
Shahsavari & Emadi/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

186

satisfy the global constraints. Hence, in the next

step, user constraints are applied to combine and

select the best service. Therefore, different

compositions of each class should be considered.

In this work, a Skyline service is executed for

each class so that suitable or candidate services to

be part of the composition or those that cannot be

in the final solution can be identified. This

method can effectively reduce the problem space.

The algorithm uses three parameters: cost,

response time, and reliability to apply Skyline

service algorithm. In other words, according to

what was stated, services are provided as a point

in 3D space and the coordinates of each point are

related to levels of quality of service.

3.2. Graph creation and traversal

After removal of the redundant services, the

optimal services are displayed as inputs and

outputs. First, a dependency graph is created in

the registry to display all the input-output data

communication between services. Moreover, the

Web service composition becomes a dependency

graph search. In the proposed model, similar to [6,

13], the AND/OR graph is used to display the

dependency graph.

Through this display for the service dependency

graph, first, a SDG is created according to

community C; and secondly, the search process in

the dependency graph based on the information

provided by the service applicant (e.g. user Req)

begins, which is the depth-first search.

In the node search process, if some conditions are

not met or a path is not found, it returns and

completes the move in the entire graph. When the

first service is selected, in case the kind of

operation is the same as the operation of the first

service selected by the user, it begins to examine

and evaluate the inputs. The input of a service can

sometimes be obtained using the output of the

previously issued service.

If no proper service is found in services searching

in an operation, recursive algorithm steps back to

the previous operation and finds another

appropriate service. Finally, the algorithm finds

and displays all the possible compositions.

The characteristics of an AND/OR graph makes it

possible that a service is called only if all of its

inputs are available.

3.3. User’s semantic constraints

In the ongoing implementation of the proposed

model, the user’s semantic constraints are

assessed in any operation after matching the input

and output parameters. Constraints are applied to

certain attributes of the Web service to choose the

right service and ensure its proper

implementation. The range of these attributes can

be displayed by numerical values or a set of

semantic concepts.

The semantic relation between the words used to

describe the service constraints leads to accuracy

in exploring the Web service. In the proposed

model, the semantic constraints of the user are

evaluated using the conditional statements. In the

composition process, if the constraint is raised by

the user on the operation, it will be considered in

the selection of service. All the constraints of a

service can be displayed as follow:

1 2 ... ,

,1

n

i

SC SC SC WS

SC SC i n

   

  

(3)

3.4. Assessing global quality of services

It should be noted that the best service from each

operation does not necessarily guarantee that the

global constraints are satisfied. As stated earlier,

the goal was to select a set of services for each

operation, and the global constraints are

considered as well.

In the proposed model, after finding a

composition strategy of graph traversal, QoSs of

the service composition are calculated and

evaluated based on the relationships in table 1.

The criteria for assessing the cost quality

parameters of the service are set by the users, and

the criteria for assessing the other quality

parameters of the service are specified in the

program.

If this solution satisfies the global qualitative

parameters, it will be considered as a solution.

Table 1. Estimation function of the consensus values of

QoS [7].

QoS attribute Function

Response time

Reliability

Cost

3.5. Final processing

After completing the composition process, if no

composition strategy is produced in the previous

step, the proposed algorithm re-runs the search

process by changing the priorities in the user’s

constraints. Therefore, in order to increase the

user’s satisfaction, the algorithm can produce the

proposals with lower priorities if no solution is

produced.

According to the above-mentioned explanations,

the proposed algorithm reduces the existing Web

services through the Skyline technique according

Shahsavari & Emadi/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

187

to the quality parameters of the service cost,

response time, and reliability. Afterwards, the

algorithm presents all the possible composition

solutions using the graph search-based algorithm

based on the user’s semantic priorities. However,

in order to increase the user’s satisfaction, the

algorithm can produce the proposals with lower

priorities if no solution is produced.

4. Analysis of results and discussion

As stated earlier, the automatic Web service

composition based on graph search algorithms is

carried out by the researchers. In the proposed

method, in addition to consideration of the

qualitative parameters and the user’s constraints

that can be deemed semantic, the Web service

composition was studied in many service

communities. This section studies and evaluates

the simulation results of the proposed algorithm.

4.1. Simulation tools and system specifications

For simulation and implementation of the

algorithm, Visual Studio 2012 was used.

The system configuration used in the

implementation and simulation of the algorithm is

as in table 2.

Table 2. System configuration used in the simulation.

Processor Intel (R) Core (TM) i5-2430 M CPU @ 2.40

GHZ

Main memory 4GB

Operating system Microsoft Windows 10 Home, 64-bit

4.2. Selected dataset
The service dataset is created by the program as a

prototype for a traveling tour. Each Web service,

as defined in Section 3.2, represents an operation

that has input and output parameters and can own

some constraints. Furthermore, random values are

assigned to the QoS of reliability, response time,

and cost.

4.3. Simulation results of proposed model

In order to analyze and evaluate the proposed

method, firstly, the approach by Wang et al. [6]

was studied, and secondly, the desired results on

the same data provided by the Wang algorithm

and the proposed algorithm were analyzed. The

comparison is performed in three aspects:

runtime, memory usage, and fitness. The results

of the proposed algorithm in the optimal

composition of Web services are as what follow.

4.3.1. Runtime

In analyzing the results obtained from the

implementation of the proposed algorithm, it was

observed that by increasing the number of Web

services of the dataset, the runtime increased. In

figure 2, the runtime of a different number of

Web services per composition operations is

shown.

It is clear that by increasing the number of Web

services, the runtime increases. However, as it can

be seen in figure 2, increasing the number of

operations has little impact on the different Web

service execution times.

Figure 2. Runtime of executing a number of different

Web services.

Figure 3. Runtime of proposed algorithm for the number

of steps combined.

Figure 3 shows the runtime of the proposed

algorithm for Web service composition per the

number of composition operations of 25000,

50000, and 75000 services. In the proposed

method, due to the elimination of redundant

services and reducing the searching space, the

time spent for Web service composition per

number of composition operation had no dramatic

increases.

By assessing figure 3, it can be concluded that

increasing the number of Web services has a

significant impact on the running time.

Shahsavari & Emadi/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

188

Figure 4 compares the runtime of the proposed

algorithm with the algorithm provided by Wang

and colleagues [6]. According to what can be seen

in the graph, the runtime difference is much more

intuitive in a higher number of Web services.

Figure 4. Comparison of runtimes in a different number

of Web services.

Figure 5. Comparison of runtimes per composition

operations.

Comparison of runtime per composition operation

between the proposed algorithm and the method

developed by Wang is shown in figure 5. The

number of Web services is equal to 75,000.

Increasing the number of operations increases the

depth of Search Graph. From the following graph,

one can conclude that in the method developed by

Wang for these numbers of services, the Graph

Search space becomes very large and leads to an

exponential increase in the runtime. However, in

the proposed method, due to a decrease in the

number of Web services before composition,

increasing the depth of Search Graph will not

have much impact on the runtime.

4.3.2. Memory usage

Another case that can be analyzed in the results

obtained is the amount of memory consumed by

the proposed algorithm.

In figure 6, the memory usage per different

number of Web services is compared in the

proposed method and the method provided by

Wang et al. [6]. According to what can be seen in

the graph, the memory usage difference is more

tangible in a higher number of Web services.

Since the pre-processing in the proposed method

reduces the number of Web services, the

composition process will be done with a smaller

number of Web services; this method consumes

less memory compared to the Wang’s method. In

this comparison, the number of considered

operations is 4.

Figure 6. Comparison of memory consumption by

different numbers of web services.

Memory usage per number of composition

operation is compared in the proposed method

and the method provided by Wang et al. [6] in

figure 7.

Figure 7. Comparison of memory usage per

composition operation.

Shahsavari & Emadi/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

189

The number of Web services is equal to 75000.

As it can be seen, an increase in the number of

operations in the proposed method does not have

a significant effect on the memory usage. Since

the Skyline service has reduced the number of

services to be selected from them, the search

graph has become smaller.

4.3.3. Fitness

The effect of number of Web services and

operations on fitness: the results obtained are

shown in table 3.

Table 3. Fitness of Wang Method and Proposed Method.

 Number of services Number of operations

25000 50000 75000 3 4 5

Wang method

fitness

 0.57 0.61 0.47 0.56 0.41 0.41

Proposed
method fitness

0.69 0.65 0.58 0.63 0.59 0.58

4.3.4. Effect of pre-processing on number of

services

Pre-processing in the method provided by Wang

is done as follows: first, all the services in a

community that can do the same thing but are

applicable in a different situation form a service

set called SIDE. In this method, before the main

algorithm is applied in community C for service

composition, SIDE is categorized in C. Thus pre-

processing will not reduce the number of services;

in fact, it provides a condition to meet the service

constraints.

However, in the proposed method, services are

decreased using the Skyline concept. In the

diagram of figure 8, the effect of processing on

the number of services is shown.

The assessments carried out indicate the

following results:

• The effect of number of Web services on

runtime: the assessment results indicate that the

Web service composition using the proposed

algorithm is very large, leading to a faster

solution.

• The effect of number of composition

operations on the runtime: as evaluations were

presented, the composition with the proposed

method achieves a better solution in a much less

time, and the slope of comparison graph is

significant.

• The effect of number of Web services on the

memory usage: the assessment results show that

the proposed algorithm uses less memory than the

Wang’s method as the number of Web services

increases.

• The effect of numbers of composition

operations on the memory usage: the assessment

results show that an increase in the composition

operations has no significant impact on the

memory usage in the proposed algorithm.

Figure 8. Pre-processing effect on the number of services.

5. Conclusions and suggestions

With the expansion of services for enterprises and

organizations on the Internet, the demand for

communication and interaction has increased, and

new technologies have been presented in the

context of this type of communication. Currently,

Web services are the best options to provide

Internet services. Due to the growth and an

increasing number of Web users and the

complexity of the users’ queries, simple and

atomic services are not able to meet the needs of

the users; and to provide complex services, they

require service composition.

Several methods have been proposed to solve the

Web service composition. Some of them create

only one service composition and some produce a

solution that cannot truly be considered as a

service composition because each stage of the

solution includes a set of redundant services and

all services are combined in such solutions.

Finding all composition approaches for the Web

service composition is difficult and complex.

Large search space, redundant services, etc. limit

the performance of all composition solutions, and

therefore, the previous methods have focused on

finding an optimal service composition. However,

in this work, the proposed algorithm could

generate all the possible services for the WSC

problem.

Despite multiple providers, different services are

provided that are similar in terms of performance

and can replace each other but these services are

different in terms of qualitative criteria such as

the response time, availability, security,

reliability, and running costs. For example, if a

Shahsavari & Emadi/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

190

composite service is composed of n atomic

services and M candidate services exist for each

atomic service, the usual way to solve this

problem will be m
n
, which is very costly and

time-consuming. In this work, search space for

selecting Web services was reduced using the

Skyline service.

Afterwards, a graph search-based for Web service

composition was proposed. The constraint set by

the user, which may be defined as semantic, was

considered. The proposed method produces all the

possible solutions, and includes preferences of the

users based on their requests.

In the previous section, the results obtained show

that the proposed algorithm is acceptable because:

• Using the Skyline algorithm reduces the

number of existing services, and thus leads to the

scalability of the proposed approach.

• Applying the user’s constraints in addition

to QoS like the response time, cost, and reliability

resulted in the optimal selection and optimal

service composition.

• Service composition is done considering the

main requirements of the users including the

available inputs, expected outputs, quality of

service, and priority.

• Applying meaning to the constraints

requested by the user leads to more accurate

results.

Despite generating all the possible solutions, the

Web service composition problem is still complex

and difficult, which is due to the nature of the

problem mentioned earlier.

In this work, the Web services were considered to

be compatible. It is notable that sometimes it is

required to call some other services for one

service. For example, to request the map service

provider, it requires two operations of geocoding

and map production, and it is possible that the

dependency constraints exist between these two

operations (such as map production, which

depends on the geographic code). Consideration

of this issue can increase the capabilities of the

proposed model.

References
[1] Papazoglou, M. P., Traverso P., Dustdar S. &

Leymann F., (2007). Service-oriented computing: State

of the art and research challenges, Computer, vol. 40,

no. 11, pp. 38–45.

[2] Papazoglou, M. P., Traverso P., Dustdar S. &

Leymann F.,(2008). Service-oriented computing: A

research roadmap, International Journal of Cooperative

Information Systems, vol. 17, no. 2, pp. 223–255.

[3] Zhang, L. J., Cai, H., & Zhang, J. (2007). Services

computing. Beijing: Tsinghua University Press.

[4] Ter Beek, M., Bucchiarone, A., & Gnesi, S. (2007).

Web service composition approaches: From industrial

standards to formal methods. Second International

Conference on Internet and Web Applications and

Services, pp. 15-20, Morne, Mauritius, 2007.

[5] Rao J. & Su X., (2004). A survey of automated web

service composition methods, in Proceeding Semantic

Web Services and Web Process Composition, pp. 43–

54, Springer, Berlin, Heidelberg, 2004.

[6] Wang P. W., Ding Z. J., Jiang C. J., & Zhou M. C.,

(2014). Constraint-Aware Approach to Web Service

Composition, IEEE, Transactions on Systems, Man,

and Cybernetics: Systems, vol. 44, no. 6, pp. 770-784.

[7] Alrifai M., Skoutas D. & Risse T., (2010).

Selecting Skyline Services for quality of service-based

Web Service Composition, ACM, Proceedings of the

19th international conference on World Wide Web,

No. 10, pp. 11-20, North Carolina, USA, 2010.

[8] Wu, J., Chen L. & Liang T. (2014). Selecting

Dynamic Skyline Services for quality of service-based

Service Composition, Applied Mathematics &

Information Science, vol. 8, no. 5, pp. 2579-2588.

[9] Yu, Q. & Bouguettaya A. (2013). Efficient Service

Skyline Computation for Composite Service Selection,

IEEE Transaction On Knowledge And Data

Engineering, vol. 25, no. 4., pp.776-789.

[10] Yu, H. Q. & Reiff S., (2009). A Backwards

Composition Context-Based Service Selection

Approach for Service Composition, IEEE International

Conference on Services Computing, pp. 419 – 426,

Bangalore, India, 2009.

[11] Brogi, A., Corfini, S., & Popescu, R. (2005).

Composition-oriented service discovery. In

International Conference on Software Composition,

pp. 15-30, Springer, Berlin, Heidelberg, 2005.

[12] Brogi, A., Corfini, S., & Popescu, R. (2008).

Semantics-based composition-oriented discovery of

web services. ACM Transactions on Internet

Technology (TOIT), vol. 8, no. 4, pp. 1-39.

[13] Liang, Q. A., & Su, S. Y. (2005). AND/OR graph

and search algorithm for discovering composite web

services. International Journal of Web Services

Research, vol. 2, no. 4, pp. 48-67.

 [14] Liu, M., Wang M., Shen W., Luo, N. & Yan J.,

(2012). A quality of service (quality of service)-aware

execution plan selection approach for a service

composition process, Science Direct, Future

Generation Computer Systems, vol. 28, no. 7, pp.

1080–1089.

[15] Wang, D., Yang Y. & Mi Z., (2015). A genetic-

based approach to web service composition in geo-

distributed cloud environment, Science Direct,

Computers and Electrical Engineering, vol. 43, pp.

129–141.

Shahsavari & Emadi/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

191

[16] Mardukhi, F., NematBakhsh, N., Zamanifar K. &

Barati, A., (2013). quality of service decomposition for

service composition using genetic algorithm , Applied

Soft Computing, vol. 13, no. 7, pp. 3409–3421.

[17] Li, J., Zheng X. L., Chen S. T., Song. W. W. &

Chen D. (2014). An efficient and reliable approach for

quality-of-service-aware service composition,

Information Sciences, vol. 269, no. 16, pp. 238–254.

[18] Gabrel, V., Manouvrier M. & Murat C (2015).

Web services composition: Complexity and models,

Discrete Applied Mathematics, vol. 196, no. 16, pp.

100-114.

[19] Puttonen, J., Lobov, A., Cavia Soto, M. A. &

Lastra J. L. (2015). Planning-based semantic web

service composition in factory automation, Science

Direct, Advanced Engineering Informatics, vol. 29,

no.4, pp. 1041–1054.

[20] Gamha, Y. & Bennacer, N. (2008). A Framework

for the Semantic Composition of Web Services

Handling User Constraints, ICWS '08 International

Conference on Web Services, IEEE, pp. 228-237,

Beijing, China, 2008.

[21] Himi, F., Ben, S. Y. & Ben, S. A., (2015).

Efficient Skyline Computation For optimal Service

Composition with Fuzzy preference relationships,

International Symposium on Networks, Computers and

Communications (ISNCC), pp. 1–6, Yasmine

Hammamet–Tunisia, 2015.

[22] AllamehAmiri, M., Derhami, V., &

Ghasemzadeh, M. (2013). QoS-Based web service

composition based on genetic algorithm. Journal of AI

and Data Mining, vol. 1, no. 2, pp. 63-73.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7210261
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7210261

