصترین جهانای  جمایز ده   سری وی    خاببرچساب برین طعن  هساتنر ره هر برچسب، طصختات طختهب به خهد را دارد و با استزاد  از یک 

برای هر  LIFTجر، به طهر دقیقرنر  بنری برای رصااخ خهاب داد  اسااتزاد  ط های خه ااهاز روش LIFT  ااهد جعیین ط برای آ  برچسااب را دارنر، 

رچسب ب آ های آطهز   طتعلق و غیر طتعلق به نمهنهرنر، ره به جرجیب،  اطل های طث،. و طنز  جقسیم ط های آطهز ا  را به خه اهبرچساب، نمهنه

رنر پیرا ط  k-meansبنر های طث،. و طنز  برای هر برچسب را با استزاد  از خه ههای طربه  به نمهنههای خه هنماینر  ساس  این اهگهریتم، اسا. 

ابعاد صضااای  ریر به طهر قابل های  ریر، رنر  با ساااختن وی   ط آ  نمهنه جا این طرارز خه ااه  ایگزین های اصاال  هر نمهنه را با صاصااله وی   و 

های اصااال  طهرد نیاز هساااتنر  بنابراین، عملاد پیفیر   صراینر های  ریر، وی   رنر  با این حال، برای سااااختن این وی   جه ه  رااه  پیارا ط 

به طنظهر راه  پیفیر   طناساا،اج  آ  و به،هد ایا حراقل نگه  LIFTی رنر  در این رار، یک اصاالاحیه روبنری چنر برچساا،  راه  پیرا نم ط،قه

دهنر ره اهگهریتم پیصنهادی جهانسته اس. همزطا  به این اهراف دس. پیرا ها نصا  ط بنر انجام  ار  اسا.  نتایآ آزطای دا اتن   عملررد این ط،قه

 رنر 

   روه بنر ، ط،قهLIFTبنر داد  چنر برچس، ، ط،قه :کلمات کلیدی

 


