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Abstract 

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of 

the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) 

is introduced for clustering in distributed systems with consideration for the confidentiality of data; i.e. it is 

the negotiations among local cluster centers that are used in the consensus process, hence no private data is 

transferred. With the proposed use of entropy as an internal measure of consensus clustering validation at each 

machine, the cluster centers of the local machines with higher expected clustering validity have more influence 

on the final consensus centers. We also employ the relative cost function of the local Fuzzy C-Means (FCM) 

and the number of data points in each machine as measures of relative machine validity as compared to other 

machines and its reliability, respectively. The utility of the proposed consensus strategy is examined on 18 

datasets from the UCI repository in terms of clustering accuracy and speed-up against the centralized version 

of FCM. Several experiments confirm that the proposed approach yields to higher speed-up and accuracy, 

while maintaining data security due to its protected and distributed processing approach. 
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1. Introduction 

Connections in social networks, sensors of mobile 

and wearable gadgets, as well as data from space 

probes are only a few instances of many 

applications that produce large-scale data 

nowadays. In addition to volume, variety and 

velocity are the other main attributes of such 

applications that are often categorized as ‘Big 

Data.’ These databases also often come with 

inherently distributed availability, raising new 

concerns on data security and privacy. In other 

words, we may be reluctant to gather all data in one 

place and wish to avoid centralized processing, not 

only due to lack of sufficient memory or processing 

power but also out of concern for database privacy. 

Accordingly, distributed clustering becomes an 

attractive venue. They are more scalable as 

compared to the competing centralized strategies. 

They maintain a more distributed processing by 

taking advantage of the inherently distributed 

availability of their database. For the same reason, 

they are able to better address its privacy and 

security.  

From a broader perspective, clustering is also 

becoming more popular, among other data 

processing approaches, since most modern datasets 

are not labeled. In clustering, data is divided based 

on their natural partitions since there is no label or 

external knowledge about the data. K-means and 

spectral clustering are some of the most effective 

algorithms amongst the various approaches to 

clustering. However, these algorithms associate 

each data point to only one specific cluster without 

considering the uncertainty in data association. 

This is to the contrary to the real-world nature of 

the problems where each data point may in 

actuality belong to more than one cluster with 

different degrees.  

Bezdek was the first to address this problem by 

combining fuzzy logic with clustering and 

introducing Fuzzy C-Means (FCM) [1]. In various 

studies, this combined approach has shown to 
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better handle data uncertainty. Some of these 

approaches such as Gustafson-Kessel FCM (GK-

FCM) [2] focus on the definition of distance 

measures. Others such as the Possibilistic C-Means 

(PCM) [3] aim to reduce the FCM sensitivity to 

noisy data by changing the constraints of the 

objective function. Furthermore, some approaches 

aim to improve the FCM performance by adding a 

regularization term to the objective function of 

FCM [4-7]. Recently, in [8] and [9], relative 

entropy with considering the fuzzy membership 

values has been proposed. An effective fuzzy 

clustering method with Particle Swarm 

Optimization (PSO) has also been presented in [10] 

for time-series data. 

Clustering of local machines in a distributed 

system may yield to different results due to the 

possibility of having different available input data, 

environmental uncertainty, clustering structure, 

and randomness in the learning process. Here, 

consensus is defined as the procedure of combining 

these multiple partitions in order to one ‘optimal’ 

partition. Ideally, the machines should reach this 

consensus by sharing their information with each 

other only indirectly, i.e. without transferring any 

actual data points. Transferring the actual data 

points is avoided due to the privacy concerns in the 

real-world problems. It also helps reduce network 

congestion. Furthermore, by taking advantage of 

such ‘ensemble’ learning, the result of consensus 

may become more stable and robust. There are a 

number of works in the literature on this related 

topic. For instance, a linear consensus has been 

presented in [11] and has been recently used for 

consensus in distributed artificial neural networks 

[12]. Wu, et. al. [13] have presented a strong 

theoretical framework of consensus in K-means. 

The use of kernel functions has been suggested for 

clustering consensus in [14]. In [15], a weighted 

consensus has been applied with a diversity 

criterion. For a further review of these and related 

techniques, the interested reader is also referred to 

the work of Pons and Shulcloper in [16]. 

There are two approaches to consensus-based 

clustering: object co-occurrence and median 

partitioning. Those that are based up on the object 

co-occurrence count the number of times that two 

data points occur concurrently and then apply a 

voting procedure to reach consensus. In this 

process, the data points are relabeled (since there is 

no relation between the true labels and the 

generated labels in each clustering) and then the 

voting procedure is executed. Voting-merging 

[17], plurality voting [18], cumulative voting [19], 

and fuzzy clustering voting [20] are amongst the 

most popular voting-based methods. Relabeling in 

voting-based methods is a challenging problem; 

and therefore, in the co-association matrix methods 

[21], an intermediate representation is produced 

based on a new similarity measure. Also in [22], 

the voting-K-Means algorithm has been proposed, 

which aims to find the consistent clusters by 

employing the majority voting. The normalized 

edges can be used to measure the similarity of 

clusters in a hierarchical fashion [23].  

Median partitioning in consensus-based clustering 

aims to minimize the distance between different 

partitions by a similarity measure. Non-negative 

matrix factorization [24] and kernel methods [14] 

are two effective examples of median partitioning 

approaches. Counting pairs such as in Rand index 

[25] and Jaccard coefficient [26], information-

theoretic measures such as mutual information [26] 

and entropy [27], and kernel measures such as 

graph kernel [28] and positive semi-definite 

kernels [29]) are amongst the most well-known 

similarity measures. Recently, using a sparse graph 

representation, an effective ensemble clustering 

method has been proposed [30]. In [31], the 

consensus clustering has been employed for 

community detection. Furthermore, a divide-and-

conquer strategy has been proposed for consensus 

clustering on Big Data in [32]. An efficient 

clustering technique for multi-core systems has 

been also proposed in [33], which is especially 

designed for high-dimensional data such as 

microarrays. Furthermore, Olgierd et al. [34] have 

proposed a stability-based consensus clustering 

algorithm with the same viewpoint. 

More recently, Thanh Ngo et al. [35] have 

proposed interval-valued fuzzy sets to better 

address data uncertainty in consensus clustering. 

The work by Lyu et al. [36] has aimed to preserve 

the data privacy by using feature reduction before 

consensus clustering. Wang et al. [37] have 

introduced a new consensus clustering technique 

for multi-view data, which can address the ‘variety’ 

property of Big Data very well. In another effort to 

employ fuzzy consensus clustering for Big Data, a 

new objective function has been defined in [38] 

based on a novel fuzzified contingency matrix. 

Then, a set of utility functions have been derived. 

The fuzzy consensus clustering is defined as a 

weighted piecewise fuzzy c-means clustering 

(piFCM) problem at the end. After comparing 

twelve consensus clustering algorithms, Wu et al. 

[39] have concluded that average-linkage 

agglomerative clustering and K-means form the 

best combination for consensus clustering. 

However, the above consensus techniques are often 

designed for centralized data on one multi-core 

processor system and use shared memory.  
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This is while, data privacy and security can be best 

maintained if data is kept at its origin, i.e. by taking 

advantage of the distributed nature of the sensory 

system and reaching consensus among the 

individual processing elements without sharing any 

data/memory of the dataset. 

Accordingly, we introduce here an entropy-based 

weighted averaging for reaching consensus from 

cluster centers that are reported from multiple 

machines. The basic challenge here is to determine 

the appropriate weight of each machine from 

‘internal’ measures of clustering rather than the 

‘external’ measures of validation, and without 

sharing individual data. For this purpose, three 

consensus measures are proposed here. The first 

measure uses the relative FCM cost function as a 

measure of relative clustering validity. This 

measure is based up on the clustering status of all 

machines in the distributed system. The second 

measure uses the sum of the entropies over all 

clusters on each machine, in contrast to the other 

works on this topic ‘within’ a given machine as a 

measure of its ‘internal’ validity. Both of these 

mentioned measures are for clustering validation 

but they imply two different perspectives, local 

view and relative global view. And the third is the 

number of data points in each machine as an 

estimate of clustering reliability, i.e. more data 

points observed by a machine can be attributed to a 

more accurate estimation of data distribution.  

The main idea behind the present work is hence that 

the ‘internal’ measures of clustering such as the 

entropy at each machine, instead of the external 

measures of validation, should be used in the 

consensus process on the centers of clusters in 

distributed systems. This is especially relevant to 

the Big Data problems, where there is no trivial 

knowledge about the true labels. Accordingly, 

individual machines should have different effects 

on the consensus process. The basic root of the 

variation in the performance of local machines may 

be in the inherent imbalance in the distribution of 

data or the random initialization of the clusters at 

different machines. 

The rest of this paper is organized as follows. 

Section 2 explains the details of the proposed 

algorithm and its elements. Results of 

implementing the proposed strategy on 18 datasets 

from the UCI repository [40] are provided in 

Section 3. Analysis of these results is also provided 

in terms of clustering accuracy and speed-up. 

Lastly, conclusions are drawn and future work is 

discussed in Section 4. 

 

2. Proposed entropy-based consensus on cluster 

centers 

The main goal of the proposed EC3 is to reach 

consensus among clustering machines by sharing 

only cluster centers rather than transferring actual 

data points among machines, hence preserving 

privacy. The data is inherently distributed and 

large; therefore, there is no prior knowledge about 

its overall shape or distribution. These two steps of 

repeated clustering and consensus are as follow: 

1. Clustering: FCM is employed here as an 

effective clustering method to illustrate the 

partitioning process of datasets with 

uncertainty. However, the strategy is general 

and can be used along with any other clustering 

approach. Furthermore, the standard version of 

FCM algorithm is chosen to keep the focus on 

the consensus strategy. In the standard version 

of FCM, the main loop is executed iteratively 

until the stopping criteria are met. Since these 

 

 Figure 1. The proposed Entropy-based Consensus Clustering Centers (EC3). 
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conditions are checked in EC3’s external 

consensus loop, the FCM here is executed for 

a fewer number of ℒ iterations. Each machine 

calculates the cluster centers for its local data 

and sends the cluster centers and clustering 

measures to the consensus unit. This 

partitioning process of local data is further 

described in Section 2-1.  

 

2. Consensus: The consensus process is applied 

as a weighted averaging method. The main 

challenge here is to define the appropriate 

weight of each machine, i.e. its effect in 

determining the final cluster centers. The 

weight of each machine is defined here based 

on the sum of the entropy of all of its clusters 

and the relative value of its local FCM 

objective function as two measures of 

clustering validity and the number of its data 

points available to each machine as a measure 

of its reliability. A lower FCM cost function 

and the sum of entropies over all clusters in a 

machine are the sign of a “good” clustering. 

Furthermore, more data points can better 

describe the whole structure of data, and hence, 

the number of data points can be an estimate of 

the clustering reliability factor in the 

clustering. These three terms can determine the 

influence of partitioning of each machine on 

the final consensus result. This process is 

explained further in Section 2-2. 

As illustrated in figure 1, after each ℒ iteration of 

the FCM algorithm, each machine submits its 

cluster centers and the information that is required 

for determining its weight to the consensus unit. 

This information consists of its clustering 

validation (the sum of entropy over all clusters and 

the value of FCM cost function) and reliability (the 

number of data points stored on the machine) 

measures. Consensus unit then calculates the new 

centers by weighted averaging. These new 

consensus centers are the new initial points for 

executing the new FCM algorithm on each 

machine. This procedure is repeated until the 

stopping conditions are satisfied. In fact, only the 

first execution of local FCMs are initialized with 

random centers; and in the subsequent iterations, 

consensus centers are the starting points of local 

FCM algorithms. In the following, the main 

modules of the proposed method are introduced. It 

should be mentioned that the use of the standard 

FCM in the proposed approach can be easily 

generalized to other clustering algorithms.  

 

2.1. Fuzzy C-Means at each machine 

FCM is the first functional stage of EC3 that is 

executed on each machine 𝑑 = 1, … . , 𝐷 in the 

distributed architecture. It aims to find the optimal 

cluster centers from the local data available to it, 

such that the sum of distances between all data 

points of each cluster and their cluster center are 

minimized, as shown by the following cost 

function:  
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Here, 𝑥𝑖
𝑑 is the ith data point in machine 𝑑, 𝑣𝑗

𝑑 is the 

center of jth cluster, 𝑢𝑖𝑗
𝑑  is the membership degree 

of data point i belonging to fuzzy cluster j, 𝑚 is the 

fuzziness value (here, 2 is used), 𝑁𝑑 is the total 

number of data points, 𝑐𝑑 is the pre-defined 

number of clusters that is known apriori, and ‖. ‖ is 

the Euclidean norm (any other metric can be used). 

Using the Lagrangian multipliers, (5) and (6) are 

found for determining the membership values and 

cluster centers. 
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Algorithm 1: (Modified) Fuzzy C-means 

1. Start 

2. Set: Number of clusters and 𝑚 

3. l=1 

4. while l< ℒ: 

a. Calculate the membership values (𝑢𝑖𝑗
𝑑 ) 

by Eq. 5 

b. Calculate the center of clusters (𝑣𝑗
𝑑) 

by Eq.  6 

c. l=l+1 

5. Finish 
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The modified FCM algorithm is shown in 

Algorithm 1. In the standard version of FCM, 

stopping conditions such as reaching the maximum 

number of iterations or convergence of cluster 

centers to an optimally acceptable performance are 

controlled after each iteration. However, in this 

work, FCM is itself a part of the external consensus 

loop; and hence, the stopping condition in the 

modified FCM algorithm is only reaching a pre-

defined number of ℒ iterations. In other words, ℒ is 

the number of FCM iterations that is performed 

between any two consecutive consensus steps. The 

performance criterion is then checked at the 

external consensus steps. A simple heuristic is 

proposed in this paper to determine ℒ, as defined 

below: 

(7) ,
2

LL  

 

where 𝐿 is the estimated number of steps required 

for a conventional ‘centralized’ version of FCM 

algorithm to reach the optimal solution for a 

particular application. Intuitively, 𝐿 represents the 

complexity of the clustering task for a given 

dataset. 

 

2.2. Entropy-based consensus on cluster centers 

(EC3) 

Although the same clustering algorithm with the 

same parameters is executed on each local 

machine, each machine reaches a different set of 

cluster centers due to the differences in their local 

input data and their random initialization of 

centers. For the consensus process, these cluster 

centers are then shared among machines after each 

ℒ iterations of local FCMs without transferring any 

actual data points. For this purpose, we propose a 

weighted sum heuristic that uses only the cluster 

centers at each machine (rather than transfer of 

actual data), and instead, is based up on measures 

of the internal validity, relative clustering 

performance, and reliability for machine 𝑑. More 

specifically, the weight of machine 𝑑 in the 

consensus process is: 

(8) ,
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where 𝐻𝑑 is the sum of entropies over all clusters, 

𝐽𝑑 is the relative FCM cost function, and 𝑁𝑑 is the 

total number of data points at machine 𝑑. 

More specifically, the sum of entropies 𝐻𝑑 is 

defined as: 
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and is inversely proportional to the internal validity 

of the machine’s clustering process.  

Table 1. Datasets for experiments. 

No. Dataset # Data # Features # Classes ℒ (Section 3-2) 

1 Balance 625 4 3 22 

2 Breastcancer 569 30 2 4 

3 Gamma 19020 10 2 6 

4 Glass 214 9 6 5 

5 Haberman 306 3 2 4 

6 Heart 270 13 2 4 

7 Ionosphere 351 34 2 3 

8 Iris 150 4 3 3 

9 Isolet 7797 617 26 5 

10 Pendigits 10992 16 10 12 

11 Pima 768 8 2 5 

12 Seeds 210 7 3 3 

13 Segment 2310 19 7 8 

14 Sonar 208 60 2 6 

15 Tictactoe 958 9 2 2 

16 Waveform 5000 21 3 5 

17 Waveform noise 5000 40 3 13 

18 Wine 178 13 3 5 
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Since transferring 𝑢𝑖𝑗
𝑑  is resource consuming, the 

entropy 𝐻𝑑 is computed at each machine and then 

shared with the consensus unit. 𝐽𝑑 represents the 

relative FCM cost (reverse of goodness) of the 

clustering process in machine d in comparison with 

other machines, and is defined as: 

(10) 

1

.
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d
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J

J
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This measure is also inversely proportional to 

clustering validity, although it provides a relative 

measure of performance among machines in the 

consensus process. Finally, increasing 𝑁𝑑 implies 

that more data points at machine 𝑑 is directly 

proportional to a higher relative reliability of the 

machine.  

At the end, the weights of all machines are 

normalized by dividing each weight by the sum of 

all weights. Accordingly, the consensus process 

replaces the calculated cluster centers in each 

machine with their weighted average: 

(11) 
1

.
D d d

j jd
v w v


  

 

The nearest-neighbor strategy is employed to 

determine the associated cluster centers at each 

machine for the above consensus process. In other 

words, each consensus cluster center 𝑣𝑗 is aligned 

with the closest cluster center of the other 

machines. After this consensus step, each machine 

repeats the above clustering and consensus 

procedure by executing the FCM algorithm again 

from these consensus centers as initial points. 

Algorithm 2 summarizes the proposed consensus 

algorithm.  

 
Algorithm 2: Entropy-based Consensus on Cluster Centers 

(EC3) 

1. Start 

2. While 𝛿(𝑡) < 𝜀(here 10-5) 

a. Run FCM in each machine simultaneously using 

Algorithm 1, start from the random cluster centers 

in the first iteration, and from the output of 2.c in 

the next iterations.   

b. Determine the weight 𝑤𝑑 of each machine using (8) 

c. Perform clustering consensus using (11) 

3. Finish 

where 𝛿(𝑡) = ∑ (𝑣𝑗
𝑑(𝑡)𝐷

𝑑=1 − 𝑣𝑗
𝑑(𝑡 − 1)) 𝐷⁄  is the 

average difference between the local cluster centers 

in two subsequent iterations.  

With the consensus on the outputs of FCM (i.e. 

cluster centers), it is possible to use synergism in 

partitions without transferring any actual data point 

and risk security hazards. As shown in the 

subsequent experiments, this heuristic produces a 

stable and robust answer for clustering problems 

and covers the main drawbacks of FCM such as its 

Table 2. Average accuracy over three independent runs (bolded numbers indicate superior results). 

Dataset 
Proposed EC3 with different number of machines 

Centralized FCM 
2 4 6 8 10 

Balance 64.96 57.28 48.00 51.52 56.96 64.00 

Breastcancer 85.06 85.59 85.41 82.25 85.41 85.41 

Gamma 61.31 61.19 61.16 61.28 61.29 61.23 

Glass 76.17 87.38 86.92 64.95 59.35 53.74 

Haberman 54.90 51.63 52.61 55.88 53.59 52.61 

Heart 59.26 60.74 59.63 59.63 60.37 59.26 

Ionosphere 71.23 70.94 70.66 70.66 70.94 70.94 

Iris 92.67 92.67 89.33 82.67 92.00 89.33 

Isolet 91.55 91.62 91.54 91.20 91.55 91.65 

Pendigits 68.84 69.46 69.55 68.82 74.06 75.01 

Pima 74.22 77.08 73.96 74.22 74.74 74.22 

Seeds 77.62 83.81 84.76 88.57 89.52 89.52 

Segment 61.82 55.41 56.19 56.10 51.60 55.19 

Sonar 54.33 54.33 54.33 54.33 54.81 55.29 

Tictactoe 52.51 55.43 53.44 52.09 52.09 51.04 

Waveform 60.48 55.58 55.58 55.58 55.58 55.58 

Waveform noise 64.08 64.00 63.98 63.88 63.86 64.02 

Wine 67.98 69.10 67.42 68.54 68.54 68.54 

 



Akbarzadeh-T & Owhadi-Kareshk/ Journal of AI and Data Mining, Vol 7, No 4, 2019. 
 

557 

 

sensitivity to noisy data, outliers, and instability.  

The present work uses the standard version of FCM 

to only emphasize the utility of the basic concept in 

the proposed consensus strategy. Obviously, more 

recent and effective FCM variations [8, 9] can be 

used for earning better results. 

 

3. Performance evaluation 

The results of implementing the proposed EC3 on 

18 different UCI datasets are presented here. After 

a brief introduction of the employed datasets, the 

experimental conditions are described. 

Subsequently, the analysis of the results are 

presented, and the sensitivity of EC3 to its main 

hyper-parameter ℒ  is investigated. 

 

3.1. Datasets 

For an appropriate comparison against the 

centralized version of the algorithm, a set of 18 

datasets from the UCI repository are considered 

here. In order to take advantage of the EC3’s 

distributed construction, the original datasets are 

randomly partitioned over the 𝐷 machines, forming 

𝐷 separate partitions. Different numbers of 

machines/partitions, from 2 to 10, are considered in 

order to study the general applicability of the 

algorithm under distributed computation. Table 1 

shows the datasets and their properties. 

3.2. Experimental setup 

The proposed algorithm is implemented in 

MATLAB, using a computer with Quad-Core Core 

i-7 4.00 GHz CPU, 8GB of RAM and 128GB SSD. 

In the proposed method, machines are connected 

only to the consensus unit, i.e. there is no direct 

communication link among the machines. Also, the 

connection lines only report the cluster centers 

from each machine to the consensus center and 

return the weighted clusters from the consensus 

process, rather than actual data points. 

 

3.3. Results 

Here, we study the clustering algorithm in terms of 

accuracy and speed-up, in comparison with its 

centralized FCM counterpart. Specifically, table 2 

shows the results in terms of percent accuracy with 

different numbers of machines. To ensure the 

robustness of the results, each experiment is 

repeated three times, and the presented results are 

the average of these executions. Percent accuracy 

is computed here as:  

 
#        

% 100
#      

of Correctly Clusterd Data
Accuracy

of All Data
   (12) 

 
 

 

 

 

Table 3. Average speed up of the proposed EC3 approach over three independent runs.  

Dataset 
EC3 Speed Up with different number of machines 

2 4 6 8 10 

Balance 2.68 5.53 6.50 8.73 20.23 

Breastcancer 3.47 7.09 10.36 13.21 17.10 

Gamma 2.87 5.53 8.26 10.34 13.05 

Glass 18.93 34.87 57.25 74.52 74.92 

Haberman 2.30 4.67 7.10 8.59 11.35 

Heart 3.03 6.03 9.80 11.71 14.89 

Ionosphere 3.36 7.32 11.05 12.95 13.31 

Iris 4.66 9.23 12.82 17.19 21.62 

Isolet 2.39 5.96 12.53 19.86 30.39 

Pendigits 5.40 9.08 11.45 20.50 22.58 

Pima 3.43 6.84 10.13 13.54 17.10 

Seeds 3.97 6.31 9.72 14.66 15.28 

Segment 3.59 6.51 38.75 21.90 23.52 

Sonar 2.89 9.98 6.20 11.36 13.29 

Tictactoe 2.78 5.56 8.97 11.81 14.04 

Waveform 2.93 5.78 8.95 11.07 13.32 

Waveform noise 3.37 6.45 9.36 10.68 9.08 

Wine 3.79 7.19 10.42 13.48 16.79 
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As indicated in table 2, EC3 often has a better 

average performance in comparison with the 

centralized FCM. The reason behind this result 

could be in the synergism, which is created by the 

data fusion process. Since the information of the 

data on each machine is incomplete and based on 

this lacking of knowledge, the variables of local 

FCMs converge to their local optimal values. 

However, the weighted average of these locally 

calculated centers in the consensus center has a 

better overall performance in comparison with each 

one of these centers individually or the centralized 

clustering. The results also demonstrate that the 

number of machines has no special effect on the 

overall performance of the EC3 algorithm. Since 

the number of machines is usually constrained by 

the specific application, this issue can be 

considered as the advantage of EC3 in terms of its 

general applicability. 

Execution time is one of the key measures in the 

distributed systems. At first, it seems that the EC3 

execution time should be approximately equal to 

the centralized FCM divided by the number of 

machines. However, for two antithetical reasons, 

this assumption is not entirely correct, i.e. the 

distribution overhead and synergism in ensemble 

learning. Distribution overhead is the additional 

processing that is done only for handling the 

distributed data processing system, e.g. task 

scheduling and connection management, while the 

ensemble learning could reach a faster and more 

robust convergence by building a synergism in its 

parallel processing of locally available and smaller 

set of expertise. Speed-up is employed here to 

analyze the difference between the execution time 

of the proposed method and the centralized FCM. 

This measure is defined as below:  

(13) 
  3

 

       
.

    

Proposed EC

Centralized FCM

Run Time
speed up

Run Time
   

 

As the results illustrate here, ensemble synergism 

is more effective here than the distribution 

overhead since the execution time is less than the 

expected value (i.e. the run time of centralized 

FCM divided by the number of machines). In 

particular, table 3 shows that the speed-up is 

considerably higher than the number of processing 

machines, as examined on the 18 datasets in this 

 
Figure 2. 𝓛-Sensitivity of the percent accuracy of the proposed method for various datasets for 𝓛={1, …, 10}. 
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Figure 3. 𝓛-Sensitivity of the speed up of the proposed method for various datasets for 𝓛={1, …, 10}. 
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work. These results illustrate the scalability 

property of the proposed EC3 in terms of higher 

speed-up with increasing number of machines. 

 

3.4. 𝓛-sensitivity analysis 

ℒ  is an interesting hyperparameter in that it reflects 

the number of iterations (self-reflections) that each 

processor takes before attempting to share the 

gained insight (consensus) with its network of 

other processors. Here, we study the sensitivity of 

the consensus performance and speed-up to ℒ. Fig. 

2 presents the standard deviation of clustering 

accuracy for the various datasets with different 

values of ℒ (ℒ = {1, … , 10}). As it can be seen in 

this figure, the value of ℒ has different effects on 

the clustering accuracy (as high as 15 for the Glass 

dataset and nearly zero for the Ionosphere and 

Isolet datasets).  

This effect is more consistent in speed-up, as 

illustrated in Fig. 3. On the 18 datasets in this work, 

the standard deviation of speedup ranges from 1 to 

nearly 10. There are few datasets for which ℒ could 

be an important performance measure (exceeding 8 

for the Pendigits and Segment). Hence, choosing 

an appropriate ℒ could be a determining factor 

when considering various competing techniques on 

consensus clustering.  

To effectively deal with choosing the 

appropriate ℒ, in this paper, the heuristic in (7) is 

proposed that is applicable across the various 

database platforms. This observation was possible 

since the independent parameter L was already 

known in the benchmark problems in this work. In 

general, however, ℒ is not known a priori. But this 

fact does not change the conclusions of this paper 

since, even though significant, variations due to ℒ 

settings are considerably smaller than the 

synergism in the speed-up that is reported.   

 

4. Conclusions and future works 

In this work, Entropy-based Consensus on Cluster 

Centers (EC3) has been proposed for distributed 

data clustering based on weighted averaging of the 

cluster centers of all machines. Specifically, we 

proposed a weighting mechanism that assigned a 

higher weight to machines with higher internal 

validity, higher relative validity against other 

machines, and access to more data samples. 

Accordingly, three measures were used. First is the 

sum of entropies of all clusters that is inversely 

proportional to the internal clustering validation at 

each machine. Second is the relative values of local 

FCM cost function that is inversely proportional to 

the relative clustering validation of one machine 

with others. And third is the number of data points 

available to each local machine as its reliability 

estimate. Hence, the machines with higher 

estimated validation and reliability are more 

effective in the consensus procedure.  

Application to the 18 benchmarks indicates the 

consistency of the improvement in terms of speed-

up across problems of various sizes. Hence, the 

approach is scalable. This is while the accuracy in 

comparison with the centralized FCM algorithm is 

maintained. In fact, the proposed approach reaches 

better results in 13 of the 18 benchmark problems.  

In short, the final cluster centers more stable and 

robust due to the ensemble learning approach. The 

main advantage, however we believe, is in its 

privacy preservation. In other words, the proposed 

approach reaches these results by only sharing 

cluster centers, rather than individual data 

instances.  

Finally, we proposed a heuristic to determine the 

number of iterations ℒ  at each machine before each 

consensus step. This is a typical problem in 

consensus strategies since these algorithms must 

create a balance between their machines’ self-

reflections and their social consensus. While this 

problem generally remains unsolved, the 

formulation here illustrates a relation between the 

number of iterations in centralized versus 

decentralized strategies. We believe that further 

studies of this relation could be an interesting study 

on the aspects of individual (one machine) vs. 

social (many machines) processing of information. 

Overall, the final conclusions of this work remain 

true regardless of this heuristic, since the speed-up 

improvement is considerable and the sensitivity 

study of performance against variations of ℒ shows 

a lower affinity towards this value. 

It should be mentioned that the proposed method is 

a consensus algorithm, and the local clustering 

technique is simply employed only to illustrate its 

overall value in distributed algorithms. 

Accordingly, FCM is chosen as a standard and 

widely-used clustering benchmark algorithm that 

allows us to keep focus on the main proposed 

consensus technique. As such, we believe that the 

impact of using other clustering algorithms could 

be investigated in future research works. We also 

aim to study the relative impact of the data set size 

and distribution versus the number of features. The 

current dataset sizes are considerably bigger than 

the number of features. While this is the norm for 

most clustering problems, there are some uprising 

application domains such as microarray gene 

expression databases in which the number of 

features far exceeds the number of samples. It 

would be interesting to determine how the 

proposed clustering measures behave under these 

different conditions and if they maintain or exceed 
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their current relative performance levels. As future 

work, we plan to apply our consensus algorithm to 

a multi-objective clustering technique [41] to 

improve the accuracy of clustering on each 

machine.   
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 شده فازیبندی توزیعاجماع مبتنی بر آنتروپی در خوشه

 

 *محمدرضا اکبرزاده توتونچی و معین اوحدی کارشک

  .مشهد، ایران گروه مهندسی کامپیوتر، قطب علمی رایانش نرم و پردازش هوشمند اطلاعات، دانشگاه فردوسی مشهد،

 20/20/0202 پذیرش؛ 20/20/0200 بازنگری؛ 20/20/0202 ارسال

 چکیده:

کاوی است. در این مقاله، اجماع مبتنی بر آنتروپی های دنیای امروز دادهها از چالشدهرشد سریع حجم و توجه بیش از پیش به حفظ حریم شخصی دا

ه مراکز خوش ،ش پیشنهادیوشود. به بیان دیگر، در رها، پیشنهاد میشده، با حفظ محرمانگی دادهتوزیعها در محیط بندی دادهمراکز خوشه برای خوشه

اده بندی استفگیرند. ما از آنتروپی به عنوان معیاری از درستی خوشهبندی مورد توافق قرار میها در فرآیند خوشههای محلی به جای اصل دادهدر ماشین

 بندی فازیهخوش چنین از مقدار نسبی تابع هزینهباشد. ما همبندی نهایی داشتهتری در خوشهبندی بهتر، تاثیر بیشبا خوشه محلی کنیم تا ماشینمی

م. ین محلی را مشخص کنیشکنیم تا میزان تاثیر هر مای استفاده میریذنوان معیار اتکاپعهای هر ماشین به به عنوان معیار معتبربودن و از تعداد داده

بندی و نرخ افزایش با معیارهای صحت خوشه UCIپایگاه داده  02بندی فازی متمرکز با استفاده از مقایسه با روش خوشهکارایی روش پیشنهادی در 

معیار ها، باعث بهبود هر دو دهد که استفاده از روش پیشنهادی، ضمن حفظ امنیتّ دادههای متعدّد نشان میسرعت مورد بررسی قرا گرفت. آزمایش

 شود.کارایی ذکرشده می

 .  مبتنی بر اجتماعیادگیری  بندی فازی،خوشه، شدهبندی توزیعخوشهبندی، اجماع در خوشهآنتروپی،  :کلمات کلیدی

 


