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Abstract

Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and
multitenancy, permitting multiple users to utilize the same physical resource, and thereby posing the so-called problem of internal facing
security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in cloud environments.
This is because such IDSs employ only the network information in their detection engines, and this, therefore, makes them ineffective for
the cloud-specific vulnerabilities. In this paper, we propose a novel assessment methodology for anomaly-based IDSs in cloud computing
that takes into account both the network and system-level information for generating the evaluation dataset. Our approach deploys the
IDS sensors in each virtual machine to create a cooperative environment for our anomaly detection engine. The proposed assessment
methodology is then deployed in a testbed cloud environment to generate an IDS dataset, which includes both network and system-
level features. Finally, we evaluate the performance of several machine learning algorithms over the generated dataset. Our experimental
results demonstrate that the proposed IDS assessment approach is effective for attack detection in the cloud, as most of the algorithms
are able to identify the attacks with a high level of accuracy.

Key words. Intrusion detection system, cloud computing, classification algorithm, anomaly detection, dataset generation, IDS assess-
ment, machine learning.

1. Introduction

The advances in cloud computing have provided signifi-
cant benefits and computing power based on the idea of
pay as you go, which far exceeds that contained in their
physical worlds. The cloud computing can provide three
models of services: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS); and four deployments: private, community, pub-
lic, and hybrid clouds [2]. In SaaS, systems offer complete
online applications that can be directly executed by their
users; in IaaS, providers allow their customers to have
access to entire virtual machines; and in SaaS, it offers
development and deployment tools, languages, and APIs
used to build, deploy, and run applications in the cloud.
The security of cloud services is a major obstacle to the
growth of this such technology that requires some new
considerations regarding the new security issues [4]. Mov-
ing the organizations’ sensitive information into a public
cloud entails additional security risks such as availability,
confidentiality, and integrity of those organizations [5].
Although the recent developments have brought new tech-
nologies in network security, such as firewalls and security
gateways, to prevent unpermitted traffic, IDSs still have a
significant role in network security solutions [1, 9]. The
main objective of an IDS is to detect all intrusions regard-
ing the deployment location of the sensor component of
such security system. IDSs can be categorized from differ-

ent aspects. Depending on the detection engine, IDSs can
be divided into three categories: misuse, anomaly, and hy-
brid detection systems. The misuse detection systems can
only detect known attacks using some pattern matching
algorithms and a list of predefined attack signatures. How-
ever, an anomaly-based system employs a machine learn-
ing technique to model the normal behavior of the system,
and then detects the attacks based on their difference from
the normal behavior model. Machine learning and data
mining algorithms are frequently used in anomaly IDSs
[9]. A hybrid IDS employs both the misuse and anomaly
detection engines.
The evaluation of an IDS in misuse engine is straightfor-
ward based on the attack patterns in a signature database.
However, the assessment of accuracy in an anomaly de-
tection engine depends on the environment and methods
of generating training and validating datasets. Moreover,
the datasets are of great importance in such IDSs. This
is because the accuracy of a learning technique directly
depends on the training and validation datasets that are
generated in a specific environment. Therefore, having
datasets specifically generated for an environment can sig-
nificantly improve the performance of its anomaly IDS.
This is due to a better modeling of the normal behavior of
the environment.
One of the most widely used datasets is the KDD 1999
dataset [17], which was generated from the DARPA 1998
TCP/IP data [18], and has been used for the KDD Cup
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challenge since 1999. Following the issues provided by
two main critics of DARPA program [19, 21] and the re-
quirement presented by NIST [22], there are a few re-
search works aimed to either clean or improve the KDD
dataset [32] or create new datasets for evaluating IDSs
[27]. None of these works were specifically conducted
for cloud computing environments, while cloud users face
security threats both from outside and inside the cloud.
The virtualization and multi-tenancy in cloud permits var-
ious users to utilize the same physical resource and poses
the new problem of internal facing security [33]. In other
words, cloud users must be protected from other users,
and also cloud providers need to be protected against data
leakage and denial-of-service (DoS) attacks from users.
Thus the traditional anomaly IDSs generated based on
the above datasets (which were obtained from attacks
over general-purpose networks) are ineffective for cloud
computing. Furthermore, it is crucial to generate cloud-
specific datasets for both training and testing of machine
learning algorithms that improve the performance of IDSs
for the cloud.
In order to protect the cloud environment from the above
attacks, we propose a novel assessment methodology
based on a novel anomaly IDS model for cloud comput-
ing. In the proposed methodology, both training and test-
ing datasets are generated within a cloud computing envi-
ronment, and several machine learning algorithms will be
applied to the datasets in order to choose the most effec-
tive learning model for our proposed anomaly IDS in the
cloud. In contrast to the traditional anomaly IDSs, the pro-
posed approach links network and system-level data for
generating the datasets. Moreover, deploying IDS sensors
in each virtual machine helps us to develop a cooperative
anomaly detection engine for the cloud environment. We
summarize our contributions as follows:

– We propose a novel methodology for generating be-
nign and attack traffic in the cloud, which can be used
as a basis to develop an anomaly IDS in the cloud.

– We deploy the proposed methodology in a testbed
cloud environment to generate an IDS dataset that in-
cludes both network and system-level features.

– We provide an extensive and detailed analysis of the
generated traffic in a testbed cloud.

– We perform some experiments to assess the perfor-
mance of several machine learning algorithms over the
generated datasets.

The rest of this paper is organized as what follows. In Sec-
tion 2, the related works are discussed. Section 3 presents
the details of our proposed methodology for IDS assess-
ment in the cloud. Performance analysis and experimental
results are presented in Section 4. Finally, concluding re-
marks are made in Section 5.

2. Related works
Due to the existing several different machine learning and
data mining techniques applicable in IDSs, there are many
research activities proposed to contribute an anomaly-
based IDS [1, 8, 9, 10, 15, 16]. Kumar et al. in [16]
have divided the artificial intelligent based IDSs into four
categories: decision tree, data mining, machine learning,

and ensemble classifiers. In the taxonomy presented in
[8], authors have classified anomaly detection techniques
in six categories including statistical, classification-based,
clustering and outlier-based, soft computing, knowledge-
based, and combination learners. Two recent published
surveys of IDSs based on ensemble and hybrid techniques
are presented in [1, 10].
In 1998, DARPA (Defence Advanced Research Project
Agency) sponsored the first Intrusion Detection Evalu-
ation (IDEVAL) project in the MIT Lincoln Labs [18].
The traffic was collected by the tcpdump network snif-
fer on a simulated network similar to a military topology.
The training data was generated from seven weeks of the
simulated traffic including 24 attack types, while the test
dataset was obtained from another two-week traffic col-
lection containing additional 14 attack types. The result
of the DARAPA project was reviewed in 1999 for creating
a widely used benchmark tool for IDSs. Another famous
dataset derived from the project entitled KDD Cup 1999
was generated originally by Stolfo et al. [17] by extracting
the flows from the DARPA traffic. In addition, DARPA
initiated the LARIAT (Lincoln Adaptable Real-time As-
surance Test-bed) project in 2001 whose results were re-
stricted to the military USA environment [26].
Two main contributions provided several questions about
the accuracy of the DARPA simulations including re-
search works of McHugh in [21] and Mahoney and Chan
in [19], while NIST provided the major requirements of
evaluation of IDSs in [22]. Following the issues pro-
vided by the critics of DARPA program and the require-
ments presented by NIST, several research works were
conducted to create new datasets for evaluating IDSs
[6]. Authors in [7] also presented an assessment method-
ology based on real traffic, while they performed sev-
eral signature-based IDSs for labelling generated datasets.
Massicotte et al. [20] have proposed a framework for the
automatic evaluation of IDSs based on virtual infrastruc-
ture and vulnerability exploitation programs for generat-
ing attack traffic, while they have no support for the be-
nign traffic generation. Shiravi et al. [27] have proposed
a systematic approach to generate the datasets required
for IDSs. This method is based upon the concept of pro-
files that contain detailed descriptions of intrusions and
abstract distribution models for applications, protocols, or
lower level network entities.
Privacy is a significant issue for using real traffic in an
IDS assessment method. In order to resolve the challenge,
some researchers proposed a synthetic traffic generation
based on modelling real behaviour and network services.
Authors in [14] have provided a benchmark framework for
IDSs based on modelling the normal behaviour from ob-
servation of the last traffics and generating a synthetic data
based on the model. Sommers et al. [30] have proposed
a framework named Trident for IDS evaluation based on
both benign and malicious traffic generation. For gen-
erating the benign traffic and with respect the parame-
ters of mix and volume in traffic, the authors created a
protocol-aware emulation based on payload interleaving.
This mechanism is based upon a collection of automata
with states that describe classes of packet observed in a
specific service. Moreover, the idea was implemented as
a plug-in for Harpoon traffic generator [28]. For generat-
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ing the attack traffic, the authors use MACE [29] as an
attack composition framework with some extensions on
its attack profiles. To the best of our knowledge, no exist-
ing work considers the IDS assessment methodology for
cloud computing environments.

3. Cloud-IDS assessment methodology

3.1. IDS assessment framework

The DARPA project [18] and requirements presented by
NIST [22] provide some general steps for an assessment
framework in anomaly IDSs. Having these recommenda-
tions, our IDS assessment framework is also inspired by
the research work conducted in [27]. We use similar steps
for generating datasets, while our framework resolves a
few shortcomings in those studies for packet grooming
and labelling. Moreover, our experiment environment is
adapted for cloud computing environments. Thus our ap-
proach needs to collect the system-level data, and links
them to the network traffic in order to consider the cloud
specific attacks lead to cloud resource exhausting and
originated from the virtualization and multi-tenancy in the
cloud computing. Finally, we generate the dataset in a col-
laborative context, where several virtual machines along
with the hypervisor in the cloud environment are involved
in the traffic generation. This helps to capture traffic re-
quired to detect the attacks originated within the cloud
from one tenant to another one.
Figure 1 illustrates the main steps in our framework for
creating IDS assessment datasets. The following describes
the main steps in our framework.

– Benign traffic generation: To collect the benign traf-
fic, we select the real world traffic for several sample
applications we developed and deployed on our cloud
computing environment.

– Attack traffic generation: The attack traffic is gen-
erated using several IDS stimulator tools, where their
attack signatures are also updated for covering the re-
cent attacks reported in the cloud computing.

– Traffic sniffer: This is a network sniffer that collects
and stores all the packets related to the machines in-
volved in the experiments.

– SysPerf collector: This module collects and stores
some system-level data related to the performance of
the machines involved in the experiments.

– Feature extraction: The features extracted in this
module are divided into two categories: network and
system-level features. For the network-level features,
we first extract the network sessions and aggregate the
packets within the sessions. After that, we extract the
several features from the network sessions related to
both header and payload of the packets within each
session. For the system-level features, we focus on the
features related to the system performance such as the
memory and CPU usage. We explain the details of the
feature extraction process in Section 3.4.

– Labeling: A significant step in every IDS assessment
methodology is to label the generated dataset. It is to
be noted that we may have both controlled and uncon-
trolled traffic as we employ real cloud environment for

running our assessment methodology. The former con-
tains the traffic we know its exact label as the traffic
is synthetically generated in a controlled environment.
The uncontrolled traffic is generated during the live op-
erations of the cloud computing environment, and we
need a mechanism to label such a traffic. In this step,
we employ more than one signature-based IDSs to la-
bel uncontrolled traffic, and then the label is obtained by
performing a majority voting algorithm over the reports
of IDSs. Obviously, the controlled traffic is manually
labeled.

– Feature selection: An important step for an anomaly
IDS is to decide which features should be included in
the final datasets considered as an input for learning
algorithms. It is clear that there are some features ex-
tracted in the previous step and have no contribution to
distinguishing the records within the datasets. We ex-
plain the details of the feature selection process in Sec-
tion 3.5.

– Learning experiments: For evaluating the perfor-
mance measures of our generated datasets, we apply
several machine learning algorithms on the dataset. The
performance results of these algorithms are reported in
Section 4.

Attack GeneratorAttack 
Pattern

Benign Traffic

Feature 
Extraction

Labeling/ 
Grooming

Raw 
Traffic

Feature SelectionEvaluation 
Dataset

Learning Experiments

SysPerf
Data

Traffic SnifferSysPerf Collector

Figure 1 . Our framework for generating datasets.

3.2. Deployment in cloud

In order to determine the deployment plan for an IDS
in the cloud computing, we need to understand the ma-
jor points of the cloud-specific vulnerabilities. This is due
to the fact that the deployment points of the IDS sensors
have significant impacts on the coverage of the data col-
lection using the sensors as well as the detection perfor-
mance of IDS. Regarding the attack model and attack sce-
narios presented in the literature for the cloud computing
[4, 33], there are three significant roles in attacks of the
cloud: User, Service, and Cloud. In other words, we need
to consider all the above three roles to propose a compre-
hensive IDS in the cloud. Thus, we deploy the IDS sensors
in both virtual machines and the hypervisor of the cloud
that helps to collect both environmental and network data
among these three roles.
Figure 2 shows the logical topology of our test environ-
ment in the cloud computing for generating IDS dataset.
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In this topology, two virtual machines run Linux as the
hosted operating systems and were deployed on a hyper-
visor Xen as the guest operating system. Two sample web
applications are installed on the virtual machines, while
the data collection tools are installed on sensor modules
in virtual machines and hypervisor. The first virtual ma-
chine hosts a sample web-based survey application devel-
oped using J2EE standard, Tomcat as the web application
server, and MySQL as DBMS. Also the second virtual
machine hosts a sample car reservation web application
developed with Apache, PHP, and MySQL platform.

App 

OS 

Sensor 

VM-1 

App 

OS 

Sensor 

VM-2 

Hypervisor Sensor 

Hardware-1 

Figure 2 . Logical topology of experiments for collecting IDS
datasets.

3.3. Implementation

In order to generate the dataset using the methodology
presented in Figure 1 and deployment plan presented in
Figure 2, we perform the methodology in two phases af-
ter the installation of the modules in the plan. In the first
phase, our objective is to generate the benign dataset. To
this end, we make the topology in a controlled environ-
ment and request users to work with the services deployed
in the topology. At the same time, we collect both traffic
and system level data inside each sensor as well as the hy-
pervisor. To this end, we use some tools such as tcpdump
for packet sniffer, ntop for network usage, sysstat and vm-
stat for CPU usage, free and vmstat for memory usage,
and df for disk usage.
In the second phase of our implementation plan, we aim to
generate the attack dataset. For generating the attack traf-
fic, we use three famous attack generator tools including
Mucus [23] and MACE [29], which generate the attack
traffic based on the Snort [25] signatures and hping [31]
that is a network tool widely used for packet injection.
As a result of the above two phases, we have two datasets,
generated from the attack and benign traffic, separately.
Although we generate this two traffic in separate time
slots, there is a possibility of overlapping between them.
For example, some benign traffic may be generated by
some legitimate users during the time we perform the sec-
ond phase. Moreover, there is a low chance of having at-
tack traffic by some attackers at the time we perform the
first phase. Both of these two scenarios may happen as
the cloud computing environment we use is a public cloud
and it is publicly available on the Internet. Thus there is no

guarantee that the traffic is generated in a fully controlled
environment.
In order to obtain the true label for both benign and at-
tack traffic generated in the above two phases, we replay
the traffic as an input for three IDSs including Snort, Bro
[24], and a commercial IDS. Then, the true label of each
session within the traffic is obtained by performing a ma-
jority voting algorithm over the labels obtained from these
three IDSs.

3.4. Feature Extraction

As described earlier, an important contribution of our as-
sessment methodology is to link the network features to
the performance features such as system-level attributes
in each virtual machine. Thus we divide the features ex-
tracted in our methodology into two categories: network
and system performance features.
The network features are extracted based on network ses-
sions such as the TCP/UDP/ICMP session. Thus we first
separate the network sessions from the generated traffic
and store the packets of each session within a separate
pcap file. Then we develop a feature extraction tool for
extracting the feature values from each pcap file. We di-
vide the network features into the following categories:

– Intrinsic features of a session that are related to the
header data of the packets in a network session. We ex-
tract 22 features in this category, reported in Table 1.

– Content-based features that are extracted from the data
part of the packets in a network session. We extract 18
features in this category, reported in Table 2.

– Time-based features include some statistical features
computed in a specific time frame. Note that all features
in this category are obtained from the packet headers.
Table 3 reports 5 features extracted in this category.

– Host-based features include some statistical features
computed for each host address involved in the traffic.
Note that all features in this category are obtained from
the packet headers. Table 4 reports 6 features extracted
in this category.

It is worth noting that the last two categories in the net-
work based features are mostly related to the throughput
of the network which obtained based on both the time and
various hosts. The main contribution of these two cate-
gories of features is to improve the detection performance
in the case of resource exhausting attacks that are very
prevalent in the cloud computing environments [4, 11, 33].
The system performance features are extracted from some
system-calls in the virtual machines. These features are di-
vided into three categories, including CPU, memory, and
IO related features, which contains totally 15 features,
listed in Table 5. Note that we need to link the network
features to the system performance features. Therefore,
we capture the system performance features at the time
we collect the benign and attack traffic. This helps us to
use the exact capturing time to link these two types of fea-
tures in order to create the final dataset.

3.5. Feature selection

In this work, we studied the contribution of the extracted
features in the previous step using Principal Component
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Table 1 . Intrinsic features of network connections.

Feature Description
duration connection duration
src_port source port
dst_port destination port
protocol protocol type: tcp, udp and icmp
icmp_type icmp type
icmp_code icmp code
frames_ctos # of frames, source to destination
bytes_ctos # of data bytes, source to destination
frames_stoc # of frames, destination to source
bytes_stoc # of data bytes, destination to source
pkts_no # of packets in the connection
bytes_no # of bytes in the connection
flow incoming or outgoing traffic
data_bit_rate data bit rate
avg_pkt_size mean packet size
avg_pkt_rate mean packet rate
str_time_order stream time order (true;false)
land true for a land attack; false otherwise
wrong_fragment # of wrong fragments
urgent # of urgent packets
tcp_errors # of tcp errors
icmp_checks_bad # of icmp bad checksum

Table 2 . Content-based features of network connections.

Feature Description
textbinfiletype text; binary; unknown
execfiletype exec; noexec; unknown
lines # of lines
words # of whole words
maxwordlen len of the largest word
hotwords # of hot words
characters # of characters
alpha % of alpha letters
lalpha % of lower case letters
ualpha % of upper case letters
digits % of digits
xdigits % of hexadecimal digits
visibles % of visible characters
printables % of printable characters
puncts % of punctuation and symbols
blanks % of blank characters
spaces % of space characters
controls % of control characters (0x00-0x7F)

Analysis (PCA), which determines the most important
features. PCA is a simple yet popular and useful linear
transformation technique that ranks the components by
importance [3]. To this end, it takes dataset from one coor-
dinate system into another such that the greatest variance
by any projection of the data comes to lie on the first co-
ordinate (called the first principal), the second greatest on
the second coordinate, and so on. We employed the PCA

Table 3 . Time features of network connections.

Feature Description
count # of sessions to the same dst address
srv_count # of sessions to the same dst port
same_srv_rate % of sessions to the same service
diff_srv_rate % of sessions to different services
srv_diff_hrate % of sessions to different hosts

Table 4 . Host features of network connections.

Feature Description
dh_count # of sessions to the same dst address
dh_srv_count # of sessions to the same dst port
dh_same_srv % of sessions to the same service
dh_diff_srv % of sessions to different services
dh_same_sport % of sessions to the same source port
dh_srv_diff_hst % of sessions to different dst machines

Table 5 . Features related to system performance.

Feature Description
cpu_user CPU %user
cpu_system CPU %system
cpu_iowait CPU %iowait
cpu_idle CPU %idle
memory_used memory used
mem_frmpg_psec memory frmpg_psec
mem_bufpg_psec memory bufpg_psec
mem_campg_psec memory campg_psec
mem_swpused memory swpused
mem_swpcad memory swpcad
io_tps IO tps
io_rtps IO rtps
io_wtps IO wtps
io_bread IO bread
io_bwrtn IO bwrtn

technique to determine the most important features ex-
tracted in the previous step of our methodology. The fea-
tures selected in this step contribute to the most variance
for all records in the datasets and those features that con-
tribute to the least variance for correlated records. In this
section, we briefly discuss how PCA is performed on our
generated dataset to reduce its dimensions. More details
about PCA can be found in [13]. Note that some of the
features in our dataset is nominal, and we need to trans-
form the nominal features into a numerical format before
running the PCA algorithm.
Let us assume that we have a dataset with n records and m
features (dimensions). In this dataset, the ith record stores
the m values as a vector xi points to Rm. We can store the
mean of all m features as a single vector in Rm as follows:

µ =
1
n
(x1 + · · ·+ xn). (1)
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Now by subtracting the mean µ from each sample vec-
tor xi, the data is transformed so that the mean becomes
zero. To this end, let B indicate the m×n matrix whose ith
column is xi−µ:

B = [x1−µ| . . . |xn−µ]. (2)

Now we define the covariance matrix S, an m×m matrix,
as:

S =
1

n−1
BBT . (3)

It is worth noting that the ith entry on the diagonal of S
is the variance of the ith feature in the dataset. The ma-
trix is symmetric, and it thus can be orthogonally diag-
onalized. Consequently, we can compute the eigenvalues
of S, denoted as λ1, . . . ,λm with corresponding orthogonal
eigenvectors u1, . . . ,um, which are called principle compo-
nents of the dataset. Now we define the variance fraction
of a principal component ui as λi

λ1+···+λm
. Such variance

fraction indicates the significant level of the ith feature in
the dataset. Now we select the principal components from
the largest variance fraction until achieving an acceptable
level of significance. Using the above equations, Algo-
rithm 1 shows a brief description of the PCA algorithm
used for the feature selection over our generated dataset.

Algorithm 1 Feature selection using PCA.

1: procedure PCA
2: Compute µ using Equation(1).
3: Compute B using Equation(2).
4: Compute S using Equation(3).
5: Compute the eigenvalues λ1, . . . ,λm of S.
6: Arrange the eigenvalues in decreasing order.
7: Compute the eigenvectors u1, . . . ,um of S.
8: repeat
9: Select the largest principle component.

10: Update the selected variance fractions.
11: until the selected variance fraction is accepted
12: end procedure

4. Experimental evaluation
In this section, we present the results of our experiments
in order to evaluate the effectiveness and efficiency of our
approach.

4.1. Implementation and experimental environment

We performed our dataset generation phases on a cloud
environment running OpenStack1. We used the SplitCap2

tool to separate the network sessions from the collected
traffic. We also implemented our feature extraction tools
on a Linux platform, mostly written in the Linux shell and
Python scripts.
The experiments were conducted on our generated dataset
at two parts. In the first part, we employed the PCA tech-
nique to select the most significant features in the dataset.

1 http://www.openstack.org
2 https://www.netresec.com/?page=SplitCap

This helped us to generate a new dataset including only
the features selected using PCA. In the experiments, for
PCA, we used ratio α as 99.9%, as it was most desirable
based on our experimental results.
In the second part, we conducted an experiment for eval-
uating various machine learning algorithms and report-
ing the performance and effectiveness of these algorithms
over the dataset generated using our assessment method-
ology. To this end, we used Weka that has been widely
used in machine learning performance studies [12].
All experiments were conducted on an off-the-shelf com-
puter with 2.00GHz Intel Core 2 Duo processor and 4GB
RAM running.

4.2. Traffic generation

As shown in Figure 1, the first and second phases of our
assessment methodology are to generate the benign and
attack traffic, respectively. In this section, we describe the
infrastructure for generation of these two real-life net-
work intrusion datasets using our testbed cloud comput-
ing. This testbed is an IaaS cloud platform we established
using the OpenStack3 architecture. OpenStack is an open-
source cloud operating system that controls large pools of
computing, storage, and networking resources, all man-
aged through a dashboard that gives administrators con-
trol, while empowering their users to provision resources
through a web interface.
Figure 3 shows the virtual network topology in our cloud
testbed. All network elements including servers, worksta-
tions, and switches were deployed virtually on the top of
the OpenStak system. As one can see in this figure, we
deployed the servers and workstations into three separate
zones. We also allocated separate and invalid IP address
ranges for each zone in order to effectively decrease the
broadcast domain for each element. The network address
translation (NAT) server acts as an access provider to the
Internet for the local and server zones. The NAT server
also provides access to the public servers in the DMZ
server for all users on the Internet. To this end, the NAT
server connects to the Internet through multiple valid IP
addresses that are used for connecting the workstations to
the Internet as well as making the DMZ servers visible
for the Internet users. It also provides firewall facilities to
block unauthorized access from the Internet to local and
server zones.
The capturing server in our testbed cloud provides means
to non-disruptively collect both system-level and traffic
on the servers deployed in the server zone. Since all the
servers are virtually deployed on the cloud, we installed
several agents on each virtual server to collect the re-
quired information. Thus all the capturing activities are
performed locally on the servers, and the collected infor-
mation will be manually merged on the capturing server.
We configured 6 servers within the server zone of the
testbed cloud. On each server, we installed Ubuntu Server
14.04 with different network services including FTP
server, Samba service, Apache server, SQL server, Post-
greSQL server, WebLogic server with Java 2 platform,
enterprise edition (J2EE) technologies, PHP development

3 https://www.openstack.org/

392



M. Rezvani / Journal of Artificial Intelligence and Data Mining, Vol 6, No 2, 2018.

Internet
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NAT 
Server

Switch
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Figure 3 . Virtual network topology for our testbed cloud.

tool, Telnet, and SSH servers. Table 6 summarizes the
servers and their services employed in our testbed. For all
servers in the server zone, we used an m.xlarge instance
type, and for the remaining machines (NAT and capturing
servers and two workstations), we used m.large instance
type in our cloud testbed with specification shown in Ta-
ble 7.

Table 6 . Servers and their services installed on our testbed.
Installed operating system for all servers is Ubuntu Server
14.04.

Row Server Services

1 Web server1 Apache2, PHP5
2 Web server2 WebLogic 12cR1
3 DBMS server1 MySQL 5.5
4 DBMS server2 PostgreSQL 9.2
5 FTP server VsFTPD 3.0.2

6 TelnetSSH server telnet-server-0.17
openSSH 7.2p

Table 7 . Instance types in our testbed cloud.

Instance Processor vCPU Memory Storage

m.large 64-bit 2 8GB 40GB SSD
m.xlarge 64-bit 4 16GB 80GB SSD

In order to generate the real time normal traffic, we em-
ployed around 10 persons on the Internet to normally use
our services provided on the servers in DMZ. The cap-
turing process was conducted during three separate time
slots, each of which lasted for half an hour while ser-
vices were accessible for the Internet users. Finally, we
merged all the captured data in order to generate the be-
nign dataset. The attack traffic was generated by launching
attacks through the workstations within the local zone of
the testbed cloud at controlled time slots. During the time
slots, we disconnected the server zone from the Internet in
order to ensure that there was no benign traffic arrived in
the zone. This helped us to increase the accuracy of our
labeling procedure, described in Section 3. We employed
three famous attack generator tools including Mucus [23]

and MACE [29] hping [31], which automatically generate
network traffic using the signatures of Snort.

4.3. Dataset description

The raw data contains traffic generated in our assessment
methodology in two phases: benign and attack traffic gen-
eration. After generating the traffic, we extracted the fea-
tures from the packet traces, and the final dataset con-
tained one record for each network session specified with
values for each feature.
In the dataset, each network session was labeled as either
normal or as an attack. The network connection data con-
tained 67 features, among which 59 were numeric and 8
were symbolic. Only 58 features were used in the experi-
ments, which were selected in our feature selection phase.
Each connection in the dataset was thus transformed into a
58-dimensional vector as data input for detection engine.
There were 7,827 session records in the dataset, of which,
6,444 were benign and 1,383 were attacks. The traffic was
collected from 62 different hosts (IP addresses), and the
whole size of the captured traffic was around 450MB.
Figure 4 depicts the trend of packet capturing in different
time slots. As one can see in this figure, we captured the
attack traffic in one-time slot and the benign traffic in five
different time slots. Figure 5 illustrates the arrangement of
protocols in various layers in the network stack protocol
observed in the captured traffic. Clearly, we employed a
wide range of protocols for collecting the benign and at-
tack traffic. As mentioned in the previous Section, several
protocols were chosen to be served in our testbed cloud in-
cluding HTTP, HTTPS, SSH, TELNET, and FTP. The re-
maining protocols shown in Figure 5, such as PING, DNS,
and ARP, were generated as an indirect consequence of
deploying the above main protocols in the cloud. After
extracting the features from the generated traffic, we em-
ployed the Weka tool to analyze the distribution of the
class values based on some other features in the dataset,
as shown in Figure 6.

4.4. Feature selection

In this section, we studied the impact of the feature selec-
tion on anomaly detection. To this end, we used the PCA
technique implemented in the Weka tool. Consequently,
we found nine features with very low rank, close to zero,
including icmp_type, icmp_code, wrong_fragment, exec-
filetype, memory_swpcad, urgent, icmp_checksum_bad,
memory_swpused, and land. More details about these fea-
tures are presented in Section 3.4. Clearly, these features
were eliminated from our base dataset for evaluating the
anomaly detection algorithms.

4.5. Evaluation of anomaly detection

In this section, we evaluated both the effectiveness and ef-
ficiency of different machine learning algorithms for at-
tack detection in the cloud using the dataset generated
through our assessment methodology. To this end, we se-
lected six machine learning algorithms, one in each cate-
gory implemented in Weka including: NaiveBayes, SVM,

393



M. Rezvani / Journal of Artificial Intelligence and Data Mining, Vol 6, No 2, 2018.

12:10:00 12:20:00 12:30:00 12:40:00 12:50:00 13:00:00 13:10:00

Time (s)

0

0.35

0.7

1.05

1.4

1.75

P
a
ck

e
ts

/1
 s

e
c

(a) Attack Traffic

10:30:00 10:46:40 11:03:20 11:20:00 11:36:40 11:53:20 12:10:00 12:26:40

Time (s)

0

1500

3000

4500

6000

7500

9000

P
a
ck

e
ts

/1
 s

e
c

(b) Benign Traffic 1

10:46:40 11:03:20 11:20:00 11:36:40 11:53:20 12:10:00 12:26:40 12:43:20

Time (s)

0

1000

2000

3000

4000

5000

6000

P
a
ck

e
ts

/1
 s

e
c

(c) Benign Traffic 2

10:46:40 11:03:20 11:20:00 11:36:40 11:53:20 12:10:00 12:26:40 12:43:20

Time (s)

0

1500

3000

4500

6000

7500

9000

P
a
ck

e
ts

/1
 s

e
c

(d) Benign Traffic 3

11:31:40 11:35:50 11:40:00 11:44:10 11:48:20 11:52:30 11:56:40

Time (s)

0

800

1600

2400

3200

4000

4800

5600

P
a
ck

e
ts

/1
 s

e
c

(e) Benign Traffic 4

11:31:40 11:35:50 11:40:00 11:44:10 11:48:20 11:52:30 11:56:40

Time (s)

0

2000

4000

6000

8000

10000

12000

P
a
ck

e
ts

/1
 s

e
c

(f) Benign Traffic 5

Figure 4 . Throughput of packets seen within capture peri-
ods.
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(d) TCP traffic composition.

Figure 5 . Composition of protocols within generated traffic.

IBk, DecisionTable, J48 and RandomForest, which are
widely employed in the intrusion detection literature.
The classification experiments were performed on the
generated dataset, employing the k-Fold cross-validation.
Since there was only one dataset generated in our method-
ology, we needed an idea of splitting the data into two
datasets: the training dataset was used for training the clas-
sification algorithm, and the remaining data (the valida-
tion dataset) were used for evaluating the performance of
the algorithm. In k-fold cross-validation, the dataset was
first partitioned into k equally (or nearly equally) sized
segments (folds). Subsequently, k iterations of training
and validation were performed such that within each itera-

(a) Protocol and class. (b) Destination port and class.

(c) Mean packet size and
class.

(d) CPU usage in user level
and class.

Figure 6 . distribution of some features and class feature.

tion a different fold of the data was held-out for validation,
while the remaining k− 1 folds were used for learning.
Figure 7 shows an example with k = 4. The lighter parts
of the dataset were used for training while the darker parts
were used for validation. In all the experiments, we set k
to 10 for the cross-validation technique.

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Total number of records in the dataset

Validation 
dataset

Figure 7 . Procedure of 4-fold cross-validation.

The classification performance of the machine learning al-
gorithms over our generated dataset was evaluated by their
relative absolute error, root relative squared error, true
positive rate (TPR), false positive rate (FPR), true negative
rate (TNR), false negative rate (FNR), and the area un-
der ROC (Receiver Operating Characteristic) for each ex-
perimental scenario. These measurements were calculated
based on a confusion matrix shown in Table 8. This matrix
offers a detailed picture on the actual and predicted clas-
sification task done by any classification approach. The
detailed computations of the performance measurements
are as follows:

T PR =
T P

T P+FN
×100 (4)

T PR =
FP

FP+T N
×100 (5)

T PR =
T N

FP+T N
×100 (6)

T PR =
FN

FN +T P
×100 (7)
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Table 8 . Confusion matrix for detecting risky flows. (TP:
True Positive; FN: False Negative; FP: False Positive; TN:
True Negative)

Actual Class
Predicted Class

Attack Benign

Attack TP FN
Benign FP TN

The relative absolute error (RAE) and root relative
squared error (RRSE) were computed using equations (8)
and (9), respectively. In these two equations, θ̂i is the pre-
dicted value of the i-th sample and θi is the corresponding
true value.

RAE =
∑

N
i=1 |θ̂i−θi|

∑
N
i=1 |θ̄ −θi|

(8)

RRSE =

√√√√∑
N
i=1
(
θ̂i−θi

)2

∑
N
i=1
(
θ̄ −θi

)2 (9)

In order to evaluate the classification algorithms, we first
obtained the confusion matrix, and then computed the
above metrics using the matrix. Table 9 reports the classi-
fication performance of the different learning algorithms
for attack detection over our dataset when we used the
cross-validation technique by setting k = 10. One can see
in this table that all algorithms perform a perfect classifi-
cation with accuracy close to 100%. Such results lead us
to conclude that the system-level features have a signif-
icant effect on detection performance of the cloud-based
attacks.
Figure 8 illustrates the training and testing time required
by different machine learning algorithms. The elapsed
times reported in this figure were collected from the out-
put reports of Weka when it performed various machine
learning algorithms with the cross-validation technique
over the generated dataset. The results reported in this fig-
ure along with the performance of the classification algo-
rithms showed in Table 9 give us a better understanding
of the capabilities of the machine learning algorithms to
accurately and timely classify the malicious traffic using
our generated dataset for cloud computing environments.

4.6. Evaluation by splitting dataset

In this section, we evaluated the effectiveness of differ-
ent machine learning algorithms for attack detection in
the cloud by splitting our dataset into two parts: train-
ing and validating datasets. To this end, we randomly split
the dataset into training and validating sets by consider-
ing 66% for the training set. After that, the experiments
described in the previous section were repeated to obtain
the performance metrics. we run these steps 10 times and
then averaged the results.
Table 10 reports the classification performance of the dif-
ferent learning algorithms for attack detection over our
dataset when we split the dataset into training and vali-
dating sets. One can see in this table that most of the algo-
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Figure 8 . Elapsed time for training and testing phases in dif-
ferent machine learning algorithms. (NB: NaiveBayes, DT:
DecisionTable, RF: RandomForest.)

rithms show a slightly higher error comparing to the pre-
vious experiment over the cross-validation. This can be
explained by the fact that splitting the dataset by consid-
ering 66% training leads to generate a less accurate model
in most of the learning algorithm in general. Figure 9 il-
lustrates the elapsed time of different machine learning al-
gorithms using splitting the dataset into training and val-
idating sets. The results reported in this figure show that
the algorithms present an efficiency similar to the previous
experiments over the cross-validation.
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Figure 9 . Elapsed time of different machine learning algo-
rithms by splitting dataset to training and validating sets.
(NB: NaiveBayes, DT: DecisionTable, RF: RandomForest.)

5. Conclusions
In this paper, we proposed a new methodology for as-
sessing the anomaly-based IDSs for cloud computing. To
this end, we combined the network and system-level in-
formation for feature extraction in the dataset generation
phase of our methodology. We then deployed the IDS sen-
sors in several virtual machines, to capture the network
flows as well as the system information for all modules in
the cloud. Accordingly, we generated a dataset including
such features for a lab-scale cloud environment, and then
evaluated the performance of several machine learning al-
gorithms using the generated dataset. The experimental
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Table 9 . Classification performance for attack detection using cross validation and different learning algorithms over our dataset.

NaiveBayes SVM IBk DecisionTable J48 RandomForest
Relative absolute error 0.1 0 0.07 0.1 0 0.2
Root relative squared error 1.98 0 0.87 0.1 0 1.61
True positive rate 1 1 1 1 1 1
False positive rate 0.001 0 0 0 0 0
True negative rate 1 1 1 1 1 1
False negative rate 0 0 0 0 0 0
Area under ROC 0.999 1 0.999 1 1 1

Table 10 . Classification performance for attack detection using splitting our dataset and different learning algorithms.

NaiveBayes SVM IBk DecisionTable J48 RandomForest
Relative absolute error 0.00 0.14 0.13 0.00 0.00 0.30
Root relative squared error 0.00 2.98 0.13 0.00 0.00 2.41
True positive rate 1.00 1.00 1.00 1.00 1.00 1.00
False positive rate 0.00 0.00 0.00 0.00 0.00 0.00
True negative rate 1.00 1.00 1.00 1.00 1.00 1.00
False negative rate 0.00 0.00 0.00 0.00 0.00 0.00
Area under ROC 1.00 1.00 1.00 1.00 1.00 1.00

results show that our assessment methodology is highly
effective for attack detection in the cloud. In the future,
we plan to deploy our assessment methodology in a real-
world cloud environment and generate a reference dataset
that can be used by researchers in the intrusion detection
context.
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 تشخیص نفوذ مبتنی بر ناهنجاری در محاسبات ابری رهیافتی نوین برای ارزیابی
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 .ایران، شاهرود، دانشگاه صنعتی شاهرود، دانشکده مهندسی کامپیوتر

 64/8/6931 ؛ پذیرش4/2/6931 ارسال

 چکیده:

سمازی و مجازیهمایی نیلمر بمه لیلما اسمتفاله از ولنویو ی . این مهم شوندعنوان یک هدف جذاب برای نفوذگران شناخته میامروزه محاسبات ابری به

و لر نتلجمه منجمر بمه تممات لاخرمی لر  را فمراه  نممولهچندین کاربر لسترسی همزمان به منابع ووسط اجازه  ها. این ولنویو یچندهمسایگی است

ای ها ونها اطاعات شمبلهاین سلست . نلستندموثر های وشخلص نفوذ سنتی برای استقرار لر محاسبات ابری سلست  ،بر اینشوند. عاوهمیابری  محلط

جدیمد بمرای  رهلمافتیی را ندارنمد. لر ایمن مقایمه های خاص محاسبات ابرپذیریکنند. بنابراین املان وشخلص آسلبرا لر مووور وشخلص استفاله می

ای و سلسمتمی بمرای شمبلهوواممان اطاعمات از  . لر این رهلافتشولهای وشخلص نفوذ مبتنی بر ناهنجاری لر محاسبات ابری ارائه میارزیابی سلست 

منجمر بمه وویلمد یمک محملط کمه  شمدههای مجازی مسمتقر لر روش پلشنهالی سنسورهای وشخلص لر ومامی ماشلن .شولگان استفاله میلالوویلد 

شماما  لالگمانیمک سمازی شمده و ابری لر انمدازه آزمایشمگاهی پلاله یروش پلشنهالی لر محلطهمچنلن . شولمیهملاری برای وشخلص ناهنجاری 

. نتمای  شمده اسمتارزیمابی  یوویلمد لالگماننهایت کارایی چندین ایگوریت  یالگلری ماشلن بر روی  است. لر شدهای و سلستمی وویلد اطاعات شبله

پلشمنهالی بمرای  کارراهنشان لهنده موثر بولن نتای  این  است.لر وشخلص نفوذ  یالگلری ماشلنهای اکثر ایگوریت لهنده لقت بالای ها نشان آزمایش

 .ارزیابی وشخلص نفوذ لر محاسبات ابری است

 .بندیست وشخلص نفوذ، ایگوریت  لستهسلست  وشخلص نفوذ، محاسبات ابری، وشخلص ناهنجاری، یالگلری ماشلن، وویلد لاله :کلمات کلیدی

 




