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Abstract 

Cement rotary kiln is the main part of the cement production process, which has always attracted many 

researchers’ attentions. However, this complex non-linear system has not been modeled efficiently, which can 

make an appropriate performance especially in the noisy condition. In this work, the Takagi-Sugeno neuro-

fuzzy system (TSNFS) is used for identification of the cement rotary kiln, and the gradient descent (GD) 

algorithm is applied for tuning the parameters of antecedent and the consequent parts of fuzzy rules. In 

addition, the optimal inputs of the system are selected by genetic algorithm (GA) to achieve less complexity 

in the fuzzy system. The data related to the Saveh White Cement factory is used in the simulations. The Results 

obtained demonstrate that the proposed identifier has a better performance in comparison with the neural and 

fuzzy models presented earlier for the same data. Furthermore, in this work, TSNFS is evaluated in noisy 

condition, which had not been worked out before in related research works. The simulations show that this 

model has a proper performance in different noisy conditions. 
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1. Introduction 

It is an important issue to reach the model of real 

systems in almost all sciences for analyzing the 

system behavior. Especially in engineering fields, 

a system model is employed, e.g. in the 

optimization, control, diagnosis, and fault detection 

cases [1]. On the other hand, the intelligent 

techniques like neural [2] and fuzzy systems have 

been employed successfully in many applications 

such as system identification among several 

existing methods. For example, using the fuzzy sets 

theory [3] in industrial control problems [4-6] and 

combination of fuzzy control with neural networks 

[7, 8] have had proper results, particularly for 

complex systems. Cement rotary kiln is such a 

complex cylindrical device that is the main part of 

cement industry equipment, consuming fuel to get 

pre-heated to a high temperature, which is 

necessary to produce clinker. It rotates around its 

axis, and the raw meal dust sticks adhesively to its 

walls, and thus it becomes burned and baked. A 

schematic representation of a cement production 

unit is shown in Figure 1 [9]. Many effective parts 

of the cement production process such as baking 

the mixture of input materials occurs in the kiln 

[10], and thus the kilns' operation affects the whole 

plant, and it is necessary to obtain an efficient 

model for it. However, the rotary kiln is a non-

linear and time-variant system, which is very 

complex. We can see a few effective works on the 

kilns' modeling during 1970-2003 [11-19], for 

example, in [15], a model based on computational 

fluid dynamics (CFD) has been presented. Some 

other new ideas have been developed for rotary kiln 

in the recent years, like the research work that has 

compared the BOX-Jenkins method with the linear 

usual techniques such as ARMAX and O.E. [20]. 

However, along this procedure, applying the 

artificial intelligence and expert systems are paid 

attention widely, and are used for rotary kiln's 

modeling and controls. In one of the models 

presented, neural networks such as multi-layer 

perceptron (MLP) have been used [21, 22]. 

Another research work contains a predictor and 

simulator model for the rotary kiln by the locally 
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linear neuro-fuzzy method [24]. In addition, an 

adaptive neuro-fuzzy inference system (ANFIS) 

has been proposed, which uses special selected 

inputs to identify each output [25]. The last one is 

a hierarchical wavelet fuzzy inference system 

(HWFIS) [9], which applies eight input variables 

for each output, and compares the mean square 

error (MSE) of HWFIS with nine other models. 

Since a combination of fuzzy systems with neural 

networks leads to an impressive ability in modeling 

complex plants, in this work, a Takagi-Sugeno 

neuro-fuzzy system (TSNFS) is used. The data that 

is applied in the simulations is related to the Saveh 

White Cement (SWC) factory. After a primary 

preparation of data, an input selection is done with 

the genetic algorithm (GA) to prevent increasing 

computations and achieve a simple model. Then we 

start training TSNFS. Now, the identifier should be 

tested. Since the existence of noise is an undeniable 

fact in industrial systems, and the recent works 

have not focused on this important subject, a noisy 

condition is applied besides the normal case in the 

testing process of TSNFS. 

This paper is organized as what follows. In the 

following section, the structure and learning 

algorithm of TSNFS are presented. Data 

preprocessing is given in Section 3. In Section 4, 

the simulations and results are presented. Finally, 

the conclusions are given in Section 5. 

 

2. Takagi-sugeno neuro-fuzzy system 

2.1. Structure 

The main job in a fuzzy inference system is 

organized in its fuzzy rules. These rules in a 

Takagi–Sugeno fuzzy inference system are 

presented generally in the following form: 

where x1, ..., xn are the input variables, 𝐴𝑗
𝑖 (i = 1, …, 

M,  j = 1, ..., n) is the fuzzy set belonging to the jth 

input in ith fuzzy rule, fi is the function of the 

consequent part of the ith fuzzy rule, and Fi is a 

function of X and Γi, which are defined as follow: 

 1 2 nX x x x K  (2) 
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where, 𝑎0
𝑖  and 𝑎j

𝑖 (i = 1, …, M,  j = 1, ..., n) are 

assigned by real values, and since we use a first 

order Takagi–Sugeno fuzzy inference system, 𝑓𝑖 is 

given by: 
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If μ𝑗
𝑖 (𝑥𝑗) is the membership function (MF) of the 

jth input in the ith fuzzy rule, the firing strength of 

this rule is calculated as: 

1 1 *( ) * ( )
n
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Here, ∗ is the t-norm product operator. Thus the 

normalized firing strength of the ith rule is given 

as: 
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Finally, the output of the Takagi–Sugeno fuzzy 

inference system is obtained by: 
1 1
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( , )

i i i

n n
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Then f F X 
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(1) 

 
Figure 1. Schematic representation of cement production and rotary kiln operation [23]. 
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where, 𝑓𝑖 and 𝑊𝑖 are determined using (4) and (6), 

respectively.  

The structure of the multi input-single output 

(MISO) TSNFS with n inputs and K MFs for each 

input is given in Figure 2. In the first layer, the 

input signals are distributed. In the second layer, 

for each input signal, the membership degree 

belonging to its corresponding fuzzy set (μ𝑗
𝑖 ) is 

calculated. Realizing the inference engine happens 

in the third layer by determining the firing strength 

of each rule. In the fourth layer, the amount of 

function in the consequent part is set. The product 

of fourth layers' output and firing strength for each 

rule is applied in the fifth layer, and finally, in the 

sixth layer, defuzzification is done. 

 

2.2. Learning algorithm strategy 

As it is obvious in (4) to (7), there are some 

parameters in the fuzzy rules that should be tuned. 

In this work, we use the reliable gradient descent 

(GD) algorithm to determine the final amount of 

these parameters. Mean Square Error (MSE) is used 

as the cost function, defined by: 

1

1 N

p

p

J E
N 

   
(8) 

where, N is the total number of data samples, and 

𝐸𝑝 is given as: 

21
ˆ( )

2
p p pE y y   (9) 

where, 𝑦𝑝and 𝑦̂𝑝 are the target and output of fizzy 

identifier, respectively. For simplicity, we use E 

instead of 𝐸𝑝 in the following equations. 

Antecedent part of each rule consists of two 

parameters that belong to MFs including standard 

deviation (STD) and mean should be learned since 

we have chosen Gaussian MF for the antecedent 

part, as follows: 
2
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where, μ𝑚
𝑗

(𝑥𝑗) is the mth MF of the  jth input; σ𝑚 
𝑗

 

and 𝑐𝑚
𝑗

 are its STD and mean, respectively. Also m 

= 1, …, K and j = 1, …, n. According to the GD 

algorithm, by applying the momentum term [26] to 

improve the convergence speed, σ𝑚 
𝑗

is updated by: 
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where, η𝜎(𝑘) is the adaptive learning rate updating 

by the Bold Driver method [27, 28], γ𝜎 is the 

momentum term, and k indicates the learning step. 

Also 
∂J

∂σm 
j  in (11) is obtained according to (8) by: 

1

1
( )

N

pj j
pm m

J E

N 

 


 
  (12) 

where, the derivatives are computed by applying 

chain rule, so we have: 

 
 

 Figure 2. Structure of TSNFS. 
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where, 𝑄𝜎 is the set consisting of all rule indices 

containing σ𝑚 
𝑗

(e.g. in a system with n = 5 and K = 

2, there are 32 rules; σ1 
1 exists in the rules 1 to 16, 

thus 𝑄𝜎  = {1, 2, …, 16}) and 𝑓𝑞 and 𝑤𝑞 are given 

by (4) and (5), respectively. Also updating 𝑐𝑚
𝑗

 is 

possible by: 
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where, η𝑐(𝑘) is the adaptive learning rate, γ𝑐 is the 

momentum term, and 
𝜕𝐽

𝜕𝑐𝑚 
𝑗   is calculated by: 
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where,  
𝜕𝐸

𝜕𝑐𝑚 
𝑗 , by applying chain rule, is given by: 
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Here, 𝑄𝑐 is the set consisting of all rule indices 

containing c𝑚
𝑗

. Also in the consequent part of the 

rules, Γ should be updated by: 
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 in (17) is given according to (8), as follows: 
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in which by applying chain rule, we have: 
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where, W is given as: 

1 2 MW W W W   K   (20) 

3. Data Preprocessing 

Another issue that should be noted to get the proper 

results in an identification process is to use the real 

dataset. The data we use in the simulations is 

collected from the SWC factory, which includes 

high frequency noise, offset, and maybe sudden 

variations, so it is necessary to prepare a valid data 

for applying to the model. We will explain how the 

data is preprocessed in the rest of this section. 

3.1. Input-output variables 

In our modeling, the data corresponding to 12 

weeks is considered, which consists of nine inputs 

and outputs, given in Table 1. 

3.2. Sampling 

Since continuous signals are not usable in 

computing tools such as computers, a conversion to 

discrete type with a proper sampling frequency is 

required. Here, we determine 𝑇𝑠, the sampling time, 

as follows: 

min

3
sT


  (21) 

The smallest time constant of the system has been 

calculated to be three minutes [30], thus 𝑇𝑠 will be 

60 s by (21). 

3.3. Detecting outlier data 

The samples may have different behaviors beyond 

expectations, called the outlier data. It is possible to 

obtain a compact clustering for data by getting rid 

of or replacing them. There are several methods 
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Table 1. Input and output variables in cement rotary kiln. 

Variable Name Abbreviation Symbol Type 

Material feed rate MAT 𝑥1 Input 

Fuel feed rate FU 𝑥2 Input 

Kiln speed KS 𝑥3 Input 

I.D. fan speed FA 𝑥4 Input 

Secondary air pressure AP 𝑥5 Input 

Kiln ampere KA 𝑦1 Output 

CO content CO 𝑦2 Output 

Back-end temperature BE 𝑦3 Output 

Pre-heater temperature PRE 𝑦4 Output 
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available to determine the outlier data. Here, we use 

T2 statistics [31] for this goal. Suppose that X is a 

matrix containing N samples with dimension P, as 

follows: 

1

2
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x

x
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 (22) 

First, a clustering is applied to this dataset by the k-

means algorithm to reach k clusters name 

1, , kC CK  with centers 1, , kc cK , respectively. 

Then T2 statistics for samples of each cluster is 

calculated by: 

2 1( ) ( )T

j j i i j iT x c S x c     (23) 

where, 𝑥𝑗 ∈ 𝐶𝑖, 1,...,i k , 1,..., ij n  and 𝑛𝑖 is 

the number of samples in the ith cluster. Also 𝑆𝑖 in 

(23) is obtained by: 
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1
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i j i j i
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S x c x c
n 
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
   (24) 

Finally, each sample will be checked by: 

2 2

jT    (25) 

where, α determines the number of outlier data 

(smaller α results in more outliers). The samples 

satisfying the condition in (25) are denoted as 

normal, otherwise outlier. Then the outliers are 

replaced with the mean value of the previous and 

next samples. 

3.4. Filtering 

There may be some sudden changes and peaks in 

data that have a large amount of energy in a high 

frequency range. Since they degrade the 

performance of model, it is necessary to smooth 

them by passing the data through a proper filter [8]. 

In order to reach this goal, a first-order Butterworth 

low-pass filter with a 10-4 Hz band width is used 

here.  

3.5. Applying input-output delay 

The pure delay of a system is always a very 

effective parameter in the identification process. 

For the rotary kiln of the SWC factory, as it has 

been shown in Table 2, we use the delay results 

mentioned in [32] by means of the Lipschitz 

method.  

 

3.6. Input selection using GA 

Since increasing the number of inputs results in 

more complexity in fuzzy systems, the best subset 

of inputs are selected in this work by applying GA 

to prevent increasing computations and achieving 

the best results. For this purpose, first, we gathered 

the more effective inputs for identifying each output 

(concluding the effective dynamics of kilns' inputs 

and the corresponding output) by analyzing the 

research works that have been done later [21, 25, 

32], and then we used GA to select the best ones. In 

order to reach the minimum error and less inputs 

(both together) the cost is defined as: 

1 1 2 2z W f W f    (26) 

where, 𝑓1, 𝑓2, are MSE and the number of inputs 

with weights 𝑊1 and 𝑊2, respectively. Figure 3 

demonstrates the block diagram for rotary kiln 

identification with input selection by means of GA, 

and all the parameters required in GA are gathered 

in Table 3Error! Reference source not found..  

Table 2. Input–output delays (minute). 

Variable Name KA CO BE PRE 

MAT 10 15 30 18 

FU 25 5 10 4 

KS 0 5 40 36 

FA 10 0 5 0 

AP 30 4 5 0 

 

 
Figure 3. Identification block diagram with input 

selection by GA. 

Table 3. Parameters used in GA. 

Parameter value 

Population size 100 

Maximum generation 20 

Crossover rate 0.5 

Mutation rate 0.2 

𝑊1 104 

𝑊2 1 
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In Figure 3, U(k) is defined as: 

 1 2 3 4 5( )
T

U k x x x x x   (27) 

The results of applying GA shows that two 

dynamics of each output, i.e. ( 1) , ( 2)i iy k y k   , 

i = 1, …, 4 are the most proper inputs for it. 

3.7. Normalizing data 

We normalize the data in the [0,1] interval because 

the inputs and outputs have different ranges that 

lead to error in data quantization, and 

consequently, the plant is not identified well [24]. 

4. Simulation and results 

In this section, the preprocessed data is applied to 

the TSNFS. The kiln that is a multi-input multi- 

output (MIMO) system is supposed as four MISO 

systems. Each of these dynamic MISO models are 

used as the schematic representation given in 

Figure 4. Structure learning of model to determine 

the number of inputs is done by GA (mentioned in 

the previous section). Also two MFs as the optimal 

number of MFs for each input have been achieved 

by trial-and-error. Thus there are four fuzzy rules 

with 20 learning parameters for TSNFS that are 

tuned by the GD method. Also the prepared data is 

divided into three parts consisting of 50% for train, 

20% for validation, and 30% for test. In Figure 4, 

n(k) is the noise added to the model to evaluate it 

in a noisy situation. MSE for the test data when 

there is no noise, given in Table 4 and Figure 5, 

illustrates the output of the model and the actual 

output for KA.   

Then we add a zero mean Gaussian noise and 

evaluate the model in different cases depending on 

the noise STD, whose results are presented in Table 

5 to  

Table 8 for outputs, where 𝜎𝑇𝑟𝑎𝑖𝑛 and 𝜎𝑇𝑒𝑠𝑡 denote 

the STD of noise in the train and test data, 

respectively.  

In these simulations, we consider two cases. In case 

I, 𝜎𝑇𝑟𝑎𝑖𝑛 is fixed and 𝜎𝑇𝑒𝑠𝑡 takes different values. 

In case II, 𝜎𝑇𝑒𝑠𝑡 is fixed and different values are 

assigned to 𝜎𝑇𝑟𝑎𝑖𝑛. 

According to the results of case I, we conclude in 

the same 𝜎𝑇𝑟𝑎𝑖𝑛 if the amount of 𝜎𝑇𝑒𝑠𝑡 increases, 

the MSE value will grow up. In Table 5, the results 

for KA show that when 𝜎𝑇𝑟𝑎𝑖𝑛 is 0.7, the MSE 

values are 1.0162, 1.3944, 2.2934 in 𝜎𝑇𝑒𝑠𝑡= 0.7, 

𝜎𝑇𝑒𝑠𝑡 = 1, 𝜎𝑇𝑒𝑠𝑡= 1.5, respectively. Figure 6 shows 

the plot of the actual and identified output for KA 

in case 𝜎𝑇𝑟𝑎𝑖𝑛= 0.7.  

Moreover, Case II denotes an interesting result. In 

fact, by growing up 𝜎𝑇𝑟𝑎𝑖𝑛 for a fixed 𝜎𝑇𝑒𝑠𝑡, the 

model has less error. As in Table 5, the results for 

KA show that when 𝜎𝑇𝑒𝑠𝑡= 0.7, the MSE values are 

1.0162, 0.7136, 0.3981 in 𝜎𝑇𝑟𝑎𝑖𝑛= 0.7, 𝜎𝑇𝑟𝑎𝑖𝑛 = 1, 

𝜎𝑇𝑟𝑎𝑖𝑛 = 1.5, respectively. The actual and identified 

outputs for KA in case 𝜎𝑇𝑒𝑠𝑡= 0.7 are shown in 

Figure 7. (It is necessary to notice that an "error 

condition" has been specified in training algorithm 

to reach comparable results. Thus these MSE 

values can be very lower by changing the "error 

condition" in a trial-and-error process.) 
 

 

5. Conclusion and future work 

5.1. Conclusion 

 
Figure 4. Schematic for dynamic nonlinear fuzzy identification 

of cement rotary kiln 
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In this paper, a Takagi-Sugeno neuro-fuzzy system 

(TSNFS) was proposed for identification of Saveh 

White Cement rotary kiln in the normal and noisy 

conditions. The basis of TSNFS is a set of fuzzy 

rules consisting of fuzzy sets in the antecedent part 

and a linear function in the consequent part that 

enables the system to give a better model for non-

linear dynamic plants and handle noisy information 

effectively. Also the GD algorithm was applied for 

updating parameters, and the data preprocessing 

was done completely. Especially, input selection 

that is derived based on GA, plays a key role in the 

models' simplicity and proper results.  

The efficiency of the model was shown through 

simulations. A comparison between these results 

and other newly proposed models such as [8, 23] 

showed smaller MSE values for TSNFS in this 

paper, despite the smaller number of rules and 

learning parameters. Also this model was evaluated 

in noisy condition (that has not been noted in the 

recent studies), and had rather successful results. 

For larger amounts of noise on test data, the error 

increases so the error is tracking the noise and the 

model knows the noise well. Besides, we 

concluded the model works better (it had less error) 

when its parameters were tuned in a stronger noisy 

condition, and this is possible because of the fuzzy 

systems’ properties. 

5.2. Future work 

In our future work, we will consider the changes 

such as using the recurrent structure in the proposed 

model. Also applying the type-2 neuro-fuzzy 

system for identification of cement rotary kiln in 

noisy condition, will be another future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. MSE of model for KA test data in noisy condition. 

Case I. Fixed 𝝈𝑻𝒓𝒂𝒊𝒏 and variable 𝝈𝑻𝒆𝒔𝒕 

𝝈𝑻𝒓𝒂𝒊𝒏 
𝝈𝑻𝒆𝒔𝒕 

0.7 1 1.5 

0.7 1.0162 1.3944 2.2934 
 

Case II. Fixed 𝝈𝑻𝒆𝒔𝒕 and variable 𝝈𝑻𝒓𝒂𝒊𝒏 

𝝈𝑻𝒆𝒔𝒕 
𝝈𝑻𝒓𝒂𝒊𝒏 

0.7 1 1.5 

0.7 1.0162 0.7136 0.3981 
 

 

Table 6. MSE of model for CO test data in noisy condition. 

Case I. Fixed 𝝈𝑻𝒓𝒂𝒊𝒏 and variable 𝝈𝑻𝒆𝒔𝒕 

𝝈𝑻𝒓𝒂𝒊𝒏 
𝝈𝑻𝒆𝒔𝒕 

0.01 0.02 0.03 

0.01 2.8343*10-4 5.3911*10-4 9.8695*10-4 
 

Case II. Fixed 𝝈𝑻𝒆𝒔𝒕 and variable 𝝈𝑻𝒓𝒂𝒊𝒏 

𝝈𝑻𝒆𝒔𝒕 
𝝈𝑻𝒓𝒂𝒊𝒏 

0.01 0.02 0.03 

0.01 2.8343*10-4 2.2819*10-4 0.6705*10-4 
 

 

Table 7. MSE of model for BE test data in noisy condition. 

Case I. Fixed 𝝈𝑻𝒓𝒂𝒊𝒏 and variable 𝝈𝑻𝒆𝒔𝒕 

𝝈𝑻𝒓𝒂𝒊𝒏 
𝝈𝑻𝒆𝒔𝒕 

2 3 4 

2 7.047 10.7899 16.1071 
 

Case II. Fixed 𝝈𝑻𝒆𝒔𝒕 and variable 𝝈𝑻𝒓𝒂𝒊𝒏 

𝝈𝑻𝒆𝒔𝒕 
𝝈𝑻𝒓𝒂𝒊𝒏 

2 3 4 

2 7.047 4.7546 3.1961 
 

 

Table 8. MSE of model for PRE test data in noisy condition. 

Case I. Fixed 𝝈𝑻𝒓𝒂𝒊𝒏 and variable 𝝈𝑻𝒆𝒔𝒕 

𝝈𝑻𝒓𝒂𝒊𝒏 
𝝈𝑻𝒆𝒔𝒕 

1.5 3.5 5 

1.5 7.0332 14.4 23.695 
 

Case II. Fixed 𝝈𝑻𝒆𝒔𝒕 and variable 𝝈𝑻𝒓𝒂𝒊𝒏 

𝝈𝑻𝒆𝒔𝒕 
𝝈𝑻𝒓𝒂𝒊𝒏 

1.5 3.5 5 

1.5 7.0332 6.7525 1.9196 
 

 

Table 4. MSE of model for test data in normal condition 

Output MSE 

KA 0.035972 

CO 9.4434*10-6 

BE 0.18595 

PRE 0.3236 
 

 
Figure 5. Plot of actual and identified outputs for KA in 

normal condition. 
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 فازی تاکاگی سوگنو-شناسایی کوره دوار سیمان در شرایط نویزی با استفاده از سیستم عصبی

 

 محمد تشنه لبو  *دا مرادخانین

 .ایران، تهران، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی

 00/10/5100 پذیرش؛ 10/10/5100 بازنگری؛ 52/10/5102 ارسال

 چکیده:

در وص بخصمدلی که تاکنو  است. اما  قرار داشتهتوجه پژوهشگرا  زیادی مورد ترین بخش فرایند تولمد سماا  هاواره اصلی عنوا به کوره دوار سیماا 

سوگنو -یفازی تاکاگ-سمستم عصییارائه نشده است. در این پژوهش  از این سمستم غمرخطی پمچمده شیرای  نوییی دارای عالررد مناسیی باشد  برای 

(TSNFS)  اسییتداده و الگوریتم گرادیا  نیولی   برای شییناسییایی کوره دوار سییماا(GD) های مقدم و تالی قواعد فازی به برای تنظمم پارامترهای بخش

انتخاب گردیده تا سیمستم فازی دارای کاترین  (GA)سیمسیتم با کاا الگوریتم تنتما این های مناسی  برای کار برده شیده اسیت. هاچنمن  ورودی

اگر دهد شناسنشا  می نتایج حاصل های مربوط به کارخانه سیماا  سیدمد ساوه مورد استداده قرار گرفته است.ها  دادهسیازیپمچمدگی باشید. در شییمه

در  TSNFSمدل   های پمشمن  دارای عالررد بهتری است. بعلاوه  در این پژوهشعصیی و فازی ارائه شده در پژوهشهای پمشنهادی در مقایسه با مدل

ها حاکی از آ  است که این مدل در سازیخورد. شیمهبه چشم نای اخمرهای شیرای  نوییی نمی مورد ارزیابی قرار گرفته اسیت که این مسهله در پژوهش

 لررد مطلوبی دارد.شرای  نوییی مختلف  عا

 .انتخاب ویژگی  شرای  نویییسوگنو  -کوره دوار سماا   سمستم فازی تاکاگی :کلمات کلیدی

 


